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JONES POLYNOMIALS OF PERIODIC KNOTS

YoNGJIU BAE, YOUNG KON KiM AND CHAN-YOUNG PARK

We calculate the Zulli’s matrix of a periodic knot and give some necessary conditions
for the Jones polynomial of a periodic knot, which are slightly different from Yokota’s
result.

1. INTRODUCTION

A knot K is said to have period r > 1, if there exists an orientation preserving
homeomorphism f on S* of order r which preserves K with Fix(f) = {z € $® | f(z) =
z} = S' and Fix(f) N K = 0.

By the positive solution of the Smith conjecture, Fix(f) is unknotted. Let £3 = S3/f
be the quotient space under f. Since Fix(f) is unknotted, £3 is again a 3-sphere, K/ f is
a knot in % and S? is an r-fold cyclic covering space of &3 branched along Fix(f). Let
¥ : S — £? be the covering projection map. Denote ¥(K) = K and call it the factor
knot of K. Note that K is a knot in the 3-sphere ©3, so we may assume that X is also a
knot in S3.

Notice that we may have knot diagrams D(K) and D(K ) of K and K respectively,
which satisfy the following commutative diagram

(8%, K) —2 (82, D(K))

)| |

/9
(8%, K) — (5%, D(K)),
q

where g is the restriction of f to S and p and ¢ are regular projections indicating the
knot diagrams D(K) and D(K), respectively.

In this paper, we shall not distinguish the notations for a knot and its diagram, so
K will represents a knot or its diagram. Notice that the knot diagram K consists of r
periodic sections, each of which gives us the diagram K of the factor knot. Then we
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can enumerate the crossings of the knot diagram K as follows. Let C1,Ca,°* ,Cqn be the
crossings in the first periodic section of K. Then

() = Cipre, (=1,2,-+- 0, k=0,1,---,7 — 1)

represent all the crossings of K. Here we can identify the knot diagram K with the factor
of the first periodic section of the knot diagram K so that €1,C2,- - ,Cn also represent
the crossings of K.

Now we introduce the definition of the Zulli’s matrix of a knot diagram.

Given a knot diagram K with the crossings ¢, ¢y, - - - ¢;;, give any orientation to K.
The Zulli’s matriz of the knot diagram K is the n x n matrix T = (T};) over Z, defined
as follows. For i # j, T;; is defined to be the number of times (mod 2) that a traveller
passes through crossing ¢; while making the following trip - the traveller begins on the
overcrossing c¢; with the given direction until he returns to the undercrossing c;. For
1 = j, Tj; is defined as follows

T. = 1 if the crossing sign of ¢; is +1
®7 1 0 otherwise.

A state of the knot diagram K is defined to be a function S from the set of all
crossings of K to {A, B}, that is, a choice, at each crossing c¢;, of a label A or B. Let
S(K) denote the set of the states of the knot diagram K. Let S € S(K) be the state
obtained from the state AA - - - A by exchanging the labels in the positions ¢;;, ¢ip, - - - , ¢, -
Let us denote Ts to be the matrix obtained from the matrix T as follows.

1- ent,','(T), 1= il,'iz, T im,
ent;;(T), otherwise.

ent;(Ts) = {

Given a matrix T, let n(T) denote the nullity of the matrix T'.

For a knot K, the Jones polynomial Vk(t) of K is obtained from the Kauffman
polynomial

PK(A) — (_A—3)w(K) ZAA(S)—B(S)(_AZ _ A—2)U(K|S)—l
s

by putting A = t~'/4, where w(K) is the writhe of the knot K, A(S), B(S) are the
numbers of A, B values in the state S, respectively, and §(K|S) is the numbers of circles
in the split-open diagram K|S. (See Kauffman (1, 2], Murasugi {3] and Zulli [6].) In [6],
Zulli proved that n(Ts) = §(K|S) — 1. We shall use the following notation

AASI=B(S) = Coeff(S) and d=-(A2+A472),
for simplicity. Then the above equation can be simplified to

Px(A) = (~A7%)*FVS " Coeff(S)d™Ts).
S
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2. MAIN RESULTS

THEOREM 1. Suppose that K is an r-periodic oriented knot diagram which has
the factor knot diagram K and T is the Zulli’s matrix of K. Then the Zulli’s matrix of
K is the blockwise circulant matrix T of the form

n T, - T
T, T, - T
Tr—l Tr—2 Tr
I, Trmw -+ Th

where each Ty is an nxn matrix such that Ty is symmetric, Ty, = *(T,_42) the transposed
matrix of Ty_gy0 (2 k<7, 7 2 2) and

Z ent,-j (Tk) = ent,-]- (T) s
k=1

where ent;;(A) denotes the (i, j)-entry of a matrix A.

PRrooF: From the definition of the Zulli’s matrix, it is obvious that T} is the n x n
matrix whose ij-entry ent;;(Tx) (j = 1,2, -- ,n) is the number of times (mod 2) passing
through the crossing c;.rx in the k-th periodic section from the overcrossing of ¢; to the
undercrossing of c; along the orientation of the knot diagram K. Since g*(c;) = ¢jirs
entij(f) = entiyrk j+rk(f). Thus T has the form in (1). Since T is symmetric, T} is
symmetric and Ty = %(T;_k42). Since K and K are knots and 9*(¢;) = Cjrk, for each
i=12,--,mn,

Zentij(f) = Zentij(T), fort=1,2,---,n.
i=1 =1

0

THEOREM 2 For an odd prime r, let K be an r-periodic knot with a factor knot K
and f be the periodic map on S® realising the r-periodic knot K.

(1) Iflk(Fix(f),K) = 1 (mod 2), then

Pi(A) = [Px(4)]" (mod r, A\ (4)).
(2) If1k(Fix(f),K) = 0 (mod 2), then

Pz(A) = &7 [Px(A)]" (modr, A\ (4))

Here, )\.(A) is the polynomial defined by A,(A) = A% — A4r+1) — A4(r=1) 47,
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3. LEMMAS AND THE PROOF OF THEOREM 2

LEMMA 1 For an odd prime r, let K be an r-periodic knot with a factor knot K
and f be the periodic map on S? realising the r-periodic knot K. Then

w(K) = rw(K).
PROOF: Since K consists of r periodic sections each of which gives us the diagram
K in the quotient, Lemma 1 immediately follows from the definition of w(K). 0

LEMMA 2 For an odd primer, let K be an r-periodic knot with a factor knot K and
f be the periodic map on S® realising the r-periodic knot K. LetS = 515,---5, € S(I?),
where S; is the state in the i-th periodic section of the knot diagram K. If S, # 5; for
some 1, j, then

Z Coeff(g)d"(iE) =0 (modr).
SeS(K),S:#8S;

PROOF: Given the state S = 515, ---S, € S(K) as above, let
S, =88 5.8 =8
Sz - 5253 e S,-Sl
§r =88 Sr—2Sr—1-

S; # S; as the states of the factor knot K for some %, j, 51, §2, e ,§, are all distinct.
We have

n(Ts,) = n(fg,) = =n(Tg)
and
Coeff(S;) = Coeff(Sp) = - - - = Coeff(S,).

Hence we have

3" Coeff(3)d"@) = 0 (mod 1).

Ses(K),5:#S;
0

LEMMA 3 For an odd primer, let K be an r-periodic knot with a factor knot K and
f be the periodic map on S® realising the r-periodic knot K. Let S = SS---S € S(K)
with S € S(K). Then

n(T5) = n(Ts) (mod r—1).
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PROOF: Let S = SS---S € S(~) be a state of K and let Dy, Dy, - - - Dk be the
circles in the diagram K |S For each D;, 1 < i < k, define an rn x 1 matrix R; = R,( )
by setting

~ 1, if D; passes through the crossing ¢;,
entjl(R,i) - { i P g g ¢

0, otherwise.

Since f(I?Ig) = I?|§, for each 7 = 1,2, |k, either the circles D; are all the same ;

D; = g(Di) = ¢*(D;) = --- = ¢"~'(Ds) or the circles D;, g(D;), g*(D;), -+, ¢"~(D;) are
all distinct circles in the diagram K|S.
Let
Ra
Ri=|
Rir

where R;; is the n x 1 matrix such that ent; (R;;) = entr(j_1)+1,1(ﬁi), for1 <1l <n.
The matrix f?,, is said to be Type Iif R;; = Ris = - -+ R;;. Otherwise we say that R,
is of type II. Note that if R; is of Type II, then

Ra'l RiZ R»ir
R R . R
Rir }zil Rir—l
are all distinct.
Let
) k, = the number of the matrices of type I,
k; = the number of the matrices of type II

Notice that k = k; + k; and that r divides k,.
For each R; (1 =1,2,---,k), define an n x 1 matrix R; = R;(S) by setting

R = ) Ry
i=1
Then, for a fixed § € S(K), the cardinality |{E li=1,2,: k}| ki + kofr.
Zulli showed in [6] that {Rl,RQ, -+, Re_1} forms a basis for ker(T ), where ker(’fg)

denotes the kernel of the matrix of T over Z,. Now, we claim that the set {R; | i # k}
is a basis for ker(T).
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By Theorem 1,

T, T - T
T, T, - Ty
Tr-l Tr—-2 Tr
Tr Tr—l Tl

with Ts = ET,, and
=1

TsR; = (1 +Ta+ - +T)(Rau+ Ro+ - + Rip) = 0,

for
n T, - T} [ Ra
L, T - T3] | Re
Try Trep o+ To) |Rirn
T, Ty - T R,

Thus, R; € ker(Ts)

To show that the set {R; | i # k} generates ker(Ts), assume that TsR = 0 for some n.x n
matrix R. Then

S TR
T, T. --- T,][R 3! 0
T, T, - T||R L TR 0

-
i
=1

Trev Tr—a -+ T,{ |R S TR 0
T. Ty - T R i=1 0
LTiR

Li=1 J

Thus,

€ ker(fg),
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and hence
R
R
= Clﬁl + CQﬁz +---+ Ck—lﬁk—l
R
R
011311 + 02}:221 +-o+ Ck—lfz_ik—l,l
ciRia +coRop + -+ -1 Ry-12
Clﬁlr:l + Czﬁzr—l + et Ck-1~1~2k—1,r—1
Ry, + R + -+ 1 Re_1r
for some ¢y, ¢y, -+, k-1 € Zy. Thus

T T r
TR =c1) Ri+cd Roi+-+ck1) Reoy
=1 i=1 i=1
=Ry + Ry + -+ 1 Re—1,
so that R =Y ¢;R;, in Z,.

iFk
Finally, we want to show that the set {R; | 7 # k} is linearly independent. To do this,
assume that ¢ R; + coRy + -+ - + ¢ 1 Re_1 = 0 with ¢1,¢9,- - ,ce—1 € Zy. If the matrix

Ry is of type I, then clearly,
Clﬁl + Czéz + -4 Ck—lﬁk—l =0,

and all the 7 matrices obtained from ﬁ., have the same coefficient.
If the matrix ﬁk is of type II, then ) c,}~?4 = (, where the sum runs over all matices and
the r matrices obtained from ﬁk have coefficient 0 and the other » matrices obtained
from R; (i # k) have the same coefficient ¢;. Thus, in each case, we have ¢; =cp = --- =
Ck—-1 = 0.
We have proved n(Ts) = k; + ko/r — 1, and hence
n(T5) =ki+ky—1

=rki+ky—7r—-(-1)(k-1)

=71k +kyfr—1) = (r = 1){k1 - 1)

= rn(Ts) - (r = )(ki = 1)

=n(Ts) (modr—1).

a

LEMMA 4 For an odd prime r, let K be an r-periodic knot with a factor knot K
and f be the periodic map on S® realising the r-periodic knot K. Let k, be the integer
defined in (2). Then

k(Fix(f),K) = ki (mod 2).
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PROOF: If D is a circle in K|S such that g(D) # D, then clearly D N {(s,0) | s >
0,0 = (2m/s)t} is even, fort =1,2,--- 1

Now we are going to prove Theorem 2.
PROOF OF THEOREM 2: First, assume that

k(Fix(f),K) = 1 (mod 2).
f5=85---Se S(f(") with § € §(K), then, by Lemmas 3 and 4, k, is odd and

n(f§) = rn(Ts) — 2(r — 1)k, for some k € Z.
Clearly, Coeﬁ”(§) = (Coeff(S))" and
dﬂ(ig-) = drn(Ts)-2Ar—1)k
(@™T))  (mod r, &1 —1)
(@) (mod 7, Ar(4)),

for
200 -1 =d2(d¥ - &%)
=d 2[(A2 + A7%)% — (A% + A72)?]
=d2[(AT + A7)~ (A + A7Y)?]  (mod r)
=d- 2(A4r _A4 A—4 +A—4r)
= d 247 )\ (A).
Thus
Y Coeff(5)d™Ed = Y (Coeff(8)d*™))"  (mod r, M (A)),
§=55--5eS(K) SES(K)
and hence
(K) = 3 Coeff(5)d™Ks)
SeS(R) .
= > Coeff(S)d"7s) + 3 Coeff(S)dKs)
SeS(R),S:#S; §=55--8e5(K)
= Y (Coeff(S)"d™™))" (modr, A.(A)), by Lemma 2
SES(K) .,
= ( » Coeﬁ"(S)d"(TS)) (mod r, A,(A))
SeS(K)
= (K)".
By Lemma 1,

Pr(A) = (-A7%)“®(EK)
((A=3)ENK))"  (mod r, A.(A4))
= [Px(A)]" (mod r, A (4)).
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Next, assume that
Ik(Fix(f),K) = 0 (mod 2).
IfS=55---SeS(K)with § € S(K), then, by Lemmas 3 and 4, k, is even, so

n(Tg) =rn(Ts) — (r — 1)(2k - 1), for some k € Z
=rn(Ts) + (r—1) = 2(r — 1)(k - 1).

Thus

d¥T5) = gro(Ts)+Hr-1)-2(r—1)(k-1)
— dr-1grn(Ts)-2r-1)(k-1)
= dr—l(dn(Ts))r (mod r, g2r-1) _ 1)
= d Y (d"T))"  (mod r, A(4)),

and hence

(K) = 3 Coeff(5)d™Ks)

Ses(R) N _ _ _

= 5SS Coeff(S)d"™s) + P Coeff(S)d™¥3)
Se8(K),S:i#S; §=55..5€5(K)

= 3 (Coeff(S)d—1d"™))"  (mod 7, A\ (A)), by Lemma 2
SES(K) .

= ¥ Coeff(S)d™) "  (mod r, A,(4))

SES(K)
=d'((K))

and by Lemma 1,

(-4 K )
= (=AY K g -YK)  (mod 7, ) (A))
=d 7' [Pk(A)]" (modr, A (A)).

Pz (A)

I

COROLLARY For an odd prime r, let K be an r-periodic knot with a factor knot K
and f the periodic map on S® realising the r-periodic knot K.

(1) Iflk(Fix(f),K) = 1 (mod 2), then
Vi) = [Vk®)  (mod r, &(2).
(2) Iflk(Fix(f),K) = 0 (mod 2), then
Vr(t) = V()" (mod r, &(¢)).

Here, £.(t) = to —t ! -t 141,
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