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1. Introduction

The first and still the best known computer application to groups exploits
coset enumeration and this has been very thoroughly studied; see for instance
[2] and [8]. No doubt this is because the algorithm is simple in the sense of
programming. The underlying mathematics is far from simple, touching as it
does on logical difficulties akin to the word problem for groups, and this is
reflected in the facts that random access to large tables is required and that
there is no indication at any stage (for example when storage space is exhausted)
whether the algorithm would be completed at any later stage. Efficient computa-
tion depends on choosing a subgroup of small index m in the group under
examination, for group elements will be represented as permutations of degree
m, and the larger m is the more tedious it will be to check properties like
orders of group elements. Yet in many cases m may have to be fairly large so
that the subgroup is "corefree" i.e. the representation is faithful.

These last remarks are very pertinent in the case of finite p-groups. In [5]
some properties of a group of order 21 3 are examined. There happens to be a
corefree subgroup of index 27 (this index is perhaps smaller than one would
expect) and the 21 3 elements can each be represented as a permutation on 27

cosets and examined individually. However 21 3 is still a relatively small group
order and the number of cases in which such methods are feasible is clearly
limited.

In some ways the properties of a group of order p" will depend on n rather
than on the prime p. The means of giving precision to this vague remark are
to be found in the commutator calculus. So efficient computation in finite p-
groups must utilise commutator calculation rather than coset enumeration.

The purpose of this article is to describe a computer programme which,
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given a presentation ^3 for a group G and a prime p, constructs G/Z^G) for
i = 1,2 ••• where

G = Z0(G) > Z ^ O > Z2(G) > •••

is a descending central series of G obtained by refining the lower central series
so that each factor has exponent p. More precisely the terms yi(G) > yi+i(G)
of the lower central series are replaced by

where 7i(G)/y,+i(G) has exponent pc but not pe~l. In particular if G is a finite
p-group then G itself is constructed. By "constructed" we mean presented by
means of relations involving commutators and p-th powers in a manner to be
explained; and each GjZ^G) will be found after a number of operations to
which a bound could be assigned in advance.

2. Group-theoretical preliminaries

Since it is convenient to collect in arrays which are subscripted with posi-
tive integers, we collect "to the right"; collection of a in • ••ab--- requires
ab = cba. Hence the definitions

[a, 6] = aba-xb-\ba = aba'1,

and the consequence

ba = \a,b\b.

Collection of first a then b in abc leads to commutators of the form [b, [a, c]],
therefore we define \xa,xn.u••-,x1] to be [xn,[xll^1,"-,x1li] inductively for
each n > 2.

In this notation the usual commutator identities are:

c-\ = [fe,c]a[a,c], [_a,cc[\ = [a,c]\a,d\c,

[a-1,6] = a-lia,b\-la, [a.fc"1] = ^[a.fe]-1

[ab,cd\ = lb,c]°[a,c][b,d-]°c[a,dY, [ac,b,c][c*,

the last of which we call the Jacobi identity. Weights of higher commutators
are defined as usual, and [xB, ••-,xl] is said to be simple if each xt has weight 1.
The following well-known result follows from the Jacobi identity:

LEMMA 1. Every commutator of weight w is the product of simple com-
mutators of weight at least w and their inverses.

We have to consider presentations of a group G of order pn. There are
elements {cu ••-,cn} in G such that if Gt is defined as gp{ci+1, •••,cn} for 0 ^ i
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< n, with Gn = 1, then G, is normal in G, cfi{ is central in GjG-., and cfii has
order p. Then each element of G has a unique expression of the form
c*(B)--c?(1) where 0 ^ 0(/) </> (as an alternative -p < 26(i) £p). Further
there are numbers <x(i,j) and f?(i,j, k) such that

(i) cf = c f •">••• c

(ii) [Cj)c,] = cj;('J-)...

We can restrict the a's and /Ts similarly to the 0's.
Conversely, given a's and /?'s, and generators {cx • -,cn} subject to relations

(i) and (ii), we have a presentation of a finite p-group, and the question is whether
it has order pn. In fact when a group of order p" is given there are relations among
the a's and /Ts, and in the light of lemma 2 it is easy to construct examples of
presentations with n generators defining a group G of order less than p". Though
they would in general be difficult to write down explicitly we shall have to know
how to obtain the relations in each case.

At this stage some points of notation must be clarified. Given a presentation
Ŝ with relations (i) and (ii), we shall refer to cu •••, cn as commutators; this would

not be normal usage if for instance the presentation were to define the cyclic group
of order p". Further, it is easy to see that in the group corresponding to 5̂ a nor-
mal form for elements can be found, such as c*(n)--- cf(1) where 0 ^ 0(i) < p. We
shall refer to the process of expressing an element in such a form, with the aid of
(i) and (ii), as commutator collection. This convenient notation admittedly
stretches language somewhat.

LEMMA 2. In order that G = gp{ci,---,cn] subject to the relations (i) and
(ii) shall have order p" it is necessary and sufficient that the a's and /Ts satisfy
the relations derived from

(iii) [c,, cj] = [c,, c?*- • • cfirir\ (1 ^ U J ^ «). and

(iv) [cj)C,,ct] = [cl>C;o-*">---cft?f-*+1>] (1 g i <j < k £ n).

PROOF. We must say how we derive relations from (iii) and (iv). In the case
of (iii) the commutators on both sides are expanded in the form xyx~iy~x, col-
lections performed and corresponding exponents equated. For (iv) the left-hand-
side is expanded as a word in {c,*1, cf\ c*1} and the rest of the process is similar.

Proof of necessity is trivial. To prove sufficiency we use induction on n, which
allows us to suppose that p"'1 is the order of the group Gt generated by {c2, ••-,cn}
subject to those relations (iii) and (iv) in which there is no cx. Now (iii) and (iv)
with i = 1 indicate that conjugation in G of gp{c2, ••-,cn} by cx maps that sub-
group of G onto itself. Therefore Gt is a normal subgroup of G and the mapping
determined by ct is an automorphism, co say, of Gj. Next co" is an automorphism
of Gu namely that induced by conjugation with c"(1 •"'••• C2(1>2), because of (iii)
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with j > 1 and j = 1; and c"( l l B )"-c5( l l 2 ) is fixed by a because of (iii) with
i = j = 1. Therefore theorem 15.3.1 of [1] enables us to conclude that the exten-
sion G of Gy has order p".

It does not seem possible to recast (iii) but we have a remarkable
fact about (iv):

LEMMA 3. For fixed i,j,k the relation (iv) is equivalent to

(v) [c?\ cJt ckj_cc
k>, c» c,.][c<<, ck, c j = 1.

This is essentially lemma 2 of [6] so we shall spare the reader a proof of it. We
must however make some excuse for the use of the word "equivalent" in the
lemma, as some /Ts appear explicitly in lemma 2 but none in lemma 3. What is
intended of course is that the terms [c,-, ck~], [ck, c(], [ct, c,] appearing in the factors
on the left-hand-side of (v) should be replaced by the obvious expressions involving
/Ts, then collection should be undertaken, and corresponding exponents equated.
The resulting relations among the fi's will be precisely those arising from lemma 2.

A handier form for computation is:

LEMMA 4. For fixed i,j,k the relation (iv) is equivalent to

(vi) C(.i,j,k)C(k,i,j)C(J,k,i) = 1

where C(i,j,k) = [c,,Cj,ck][cJ,ck][ci,ck].

We are ready to consider the descending central series

G = Z0(G) > Z,(G) > Z2{G) >

mentioned earlier. We shall specify GjZm for m = 1,2, ••• by a set of generators
{c1( •••,cn}, where n = n(m) and GjZm has order p", and by relations of the forms
(i) and (ii) contained in power and commutator tables respectively. Construction
of these tables proceeds by induction on m. When m = 1 we put «(1) = d
and choose {cu "-,cd} to be independent elements modulo the Frattini subgroup
of G; the c's are of course some subset of the generators in the given presenta-
tion ^3 of G. Thus when m = 1 the tables have the form

cf = 1 (1 S i ^ d), and [c,-,c,.] = 1 (1 g, i < j ^ d).

It is important to understand that each generator c( (where i > d) in the
presentation for G\Zm has to come from somewhere, and in fact has been defined
in terms of earlier c's as ck

p or as [c,-,cfc] where j < k < i. Thus ct(i > d) will
appear in a definite place in the tables as soon as m is such that the order of GjZm

is at least pl, and this particular entry in the tables will not change as m increases.
There may of course be other occurrences of this cf in the tables, but these will
usually be subject to alteration as m increases. In effect we need another table to
record the definition of each ct.
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It will be convenient to consider two separate cases in the passage from
G/Zm(m ^ 1) to GlZm+1, depending on whether or not the class increases. Though
the application of the lemmas is the same in the two cases the modification of the
tables is different.

First let us suppose that we are attempting to construct G/Zm+l from GjZm

keeping the class c fixed, so that the exponent of the last non-trivial term of the
lower central series increases. As explained above some entries in the power and
commutator tables for GjZm correspond to definitions of commutators. We list
all the places not thus associated with definitions; suppose there are t of them
with entries eu •••,et respectively. We take further commutators cn+1, •••,cn+t and
change the entries just mentioned to cn+1ey,--- cn+te,. (Note that in the com-
mutator table for G/Zm the entry for [c,-, cj] where l g i < j ^ n will be 1 if the
sum of the weights of ct and c,- exceeds c, and as c is not to increase there is really
no point in including this entry in our list of changes.) We also enlarge the tables
so as to include the entries

cf = 1 (n + 1 S i ^ n + t), and

[c,, cj] = l , ( l ^ i < ; | n + ( and n + 1 ^ j).

Example. Suppose that ^3 is some presentation for the quaternion group Q
of order 8 and that p = 2. From ^3 tables for Q/Z^Q) are:

c\ = \,c\ = 1; [c^Ci] = 1.

We define c3, c4 as c\, c\ respectively and consider the tables:

Ci = c3,c2 = c4, c3 = l ,c4 = 1;

[cuC2] = 1, [Ci.Cj] = 1, [_C1,C4] = 1,

Ic2,c3~] = 1, [c2,c4~] = 1,

The amended tables which we have at this stage will not in general be the
tables for any group, for there will be relations among cn+1,---,cn+t. But lemma 2
and its cognates tell us how to use collection to find such relations. Whenever a
non-trivial relation appears one of the c's can be expressed in terms of the rest
and eliminated from the tables by the obvious substitutions. Eventually tables for
a group emerge. However there are also relations in ty that have to be satisfied, so
we have further collection and elimination to perform. If at the end (' of the c's
have not been eliminated then we put n{m + 1) = n(m) + t', relabel if necessary,
and have tables for GjZm+1. (In the example above the lemmas yield nothing. If
the reader will be so good as to give himself a presentation ^8 for Q then he will
soon find from it that c3 = c4 = 1.)
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It may happen that G/Zm and G/Zm+1 have the same order, in which case we
attempt to construct G/Zm+l by increasing the class from c to c + 1. We take
commutators c n + 1 , -" cn+t and use them as above, with the difference that the
entry for [q cj\ is to be 1 if and only if the weight sum of c, and Cj exceeds c + 1
(not c). The enlargement of the tables is correspondingly greater. We collect and
eliminate as before.

Example. Take ^} and Q again, and consider the tables for Q/Z^Q). This time
we define c3,c4,c5 as c\,c\ {puC-^ respectively and we contemplate the following
tables:

c? = c3, c\ = c4, c\ = 1, c\ = 1, c\ = 1;

[Cl,C2] = CS, ICt^s] = 1, \CUC^\ = 1, \cltCs~\ = 1,

[c2,c3] = 1, [c2,c4~] = 1, [c2 )c5] = 1,

[c3»c4] = 1, [c3,c5] = 1,

No relations result from the lemmas, but ^} should give c3 = c4 = c5. Let us
eliminate c3 and c4. We thus obtain the following tables:

c l = C3> C2 = C3> C 3 ~ 1>

[C1(C2] = C3, [C!,C3] = 1, [C2,C3] = 1.

In either case, if n{m + 1) > n(m) then the number of commutators has
increased and information has to be recorded in the table of definitions. Lemma 1
applies. In the first case we arrange that each ct for n(m) < i ^ n(m + 1) is some
cj where «(m — 1) < j ^ n(m) and in the second case each c, is some [c,-, ckj
where 1 £ j £ d and ck has weight c. Weight means of course weight in cu •••,cd;
this may be defined inductively and recorded at each stage. Thus ct for n(m) < i
^ n(m + 1) is assigned weight c in the first case above and c + 1 in the second.

An obviously useful fact in this context is that the exponents of the lower
central factors yt(G)ly{+ t(G) of G do not increase as i increases. Thus in the example
Q above an attempt to construct Q/Z3(Q) of class 2 must inevitably be futile, and
the reader is urged to show himself that construction with c = 3 will also give
nothing.

3 . The algorithm and its programming

It may be useful to give the bare bones of the algorithm now.

1. Examine ^8 and define the integer d. Define the integer MXP so that
Gh2(G) has exponent pMXP. Put EXP and MW = 1. Go to 2.

2. If EXP = MXP then put EXP = 0 and go to 4, otherwise go to 3.
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3. Define new commutators in the first way above (i.e. no increase of c), and
collect. If a larger group results put EXP = 1 + EXP and go to 2, otherwise put
MXP = EXP then put EXP = 0 and finally go to 4.

4. Define new commutators in the second way above (i.e. increase of c), and
collect. If a larger group results then put EXP = 1, MW = 1 + MW and go to
2, otherwise go to 5.

5. Stop.
We have supposed that d > 0 here. Sometimes it is convenient to have for d

some number other than the dimension of Gj(j>(G) and then the algorithm should
be modified. The integer MW refers to the class of the group constructed, and
pEXP to the exponent of its yMW. We note that if G is a finite p-group then the
algorithm will terminate and then ty has been transformed into a presentation
involving relations of the forms (i) and (ii) only

Next we elaborate on the mechanics of collection. Suppose that power and
commutator tables are ready. Before we can collect arbitrary words we need the
values of [ c / ^ . c f 1 ] for 1 ^ i < j ^ n. The method adopted is to use identities of
the form

to calculate the [ c f ' . c* 1 ] inductively. It is clearly feasible to do this first for c;

and Cj with weight sum c (where the group under construction has class c), then
weight sum c — 1, and so on ending with weight sum 2.

Very long words may arise during the collection process, particularly when the
relations of ^3 are being collected, for which reason a refinement is introduced.
Suppose that during a particular collection all commutators of a fixed weight w
have just been collected, then it is possible to collect forthwith every commutator
of weight exceeding c — w. This saves space by decreasing the length of the word
undergoing collection. With this device collection ends as soon as 2w exceeds c.

Suppose that all occurrences of cx in some word have just been collected,
giving the result cf. We accept c^in the collected part of the word where q = kp
+ qo and — p < 2qo ^ p, express c,*p in terms of cn,---,ci+l by means of the
power tables and put this expression at the end of the uncollected part of the word.

A programme for the algorithm has been written in Elliott ALGOL and is in
working order. Tables for powers, commutators, definitions and weights are
stored linearly and fast access to these arrays is of course essential, but as they are
relatively small there is no storage problem. Collection is carried out in a much
larger array. It would be quite feasible to hold this on disc or even magnetic
tape and transfer it piece-meal to the fast store for collection because collection
proceeds in a "local" fashion. (This refinement has not yet been programmed.)
It is clear that the time required for a collection, as a function of the length of
the word to be collected, may increase very steeply.
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4. Results

(i) It may be worth mentioning that the first stage in the work described
above was the writing of a short programme (both in ICL FORTRAN IV and in
Elliot ALGOL) for the very much simpler problem of defining and collecting basic
commutators. This is of relatively little use in investigations of groups though the
following application of it may be of interest. It consists of verifying the identity

[a,b; c,d] = \a,c; b,d~\[a,d; b,c]

in Gjys{G) where G is a group of exponent 4; the identity is given as (4) in the
paper [9] of Wright. The programme first defined the basic commutators in a, b,
c,d with weight not exceeding 4 — there are 90 of them — and then collected the
word (dcba)A as far as weight 4. The result was the product of 1417 basic com-
mutators. Use is then made of the exponent 4 condition. Thus a 4 = b4 = c4 = d*
= 1 and [a, fo]2ey4(G) by (1) of [9]. In a relatively free group every relation
among the generators determines an identity in the group (see (13.25) in Neumann's
book [7]) which means that we can forget about commutators whose entries are
a proper subset of {a, b, c, d}. Now the exponents of [c, b, a, d~], [d, b, a, c],
[d, c, a, b] were 36, 50, 70 respectively and we recall that y4(G)2 ^ ys(G) if G has
exponent 4; whereas [a,b; c,d~\, [a,c; b,d~\,[a,d; b,c\ had exponents 11,11,25'
and Wright's identity follows.

(ii) Since our algorithm for p-groups is constructive it will determine the
order and class of a finitely presented p-group as well of course as power and
commutator tables. Now in the paper [3] a class of finite nilpotent groups was
investigated, presentations being, in the present notation,

G(a,/0 = gpicb-.al"-1-"-'' = a\b^i'b-^ = ft'}

where a ^ 1 and /? ̂  1. It was shown that the nilpotent class cannot exceed 8
and there was some speculation that the group G(34,7) had precise class 8.
However Dr J. W. Wamsley pointed out (verbally) some years ago that the relations

fl<» = c
2 7 = l, a21 = b~27

held in G(34,7) and that the class was less than 8. The problem was therefore
given to the computer, which showed that the order of the Sylow 3-subgroup of
G(34,7) is 310 and the class is precisely 7. We give the tables in pages 9 and 10.

(iii) The tables were found for the group of order 213 mentioned in section 1
and described in [5], using the presentation given there. These tables are essen-
tially those given in [4]. As an additional item a further piece of programme was
written with a view to finding by collection the order of each of the 21 3 group
elements. It is gratifying to record that the numbers of elements of each order
inside and outside the Frattini subgroup are exactly the same as those given in
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DEFINITIONS WEIGHTS

C3

c4

c5

c6

c8

c9

ClO

[Cl,

[c,,

[c2)

[c!

[Cl,

[Cl,

cj

c3]

c3]

r3
c8]

c9]

Cl

c2

c3

C4

c5

c6

Cl

c8

c9

ClO

1

1

2

3

3

4

5

5

6

7

POWER TABLE

$

c|

c?
c|

cl

c.l

C10C9 C8

c10c9

ClO

ClO

1

1
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COMMUTATOR TAELE

c2

c3

c4

c5

c3

c3

c4

C4

C7

c7

C6

CyCg-1

C10C9

C6

C7

c8

c10

c7

ClO

C i o " 1 ^

ClO

c8

c9

Cio"1

c9

ClO

ClO

By way of explanation, cf = CIOCQC4
 1 and so on, while [ch Cj] is to be found

in row cf column c,-, and any missing entry is 1.

[5]; this provides an interesting check on the accuracy of two quite different com-
puter programmes.

(iv) The final results that we mention here concern the multiplicators of
some finite p-groups. The multiplicator of a finite group G may be defined
as H2(G,C*) where C is, say, the complex field, but for computation we use the
usual group-theoretic characterisation: it is the largest group M such that there
exists an extension H of M by G for which M ^ yJiH) n £(//), where £ denotes
centre. We recall that if G is a finite p-group then so is M.

The groups G that we consider are the Burnside groups 5(3,3) and B(4,2),
and what we may denote by 7(4,3), the largest group of exponent 4 on 3 generators
of order 2. Fortunately Leech has given free presentations for these in [2]. Now
an obvious method of finding the multiplicator of a group G whose presentation
is "p is to construct the group H mentioned above. Generators for H correspond
to the given generators for G, and there are relations of the form [x, y] = 1 where
x runs through the generating set of G and y runs through the relators in ^}. We
still have to arrange that M :£ ?2(#)> a n ^ w e need more relations in general so
that H will be finite. We have after a trivial proof:

LEMMA 5. If G = H/M where M ^ y2(H) and M is normal in H then
Gly2(G) s Hly2(H).

So for computation of H we find the exponent of Gjy2(G) and put the appropriate
value of MXP in among the data, which also include the relations mentioned
above. After the machine has done its work a factor group of the group produced
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will have to be taken in order that M ^ y2(H), and then the structure of M can be

seen.

In the cases B(3,3), £(4,2), /(4,2) the multiplicators were found to be abelian

of ranks 10, 7, 7 respectively. Now there is a well known relation between the

deficiency def G of a group G and the rank of its multiplicator M, namely

def G + rank M ^ 0.

It is interesting that in the case of each of the three groups G just mentioned the

rank of M is the negative of the deficiency of Leech's presentation, so that each of

the latter is minimal in a strong sense. It has been conjectured that def G + rank M

= 0 for every finite p-group G, which is certainly true in these three cases.
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