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An obvious question occurs at the very start of equivariant homotopy theory. What is the relationship
between maps equivariant up to homotopy and strictly equivariant maps? This question has been studied by
various people, usually away from the group order ([8, 11, 22, 25, 26]). We consider the problem stably and
answer it by giving a spectral sequence proceeding from homotopy equivariant to strictly equivariant
information. The form of the spectral sequence is not surprising, but there are three distinctive features of our
approach: (1) we show that the spectral sequence may be viewed as an Adams spectral sequence based on
nonequivariant homotopy, (2) we show how to exploit the product structure, and (3) we give a treatment
showing how Dress's algebra of induction theory [13] applies to give non-normal subgroups equal status. As
a spinoff from (3) we also obtain spectral sequences for calculating homology and cohomology of universal
spaces (3.5).

1991 Mathematics subject classification: 55T15, 55P91.

1. Introduction

Suppose that G is a finite group and that X and Y are pointed G-C W-complexes or
G-spectra [17]. If H is a subgroup of G we may ask the following question.

Question 1.1. What does the group of stable //-equivariant maps [X, Y~\" tell us
about the group [X, Y]£ of stable G-equivariant maps?

Of course if // = 1 then G acts on [X, Y]^ by conjugation and its fixed point set is the
set of homotopy equivariant maps. More generally this applies whenever H = N is
normal and suggests we consider a spectral sequence based on the ZG-module or
comodule structure of [X, Y]J[. Professor J. F. Adams has asked (private communica-
tion) the precise form such a spectral sequence would take and how much information it
would provide. In the special case that H = N is normal our main theorem (3.4) states
that there is a multiplicative spectral sequence

Er = H*(G/N;lX, TT\?)=>[,X A EG/N + , Y\%. (1.2)

Comments.

(1) There are no conditions on X or Y.
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(2) Convergence is in the usual conditional sense of Boardman appropriate to infinite
decreasing filtrations (see [2]).

(3) The s = 0 edge homomorphism is the forgetful map

[X A EG/N + ,r\?^H0(G/N;tX,r\?) = {\_X,n?}GIN

and so homotopy equivariant map f:X-*Y represents an equivariant map / :
X A EG/N + -> Y iff it is an infinite cycle. This is clearly necessary for / to represent an
equivariant map J:X-*Y, but for each / there is one further obstruction in the
composite q o Sj of the following diagram

X A S°*EG/N-^X A SEG/N+ >X A S1

Sf

SY

(4) If Y is finite [ I A £G/W+, y ] c = [Jf,D(£G/JV+) A f|c (where D( •) denotes
functional duality). Thus if X is also finite the solution of the Segal conjecture in the
form of an explicit identification of D(EG/N+) [15], [16] explains the relationship of the
target to [X, Y]G. In particular if G is a p-group and Y is p-complete Carlsson's
theorem [10] shows that [X A EG/N + , Y~\G = [X, Y~\G and the spectral sequence con-
verges to the group of interest. Also if Y is localised away from the group order
[_X A EG/N+,Y~\G is a summand of IX, Y]G and in this case we may also give a
complete account of [_X, Y]G. (See Section 5).

(5) It is easy to construct the above spectral sequence by filtering EG/N+ by skeleta
and applying [ • A X, F]G. However this does not make plain how to proceed for
subgroups which are not normal, nor does it give ready access to the product structure.

(6) We prefer to regard the spectra sequence as the Adams spectral sequence based
on H-equivariant homotopy applied to calculate [S°, F(X, 7)]G as far as possible. From
this point of view the identifications of both the £2-term and the target for convergence
are interesting results.

(7) For subgroups H which are not normal the algebra describing the E2-term is the
less familiar Amitsur-Dress cohomology [13], and we recall relevant factors in
Section 2.

The paper is laid out as follows.

Section 0: Abstract
Section 1: Introduction
Section 2: Amitsur-Dress cohomology
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Section 3: The spectral sequence
Section 4: The Adams spectral sequence for H-equivariant homotopy
Section 5: Away from the group order
Section 6: The action of the Burnside ring on cohomology
Section 7: Multiplicative structure
Section 8: Sample calculations.

It is a great sadness to me that Professor J. F. Adams had only seen an informal
account of the present paper at the time of his tragic death. I will greatly miss his
perceptive criticisms.

2. Amitsur-Dress cohomology

We will recall here the basic definitions from the work of Dress on induction theory
[13]. Thus if A is any G-set we may form the Amitsur simplicial G-set Am^A)

A*-AxA<-AxAxA<- . . . (2.1)

Thus we take Amm(A) to be defined by Ams(A) = As+1(s^0). We use the (s+ l)-projection
maps AS+1^AS as face maps, i.e. di{a0,...,as) = (a0,...,a,-i,ai+i,...,a,) for O ^ i g s
and the degeneracy maps s,-: As+l ->AS+2 are defined by st(a0,...,as) =
(ao,...,ai-l,at,ai,ai+l,...,a,) for O g i ^ s . We remark that if A = G and we form the free
abelian group complex from Am.(A) we obtain the bar resolution. Next we suppose
given a contravariant additive functor M from the category of G-sets to the category of
abelian groups. We may define further functors MB for any G-set B by MB(C) =
M(B x C) and thus form the Amitsur complex

where ds:MA.*t -*MA.+2 is defined to be

i = 0

Finally we define the Amitsur-Dress cohomology group-functors by
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H'Jfa{A;M) = ketd,/imdl.1. (2.3)

We note that Dress uses the notation H'A(M) for this functor.
More generally these cohomology group-functors may be calculated by constructing

an /4-split resolution of M by /1-injective functors. Accordingly the groups H'^S(A;M)
vanish in positive dimensions if M is itself >4-injective. In particular if there is a G-map
B^A then MB is A injective and so Hi

s,3(A;M)(B) = 0 if i^ 1.
We will be fundamentally concerned with the case A = G/H, and the following lemma

relates this to more familiar things, and explains our choice of notation. We let * denote
the G-set G/G.

Lemma 2.4.

(a) / / N is a normal subgroup of G then

= H'(G/N; M(G/N)).

(b) H'^B(G/H; M)(*) depends only on M(G/K) for subgroups K subconjugate to H (i.e.
conjugate to a subgroup of H).

Proof. Part (b) is clear since, applying (2.2) to * we only have to consider M((G/H)k)
for k^l, and ((G/H)k)K^0 only if K is subconjugate to H. Part (a) follows from the
fact that the free abelian group complex obtained from AmXG/N) is the bar resolution,
once we prove the next lemma.

Lemma 2.5. We have an isomorphism

M((G/N)k) = HomZG (1(G/N)\ M(G/N))

for k^l which is natural in M and respects all projection maps

Proof. The trick is to find a coordinate free isomorphism. For this we use the
G-maps G/N^>(G/N)k to give us maps

M((G/N)k)-» Y\ M(G/N)

ye(GW

and

HomZG(Z(G/A0\ M(G/N))-> U HomZG(ZG/N, M(G/AT)).

Now we have a natural isomorphism Homzc(ZG/Af,M(G/N))^M(G/N) by using the
standard generator l.NeZG/N. Finally we pass to quotients of these products using the
relation (yg,x) = (y,gx). The composite is the required isomorphism and is clearly as
natural as claimed. •
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Remark 2.6. The more general analogue of (2.5) is the statement

) = M(S).

Here %>G is Bredon's category of coefficient systems [6] or equivalently the category of
additive contravariant functors from the category of G-sets to abelian groups and
ZS(G/K) = Z[SK] is Bredon's projective coefficient system for the G-set S. Note however
that the Amitsur resolution Z*«-Z.4<- 1.A2*- ....although it consists of projective
coefficient systems, is only exact upon evaluation at G/K if / 4 K # 0 .

3. The spectral sequence

In this section we construct the spectral sequence and identify its £2-term using the
algebra of Section 2. The convergence statements is clear by construction.

For any G-set A we let EA denote the geometric realisation of the Amitsur simplicial
G-set (2.1) using face operators only. We note that if A = G/N this notation accords with
the usual usage of EG/N for a nonequivariantly contractible G/JV-space on which G/N
acts freely. Since we want a based G-space we add a distant basepoint to form EA + .
Now EA+ comes with a natural filtration by skeleta and hence we may obtain a
spectral sequence by applying [X A •, Y]G to the diagram

>EA\^... (3.1)

4 1 i
Ko Kt K2

where EA(+} denotes the s skeleton and Rs = EA{$/EA%~'1). By construction we have the
following:

Lemma 3.2.

\d) "-s — " / l +

(b) T/ie maps

inducing the differentials are alternating sums of the s-fold suspensions of the projection
maps As+l->As.

To identify the £2-term we finally need:

Lemma 3.3. The isomorphism
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is natural for stable G-maps of X and Y and for maps of G-sets G/K -* G/K'.

Proof of 3.3. Naturality in X and Y is clear. For naturality in K we must return to
the definitions. ^

The isomorphism is obtained by combining the homeomorphism h:G+ AKX ~ >
G/K+ A X, natural for G-maps of X, with the stabilisation of the well known
adjunction, which ([3, (5.1)], [17, (II. 4.7)])

{.G+AKX,n%={.X,Y-\l- (3.4)

Now all G-maps G/K -> G/K' are composites of those of the following two types

(a) Right multiplication by g e G

Rg:G/K-*G/g-lKg.

(b) Quotient maps

where K £ K'.
Now if f-.X^Y is a K-map the corresponding G-map is

G+

where e is the G-map extending the identity, IAKY-*Y. Conversely if F: G+ AKX^> Y is
a G-map, the corresponding K-map is obtained by composing with the K-map
1+ AKX-*G+ AKX. Since G+ AK() = G+ AK/C'+ AK(-), naturality for maps of type (b) is
clear.

For maps of type (a) we let R* denote the induced map

IG/K\ A X, T\l -+IG/K+ A X, Y}%.

We suppose the K9-map f:X->Y corresponds to F:G/K\ A X->Y and the K-map
f':X-*Y corresponds to FoRg: G/K+ A X-* Y. Thus we have a diagram

G/K\ A X-^G+ AKgX

I Rg A 1 ^ Y

'HD
G/K+ A X< ~ G+AKX

h

and hence
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1(1 AKx)

n
Combining (3.2), (3.3) and the definitions we have our main result.

Theorem 3.4. We have a conditionally convergent spectral sequence for any G-set A

Er = Hs^(A; IX, Y] ;)(.) => [X A EA + , Y],G_S

where \_X,T

We draw attention to Lemma 2.4 for the application of this result. Part (a) shows that
if A = G/N we obtain the spectral sequence (1.2) discussed in the introduction, and Part
(b) shows that if A = G/H the £2- t e r m only uses [_X, Y] * for K subcongugate to H.

We also note a corollary to (3.4) in a slightly different direction. We may consider a
family !F of subgroups of G, closed under subconjugacy and consider the universal
space E!F. It is of some interest to calculate the equivariant homology and cohomology
of this space. Indeed if we consider the G-set A{^) = UHs^G/H we find E&ziEA{&)
and hence by taking X = S° in (3.4) we have for the cohomology theory Y% (•)
represented by the G-spectrum Y:

Corollary 3.5. There is a conditionally convergent spectral sequence

Remark 3.6. Similarly there is a strongly convergent spectral sequence

obtained by applying Y\( •) to the skeletal filtration of

Of course if Y" satisfies the dimension axiom for He^ the spectral sequences
collapse. In particular we have:

Corollary 3.7. For any Mackey functor M the Bredon homology and cohomology of
+ is given by
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+; M) = Hf

Remark. This allows us to find out something about the geometric fixed point
spectrum <bN(HM) (see [17, (2.9)] and [15, §2]) of the Eilenberg-MacLane spectrum
HM representing Bredon cohomology, for a normal subgroup N. Indeed by [17, (2.9.8)]
if [£jV] = {H|H£iV} we have

n?IN(<I>NHM) = H?(S\E[lt>Ny,M) = HfJ»l(A(t2Nl);M)(*) (3.8)

where the reduced homology group is obtained by augmenting (2.1) with * in
dimension — 1.

4. The Adams spectral sequence for H-equivariant homotopy

In this section we show that the spectral sequence of Section 3 coincides with the
Adams spectral sequence for H-equivariant homotopy applied to calculate
[S°, F(X, Y)2i as far as possible. If one is interested solely in the Adams spectral
sequence the present approach is still extremely efficient since the E2 and convergence
problems are so painlessly dealt with.

The minimal structure necessary for constructing an Adams spectral sequence is a
ring spectrum representing the theory.

Lemma 4.1. Stable H-equivariant homotopy n"( •) is represented by G/H + .

Proof. The whole Adams spectral sequence can be regarded as a systematic
exploitation of the Wirthmuller adjunction ([13, (5.2)], [17, (11.6.5)3). This states that for
any G-spectrum X and //-spectrum Y we have

[ x , G + A H y ] G = [ * , y ] H . (4.2)

In case ^Y itself a G-spectrum we then have the homeomorphism h:
G+ AHY-=-+G/H+ A Y that we saw in Section 3. Taking X = S° we have the desired
result.

To make further progress we must recall the unit and counit of the adjunction ([3],
[17]). The counit is easily described and arises unstably:

e:G+ AHY—y

is given by
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The unit n':X-*G+ AHX is intrinsically stable. In fact we may let V be the
representation UG/H in which G/H embeds with equivariant tubular neighbourhood W,
and hence obtain a map SK-> V/{V\W)^Sy A G/H+; the Fth desuspension n of this is
used to construct n' as the composite

X^S° A X * A * G/H+ A X——>G+ AHX.

Now we may make G/H+ into a ring spectrum using the monad of the adjunction.
Indeed the categorical unit and product map

fy:l—>G+ AH(-) and n = G+ AHE:G+ AHG+ AH( • )-»G+ A H ( •)

give rise directly to spectrum level unit and product maps

and H:G/H+AG/H+ •G/H+.

Indeed a short and instructive calculation shows n is represented unstably by the map

\xH if xH = yH
4.3

Corollary 4.4. T/ie spectrum G/H + with structure maps r\ and n as above is a
commutative associative ring spectrum.

Remark. If G is a compact Lie group of positive dimension a suspension is involved
in the Wirthmuller adjunction, and hence G/H+ will not have a unit if H is not of finite
index.

Proof of 4.4. The associativity and commutativity of fi are clear unstably from (4.3).
The monadic identity diagrams for S° are

G + A H S ° ^ A " 5 . G+ AHG+ AHS° l

The right hand triangle translates into the right unit axiom for G/H+ since nso is a
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G-map and the homeomorphism h ~x is natural. The left hand triangle is already the left
unit axiom since n'x was defined as f/̂ o A 1. •

We may now form the canonical resolution of the 0-sphere S

(4.5)

by taking QS = G/H+ A SS and using the unit n:Ss-+G/H + A SS to give the map ks. As
usual the canonical resolution of F = F(X, 7) is obtained by smashing (4.5) with F.

Proposition 4.6. The spectral sequence obtained by applying [S°, • ]° to the canonical
Adams resolution of F coincides with the spectral sequence of Section 3 obtained by
applying [X A •, T\% to the skeletal filtration ofEG/H + .

From this we immediately deduce the £2-term of the Adams spectral sequence and
the fact that it converges to [AT A £G/H+, Y]£. The reader may find it instructive to
establish the algebraic isomorphism between the usual comodule Ext description of the
E2 term of an Adams spectral sequence and the present one directly (he may be amused
to learn this was our original approach.)

We take this opportunity to justify Remark (4.7) of [14]. Recall that the Borel
spectrum b represents Borel cohomology b*(X) = H*(EG + AGX) and that the coBorel
spectrum spectrum c = b A EG+ has the property that c^(X) = H^(EG+ AGX) (since G is
finite).

Corollary 4.7. (a) The Bousfield completion of the G-spectrum Z with respect to n"(-)
is the function spectrum F(EG/H+,Z).

(b) The Bousfield completion of the coBorel spectrum c with respect to nonequivariant
homology H is the Borel spectrum b.

Proof. If completion is interpreted as G/H+-localisation, Part (a) is clear from the
definition: since EG/H is H-contractible the map Z^F(EG/H+ ,Z) is a
G/H+-equivalence, and since EG/H+ is constructed from cells G/K+ with K subconju-
gate to H, F(EG/H+,Z) is G/H+-local. If it is interpreted as nilpotent completion, Part
(a) follows from the remarks above, or from (4.9) (b) below. Similarly since c = b A £G+
is nonequivariantly the Eilenberg-MacLane spectrum H it follows that the Bousfield
completion is F(EG + ,b A EG+). However since F{EG + ,b A S°*£G)s* it follows that
F(EG+,b A EG+)^F(EG+,b); since £G+ AEG+^EG+ this is in turn equivalent to b
as required. •
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Proof of (4.6). We observe that all terms of the canonical resolution (4.5) of S are
finite. Hence the Adams spectral sequence, obtained by applying [S°, • A F]J to (4.5) is
the same as the spectral sequence obtained by applying [ -,F(X, y)]£ = [X A •, y]£ to
the Spanier-Whitehead dual of (4.5). It remains only to identify the dual resolution.

The fundamental ingredient is as follows.

Lemma 4.8. Adams' unit n:S°-*G/H+ is dual to the unstable collapse map
°

Proof. Since the complexes are finite we need only show Dc qualifies as a unit.
In fact we may identify the K-dual of c: G/H + -* S°. For this we must represent c as

an inclusion of subcomplexes of S i e K ; G/H is contained in V=UG/H as a basis and S°
is represented by the point oo together with segments joining 0 to each element of G/H.

If we now take the sphere of radius 2 as the complement of S°, and spheres of radius
1/2 centred on points of G/H (together with hairs joining them to the basepoint) it is
clear that Dvc is homotopic to the collapse map Sy-> V/(W\V) defining n. •

Corollary 4.9. (a) The dual of the sth Adams cover ofS° is identified by

Ss~ S° *EG/H.

Proof, (a) Since SS^(SX)AS it is enough to consider the case s= l . In this case
occurs in the cofibration

so the result follows from (4.8).

(b) We observe that S°*EG/H is a space characterised up to homotopy equivalence by
its fixed point sets, which are

By (4.8) the system DS0-*DSl->DS2... is realised by a sequence of spaces and
continuous functions, hence

holim) DSS= holim (S
s s
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is a space, and its fixed points clearly coincide up to homotopy with those of S°*EG/H.
• (4.9)

Now (4.6) follows by considering a cellular map

holm (S°*G/H)*' >SEG/H + . ^
s

5. Away from the group order

In this section we apply some results on idempotents fo the Burnside ring A(G) due
to Araki [4] and others to analyse the situation with the group order inverted. Similar
analysis often works with fewer primes inverted.

We recall [12] that /1(G)[1/|G|] is isomorphic to a product of rings Z[1/|G|], one for
each conjugacy class (H) of subgroups using the maps (pH:A(G)-*Z defined by counting
the number of H-fixed points in a G-set. In particular for every subgroup H of G,
y4(G)[l/|G|] contains an idempotent e [ £ / / ] determined by

(pK(e[£/r|) = 1 iff K is subconjugate to H.

Since the natural map EG/H+^S° is an equivalence in /C-fixed points iff K is
subconjugate to H it follows that

From this we deduce that if Y is localised away from \G\

IX A

Now each c [ £ H ] = J](K)g(H)eK where the sum extends over G-conjugacy classes of
subconjugates of H and eK is determined by <pL(eK) = 1 iff L is conjugate to K. Using
(2.5) and (4.7) of [4] we see

= [ r t A EW+,T\W

where N = NG(K) is the normaliser of K, W=WG{K) = NG(K)/K and where
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denotes the fixed point spectrum in the sense extending the usual fixed point set for
pointed spaces (using the notation of Lewis-May [17]).

Thus

\_X A EG/H+,T\G = 0 [®KX A EW(K) + ,®Kr\w<K\ (5.2)
(K)g(H)

Now we will show in Section 6 that since we have inverted \G\, H'^3(G/H; \X, Y] "„) = ()
for i ̂  1 and so we take the following corollary.

Corollary 5.3. Provided Y is localised away from \G\ we have

IX A EG/H + , y ] G = f/

6. The action of the Burnside ring on cohomology

The arguments of this section can be reformulated in terms of transfer, but the
present approach seems more efficient.

We recall that any Mackey functor M is a module over the Burnside Mackey functor
[13]. Specifically if U, A are G-sets [t/]e/4(G) acts on M(A) as the composite

M(A) - ^ M(A x U) - ^ M(A)

where n: A x U -* A is the projection.
It is clear that n induces a map

n*: Hls(A; M)-*H%^(A; Mv)

but for 7i+ we need a lemma.

Lemma 6.4. If M is a Mackey functor and <x:A-> A is surjective then the square

1(1 x a)* la*

commutes, and hence in particular n induces a map
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Proof. Since a is surjective

I 1 xa la

UxA'

is a pull back square. •

Corollary 6.2. The Burnside ring A(G) acts on H^^AiM) provided M is a Mackey
functor.

Lemma 6.3. If there is a G-map U^A then [U]eA(G) acts as zero on H'^B(A;M)
for i ^ l .

Proof. By definition the Amitsur complex is /i-split and hence ([13, (1.1)]) [/-split.
Thus the central row in the diagram is exact.

M(A'xD) '"* » M(Ai+1xD) '—> M(Ai + 2xD)

8 ! d

M(A' xDx U) ' X > M(Ai+1 x D x U) ' >M(Ai + 2 xDxU)

M(A' xD) ' ' . M ( l i + 1 x D ) !

Furthermore by (6.1) the diagram commutes. Now suppose aeM(Ai+l x D) is a cycle
representing a cohomology class and chase the diagram to deduce n^n*(x is a
boundary. •

Corollary 6.4. / / [G/H] acts invertibly on M(G/K) whenever K is subconjugate to H
then

;M) = 0 for i ^ l .

7. Multiplicative structure

It is useful in calculations to have available a multiplicative structure in the spectral
sequence. In this section we pause to provide one. In fact Dress remarks ([13, (1.6)])
that a pairing of contravariant abelian group functors M xN -*P induces a map.
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H^a{A; M) x H%a(A; N)->H&(A; P). (7.1)

Furthermore it is easy to see that this coincides with the usual pairing in group
cohomology when relevant.

In our case we are concerned with M = [AT, Y] ', N = \_Y,Z] " and we use P = [A",Z] '
and the composition pairing. We note that this is induced by a map of function spectra.

Finally, to see that this corresponding pairing (7.1) is the map of £2-terms in a
pairing of spectral sequences converging to the composition pairing we have only to use
an equivalence EA + A EA + ^ EA +. In order to get a map of spectral sequences we use
the canonical map EA x EA -> E(A x A) induced at the level of simplicial sets, and then
choose a map A x A -*A to induce the equivalence E(A x A)+ c±EA + .

8. Sample calculations

Because of the early interest of Bredon [7,8] we pay special attention to the case
G = C2, and in particular to the spectral sequences for [S^.S0]^;2 where Z, is the
nontrivial one dimensional real representation of G. In this particular case the Adams
Tower over Y is simply

Accordingly all differentials in the spectral sequence

are independent of k in the obvious sense that if k' = k + d with 5>0 the spectral
sequences are related as follows:

Lemma 8.2. Esi'{k + 8) = E2
+i'l+s(k) for s > 0

£«• '(k + 5) = Ed2'+ \k) fork + S is odd

E^'(k + 5)/2 = E%'+'(ft;) fork + 5 is even

(b) If xeEs
2'(k + 3) is an (r-\)-cycle and drx = y then Jce£s

2
+<5'+l5(/c) is an (r-l)-cycle

and drx = y.

Thus we may study all the spectral sequences E**(k) with k^O within the single
spectral sequence £J*(0).

Now if we restrict attention to the 2-adic part, we find by Lin's Theorem [18] that 2-
adically [S*4 A EC2 + ,S°1f2 = lSki,S0^2. For the remainder of this discussion all groups
and spaces are completed at 2. For r ^ — 2 this is [ K P o ^ . ^ r - i . and combining this
with Atiyah's identification of functional duals [5] this is [S°, RPIj}],1. These groups
have been calculated in a considerable range by Mahowald [19].
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With this information to hand we can deduce information about which elements of

are represented by strictly equivariant maps as follows. We know the target for
t—s = r— 1 for the k+l spectral sequence and we know it for the k spectral sequence.
The only changes must come from the passage from E2'r~1{k+ 1) to E\-r{k) (if any),
from the addition of the infinite cycles in Efr~i(k) and from the elements killed by
differentials supported on E%r(k). From the corresponding calculation for r — 2 we know
the infinite cycles in E°-r~1(k), so the only unknown fact is which part of Efr(k) consists
of infinite cycles. In general we will only be able to work out its order, but often the
ambiguities can be resolved.

Summary 8.3. There is 2-adically an exact sequence for r f£ — 1

and K has a filtration whose factors are (starting with the subgroup)

(i) The reverse of the factors in some filtration of £^r(fc)/£^r(fc) = [Sfl+r,S0]/
equivariantly represented maps} if k is even

and

(ii) 2[S*+r,S°] and then the reverse of factors in some filtration of E%-r(k)/E%'{k) =
2[S(l+r, S°]/{strictly equivariantly represented maps} if k is odd where 2A denotes the
elements of order 2.

We note in particular that if k is even every element of 2[Sfc+r, S°] is strictly
equivariently represented and that if k is odd only elements of order 2 in [_Sk+r, S°] can
possibly be strictly equivalently represented.

From Mahowald's calculations we deduce the following. Obviously the results could
be taken much further. These results are also deduced in [20], where much further
information is provided. The deduction is independent of [20] except for the 6 entries
marked with an asterisk, which depend on correcting the definition of Mahowald's
groups Ak, and for this we rely on [20]. Our deductions seem to differ from [20] in the
3 entries marked with an obelus.

Proposition 8.4. The following table shows which elements of rtj=nj(S°) are repre-
sented by strictly equivariant maps Ski—*Sk~J for y^ 14, k^.0 provided that k — j^2. If k
is even the entry a means that the image of the group of strictly equivariantly represented
maps in Ttj/2nj is isomorphic to (Z/2)°. / / k is odd the entry means that the subgroup of
strictly equivariantly represented maps in Tij is isomorphic to (Z/2)°.

For the purpose of defining the numbers dj we define m by the condition
k — j—l = 2m(mod2m + 1). Note that this really depends on k and not fcmodl6. In this
notation we have
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ft mod 16
j

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0

0
1
1
1
0
0
1
1
2
3
1
1
0
0
2
2*

1

0
0
1
1
0
0
0
0
1
2
1
1
0
0
0
1

2

0
0
0
0
0
0
1
0
0
2
0
1
0
0
0
0

3

0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0

4

0
1
1
0
0
0
0
0
2
3
1
1
0
0
1
2

5

0
0
1
1
0
0
0
0
1
2
1
1
0
0
0
1

6

0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
1

7

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

8

0
1
1
1
0
0
1
0
2
3
1
1
0
0
1
2

9

0
0
1
1
0
0
0
0
dt
2
1
1
0
0
0
1

10

0
0
0
0
0
0
1
0
0
dt
0
1
0
0
0
0

11

0
0
0
0
0
0
1
0
0
1
0*
0
0
0
0
It

12

0
1
1
0
0
0
0
0
2
3
1

0
0
0
2

13

0
0
1
1
0
0
0
0
1
2
1
1
0
0
It
Of

14

0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0

15

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0*
0

< * . =
1 if m = 4
0 if m>5

if m = 4or5
if m>6

if m = 4,5or6
if m>l

We note that (8.4) improves on Bredon's published results ([8, Theorem C]) but his
methods yield the same corollary of Mahowald's work. Perhaps more interesting is that
we can use the product structure to enormously reduce the work involved. For example
it is a small matter to calculate the groups [UP", S"~e] for 6 = 0 and 1. We find

lit - 1 Ok - 1 T _
>" J ~

k even k ̂  2
Z/2 /codd fc^l

and

Z/2

Z/2 © Z/2

0

Z/2

for k = 2 or 3

forfc=0mod4 ^

for k = 1 mod 4 k ̂  4

forfc = 2mod4 fc^4

for k = 3 mod 4 k > 4.

In fact from [RP*,S3] = 0 we deduce that r)eE°2-
3(4) must be an infinite cycle in £J*(4)

and since it must die in £J*(2) we deduce that d2:£2'2(2)->£|>5(2) is an isomorphism.
In E**(0) we therefore have

d2(x-T) = x2 • fj
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where xeH2(C2;Z) is the generator.
From this we deduce

d2(x
2kai) = 0 if a e n,S° is of order 2

and

d2(x
2k+la)x2k+2fj6i for any <xen,{S°).

In particular

d2(x
2k+lr,) =

Next we observe that H*(C2;Z/2) is a free module over F2W o n t w o generators, 1 eH°,
teH1. We next consider d2:E\A{0)^E\-2(fy; in fact we may see it is zero by
considering the map \_SyS°,S°~\C2*-[S2i/S°,S2]C2 and observing it is an isomorphism.
Hence d2(trj)=0. It therefore follows that

Hence for example

d2{x2k+1tt1) =

In any case the above argument allows us to decide which elements of rc,(S°) are strictly
equivariantly represented by maps Ski-*Sk~J provided 0^j^2,k^0,k — j^2.

In general the subgroup of //"(G^S^S0]') which are strictly equivariantly repre-
sented by elements of [Su A EG +, S°]f is the cokernel of the map

[ S % X ° , C A £G + ,S°]r
G-^[Sl/

 A S° A £G + ,S°]r
G.

This can of course be studied by nonequivariant means. The problem becomes more
tractabled if G admits fixed point free representations, and U is a suitable one. Then if
r ̂  — 2 we may replace the above map by

l(Su A S0,G)/S°,S0]C-^[(S1' A S°)/S0,S°]G

which is much easier to study since the maps are out of finite complexes. For example if
p is an odd prime we may complete at p and ask about the element at of order p with
r = - | [ / | + 2p-3 . Since a, is detected by the first Steenrod power and (Su/S°)/G and
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((S" A S°*G)/S°)/G are segments of SBG + we see that at can only be strictly
equivariantly represented if

is non-trivial. Since n^S0)* is zero for 0<j<2p — 3 we seen this condition is also
sufficient.
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