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A CHARACTERIZATION OF THE FINITE SIMPLE

GROUPS PSp(4,q), G2(q), D4

2(q), II

PAUL FONG1)

Our object in this paper is to prove the following result.

THEOREM. Let G be a finite group satisfying the following conditions:

(*) G has subgroups Lί9 L2 such that Lx — SL{2, qx)9 L2 — SL{2, q2), [Ll9 L2] = 1,

L1f]L2 = <;>, where j is an involution, and \C(j) : LXL2\ = 2.

(**) C{j) = UL^n), where n2 = 1, L\ = Ll9 L\ = L2.

Then G = C{j)O{G)9 or G is isomorphic to one of the simple groups G2{q) or

D\{q)9 where q = min {ql9 q2}.

The groups G2{q) are the simple groups of order qe{q5 — 1) {q2 — 1) dis-

covered by Dickson [3], [4] in the 19005s. The groups D\{q) are the simple

groups of order q12{q* — 1) {q2 — 1) (qs + q4 + 1) discovered by Steinberg and

Tits [8], [13] in the 19505s. These groups, for q odd, thus take their place

among those finite simple groups which can be characterized by the struc-

ture of the centralizer of an involution.

Some remarks on the theorem and its proof may be appropriate at

this point. Condition (**) can be dropped if G is assumed to be not iso-

morphic with PSp{4,q), where q = min {ql9 q2}. This is a consequence of

[5] (2Λ) and [15]. Moreover, [5] (7/) implies that either qx and q2 are equal,

or one is the cube of the other, these being in fact the values of the para-

meters ql9 q2 in case G is G2{q) or D\(q). If (<M2)
3 is assumed to divide \G\9

then it is fairly straightforward to construct a subgroup G of G which is

isomorphic to G2{q) or D\(q). This is accomplished by presenting G as a

group with a (JB, AO-pair in the sense of Tits [12] and imposing a unique

multiplication table on B and on N, and hence on G. G can then be
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40 PAUL FONG

shown to be equal to G. That {qxq2Y does in fact divide \G\ follows from

[5], §§5-7 except possibly in the cases qx = q2< 11. These cases are in fact

non-exceptional, so that the theorem does hold without any conditions on

qλ and q2 other than those imposed by (*).

The group G2(3) has been characterized by Janko [7] in terms of the

centralizer of an involution. G2(3) has also been characterized in quite

different terms by Thompson [11], and a characterization of the groups

G2{3n) by Gorenstein is along lines of this latter characterization. Also, the

groups G2{2n) have recently been characterized by Thomas [10] in terms of

the centralizer of an involution.

The author wishes to thank the National Science Foundation and the

British Research Council for their support of this research, a part of which

was done at the University of Warwick Symposium on Group Theory, 1966-

1967.

1. We begin with some remarks on representations of L = SL{2, q)9

where q is a power of an odd prime p.

(I) Let Γ be the natural representation of L as 2x2 matrices over Fq,

^ the underlying space of Γ, and &— {vl9v2} an ordered basis for ^ such

that an element in L is represented by itself with respect to &. Thus if

a = (ai3)^L, then

a : Vi > ailvι + aί2v2, i = 1,2.

j^fί9 £f2 be the subspaces of ^ generated by vl9 v2 respectively. Clearly

and ^ admit the subgroup

in F

If q > 3, then any 1-dimensional subspace £f of ^ admitting H must be

JΆ or j^f2, and these two lines can be distinguished by the relations (in

the semidirect product

where X is the subgroup

Z=(x(α) = ( 1 « ) , a in Fq] .

If q = 3, then every 1-dimensional subspace jgf of ^ admits H. Of the 4
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FINITE SIMPLE GROUPS 41

lines in 3^, only <& admits X. Since ^ = jgf , where ω = ( ^ J) ,

and jg*£ are distinguished again by the action of L on ^ \

(II) Γ induces a representation on the space <^w of cubic homo-

geneous forms. If ^ ( 3 ) is the ordered basis {vλ

z, vfv2, v1v2

2

9 v2

3} for

then the elements h(ά), x{a), ω in L are represented with respect to

respectively by the matrices

(1.1)

3α 3α2 az

1 2a a2

1 a
1

We shall denote this matrix form of the representation by Γ(3). Let jg^,

Jg?> J?3> ~Ŝ > be the 1-dimensional subspaces of J^3> generated by

the vectors in ^ ? ( 3 ) respectively. By (1. 1) the four lines in the set

\&\y J?2> JzS> £?f\\ a r ^ ordered by the action of X and ω on ^ ( 3 ) . Suppose

jg^ is a 1-dimensional subspace of 5̂ <3> admitting H, and M is a non-zero

vector in jgf. If (JW1? μ2> /̂3> ̂ 4) a r e Λe coordinates of u with respect to

then for any a ψ 0 in Fg, there exists Λα f= 0 in Fq such that

(α:3^!, aμ2, α"Vs, «""3^) = ^ ( ^ i , J«2> Λs, ^4).

From this it readily follows that one of the following cases occurs:

(i) Jg*=jg?ί, J2S, ̂ ? , ^f?

(ii) ^ = 3 or 7, and ^ Q < ^ , ^J>

(iii) q = 3 or 5, and jg* Q < ^ , ^ > or

(iv) β = 3, and ^ e < ^ , jgζ>, < f̂?, Jg1>, or

Since Γ(3) is reducible if the characteristic of Fq is 3 and we will be con-

cerned with Γ(3) only if it is irreducible, we restrict our remarks to the case

q ψ 3. In (ii) among the 8 lines in <JS ,̂ jSfP, only J^J centralizes X, and

then JZl = Jέf4

ω. In (iii) we have by (1. 1) that among the 12 lines in

<£fi, JSS> and <jgf, ^ > , only ^ J centralizes X, and only .gf and ^

centralizes X modulo ^ . Then jgf = ^gj", ^ = ^ ω . Thus in cases (i),

(ii), (iii) for #f=3, the lines ^ , ^ , .gf, ^ are distinguished by the action

of L on

(Ill) Suppose Δ is the direct sum of Γ and Γ' = Γ\ where p is the

representation of L obtained by applying the field automorphism p of Fq to

the matrix coefficients of Γ. If 5^ ' and J ^ 7 have the same meaning for
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42 PAUL FONG

Γ that 5 ^ and & have for Γ, then we make take ^ ' © ^ as the under-

lying space for J, and &f^& as an ordered basis for this space. Let

Jẑ ϊ, Jz?2 ϋ?3> i?4 be the 1-dimensional subspaces spanned by the vectors in

&' U & respectively. Of the four lines in {j£J, J/ξ, jg£, jgj}, only jg£ and

J^J centralize X, and indeed, the set of vectors fixed under X is <J?J, J?ϊ>.

Then jg? = J^ ω , jg? = jg?f\ Suppose jg^ is a 1-dimensional subspace of

5^ ' © ̂  admitting ϋΓ. As in (II) we readily see that one of the following

cases occurs:

(i)

(ii) /o is the identity automorphism, and jgf £<_£??, J^?> or

(iii) # = 3, and £g> is arbitrary.

In (ii) Jg^£<jgf, jg?j> if and only if [jg£ X\ = 1. Let M be a non-zero

vector in Jg^, and set ^ = u, u2 = uω if Jzf^ζJέfi, jgf?>, and ^x = — &ω,

2̂ = w if Sf^(<Ά> ^4> Then MJ, M2 span a subspace ^ admitting L,

and with respect to this basis, L is represented on <%/ by Γ. Since one of

the sums <%Γ' + ̂ , ^ + ̂  is direct, we may assume after a change of

notation that (i) in fact holds. We note that in (iii) the same assumption

can be made if we know that J2f £<jg?i, Sfz> or <jgf£, J^>, and this is the

case if and only if [jgf, JΓ] = 1 or [ ^ , X] = 1.

(IV) Suppose E is an indecomposable representation of L such that

(1.2) ... ,
0 Γ(g)

where Γ and Γ' are as in (III). Since p does not divide the order of

(H, ω>, we may assume * in (1. 2) vanishes for g in <ίf, ω>. Let &\ J%?

be the ordered bases for Γ\ Γ\ we may assume with abuse of notation that

&'\3& is a basis for the underlying space of E giving the matrix form

(1. 2). Let j ^ , Jg*2, ~2?> J?4 be the 1-dimensional subspaces spanned res-

pectively by the vectors in £§'\}&. Since E is indecomposable, it has a

unique proper subrepresentation. In particular, the subset {jg??, JSS} is

distinguished among all 2-element subsets of {jgζ, .gξ, ̂ ? , ̂ 1 in that

^> admits L. We can then conclude as in (I) that the lines j^f, jg^,

^ 4 in ί ^ , jgff, jg?, ̂ J are distinguished by the action of L. Suppose

is a 1-dimensional subspace admitting H. One of the cases (i), (ii),
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(iii) of (III) must then hold. In (ii) and (iii) we note that if [jgf, X]=l,

then £fQ<£%, Jδ1>. Moreover, if [jg?57, X\ = 1 and < ^ ω , £f> admits L,

then <£?ω, £?> = <^?z, £?i>, and we may then conclude that ^ = ^ J ,

jg f = ^ ? . Similarly, if [ j ^ , X] = l (mod <^?, j ^ » and

then

(V) If g = go3, let α = aqo for α in Fq, so that α > a is an automor-

phism of order 3 of Fq with fixed field Fqo. Let J^\ ^ and ^ , ^ have

the meaning for Γ, Γ that 5 *̂ and J& have for Γ, and let ΓxΓxΓ be

the representation of L induced on VxVxV. The set BW of vectors

ι = v1Xv1Xv1
= v1Xv2Xv2

= V1Xv1Xv2

W7 = V?ιXv2XVι

U)z = V2Xv2Xv2

is then a basis for the underlying space F ^ = F x F x F . It is easily checked

that with respect to this basis, h(a) is represented by

(1.3)

\

aaa
άά/a

άa/a
aa\a

a/άά
d\aa

ά\aa

x(a) is^represented by

(1.4)

\

1/αάάάά/

/I a a a aά aa aa aaά\

' 1 0 0 0 a a άa ^

1 0
1

a

a

1

0
a

0

1

a
0

0

0

1

aa
aa

a

a

a

i/
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(1.5)

- 1

- 1

- 1

Let θ be an element of order q — 1 in Fq. The vectors

u5 = w7

(1.6)
u2 = w2

= θw2 - θw3 4

f θ2wz

of

θ wA

= θw5

= w8

θw7

2W7

also form a basis J%Q of ^ t 3 ^ . Let ^ 0 be the vector space spanned by

^ o over FPo; ^ 0 is contained in J^M, but not as a subspace. Using (1. 4),

(1. 5) it is not difficult to see that 5^ 0 admits L. The representation Γo of

L afforded by the basis ^ in 5^ 0 is then equivalent to ΓxΓxΓ. Let

Jzfi, JS& .̂ f̂  -S? be the subspaces of ^ 0 spanned over Fq0 by ux\ u2, u3, u4;

u5,uζ9U7;U8 respectively. These subspaces admit H by (1.3), (1.6). Since

Jzfu Jzfi are 1-dimensional, they are irreducible under H. jgζ and ^s,

which are 3-dimensional, are also irreducible under H, as a consideration

of the characteristic values of h(θ) on these subspaces shows, jg^, £fA are

non-equivalent iJ-modules for q0 > 3, since the characteristic values (θθθ)

and {θθθ)-1 of h(θ) on jgf? and jg?J are then distinct. ^S? and jĝ f are non-

equivalent without this condition on q0. Otherwise by (1. 3), (1. 6), θθjθ

must be equal to θjθθ, θ/θθ, or θ/θθ. If θθ\θ is θ\θθ or θjθθ, then ^2 = 1,

which is impossible. If θθ\θ is θ/θθ, then /?2(9o+«o-υ = l, which is also im-

possible since 0 < 2(ql + q0 — 1) < (q0 — 1) (ql + qo +I) = q — 1.

Suppose ^ is a subspace of ^ 0 admitting H. If either # 0 > 3 and

jg^ is 1-dimensional, or ^ is 3-dimensional, then jg^7 must be jgj, ^f, ^f,

or jg^ by the Frobenius-Schur Theorem. Moreover, J^J and ^ are dis-

tinguished by the relations [jgj, X] = 1, [jg£, X] < ^ by (1. 4), (1. 6), and

then jgf? = ^ ω , jg^ = ^ ω . If ô = 3 and & is l-dimensional? then the
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Frobenius-Schur Theorem gives Jz^£<J?ί, Jz^X But only <g[ among the

four lines in <jgζ, i^> centralizes X, and then £fx = £ff. Thus in all

cases, the subspaces J^J, jg^, jgf, ^ are distinguished by the action of L on

Let fft be the regular representation of F 9 considered as an algebra over

Fv. If $8 is any one of the representations Γ9 Γ(3), Δ9 E, or Γo, then the

representations SftoSβ constitute up to equivalence, all representations over

Fp of L of degree not greater than An, where q = pn, in which j is repre-

sented by — /. This is essentially [5] (IE).

2. Throughout the remainder of this paper, G will be a finite group

satisfying

(*) G has subgroups Ll9 L2 such that L1^iSL{29q1)9 L2 — SL(2,q2)r

[Ll9 L2] = 1, L1ΠL2 = <i>, where y is an involution, and \C{j) : LjLal = 2.

Such groups have been studied in [5], and as the present paper is a

continuation of [5], we shall continue with the notation of [5]. Suppose

G ψ C(j)O(G), so that by [5], (2A) C(j) = LxL2<n}9 where n2 = 1. If L1

TO = L2,

then G — PSp(4, q) with q- qx- q2 by [15]. This case may then be excluded

as done, and so by [5], (2A) and (7/), G satisfies the condition

(**) C{j) = LiL2<w>, where n2 = 1, L* = Ll9 L2

n = L2. î and q2 are

equal, or one is the cube of the other.

§§5-7 of [5] show that \G\ is divisible by (q&Y if it is not the case

that qx = q2 < 11. We consider in addition, then, the condition

(***) ]GI is divisible by (gi^2)
3

The exceptional cases qx = q2 < 11 will be discussed at the end in §6.

Set qx> q2 = q= pn. By (**) qλ = q2 = q9 or q, = q\ q2 = q. I n t h e

latter case, we shall set a = aq

9 a — aq2. Recalling the notation and results

of [5], we have the following. The images of (X <£), (^ χ ) , ( α

 α -i), ^ ^

under the isomorphism ^ t of SL(29 qt) onto Lΰ are o^{a)9 %-i(a), ht(a)9 ωt

respectively, i = 1,2. Xi9 X-ί9 Hi are the subgroups of Li generated by

elements of the form ^(α), a -i(α), ^i(α) respectively, δ is a non-square of

order a power of 2 in i7^, and C(;) = (LXL29 ho}9 where h0 acts on Li as

conjugation by the matrix f Λ, and A0

2 = /z1(^~1)/?2(^"1). In particular,
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h^cύiho = ωihi{δ"ι)9 and so ω~ιhoωi = hohi(δ). The subgroup H =

is abelian of order (q1 — 1) (q2 — 1). If D is the 4-subgroup of H, then

where η is an element of order a power of 3 permuting the involutions

j = io> /i» 7*2 of D cyclically.

Let K=O{C{X2)); we have then L1ΠK=19 C{X2) = L.K, and N(X2) =

HLXK. The element j inverts K\X2. If M is the Sp-subgroup of K, then

M can be factored as

M = x^x^x^Yix.x^γ2.

P = XXM is then a p-subgroup of order {q&Y. If B = HP, then G = BN{H)B

is a subgroup of G with a Bruhat decomposition. The order of G is

(<M2)
3 (if ~ 1) (qί - 1) (<7?<?22 + <M2 + 1)

Let P = X2Xl2Xf2, B = //P, and N= <H, ω2, η>. Then 0 = BNB is also a

subgroup of G with a Bruhat decomposition. The order of 0 is

tflte3 - 1 ) (ft +1) to - 1 ) ,

and ($//f0 is isomorphic to PGL(3,q), SL{3,q), or PSL(3,q)xZ3, where iΓ0=

if9"1 < Z(ό).

{2Λ) The representation SQ of Lx induced on the elementary abelian p-group

5 ^ = M\X2 is indecomposable.

Proof. Suppose not. Then 5 ^ = ^ ' © ^ " , where 9^ ' and JΓ" are

subspaces admitting Lλ. Now j inverts ^ " , and thus j inverts ^ ' and J^n

as well. Since 19H = fl4 if ^ = & = ςr and I ^ | = <f if ^ = ^3, q2 = q, it fol-

lows that we must have \^\= qA and qx — q2 — q. Moreover, if %$', 55" are

the representations of Lx induced on 5^', y^n respectively, then bases can

be chosen in 3^ ' , ^ n so that as/ = 8loΓ, $8// = 9loΓ, where f̂t is the

regular representation of Fq considered as an algebra over Fp. Now

&=X12

2XJX2 admits Hlf and by [5], (7C), [ ^ , X1] = 1. As in §1 (III),

we find that [ ^ % XJ < £f, and so

(2. 1) [XI2, XJ < X1\X2

By [5], (6. 3) U = XιX\2XlιXηJ2Xz is a subgroup. Since [M,M]<X2, it now

follows by (2. 1) that Xl2 normalizes U. ω\ normalizes U as well, since
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ωjΞft)^2 (mod H). Thus L\ normalizes U. On the other hand, the sub-

group UQ = XlxXl\X2 admits L\ as well, since Xl2 and ω\ clearly normalize

Uo. Thus the elementary p-group W = U/Uo of order q2 admits L\ let U

be the representation of L\ on ^ . With obvious identifications we can

choose as before a basis in ^ so that U = ^ftoΓ. Since X\2U0IU0 and

X1U0IU0 admit #f, [X\\ XlJ < X2, and ωj interchanges X\2UQIUQ and XJJolUo,

it follows by the remarks of §1(1) that [Xj, H J Ξ X J 2 (mod ϊ/0), which

contradicts (2. 1). This completes the proof.

By (2A) the commuting algebra (£ of $ is completely primary. Now

[Lj, i/2] = 1 and H2 normalizes 5^\ If A is an element in H2 centralizing

^7 then h centralizes Xl2 and Xl\ modulo X2. Since h normalizes Xl2

and X'f, it follows that h centralizes Xl2, Xl\> and so h centralizes [Xl2,Xl2

2]=X2

as well. Thus Ae<;>. Since j inverts ^ " , we have that h = 1, and i72

is then embedded in ®. In particular, H2 is isomorphic to a cyclic subgroup

of order q — 1 in a finite field, say of p m elements. If q = pn, then pn — 1

divides p m — 1, and necessarily w divides rn. Thus /ί2 acts on ^ as scalar

multiplication by elements of Fq, and J^* can then be considered as a vector

space over Fq admitting Lx as an indecomposable group of linear transfor-

mations. We shall henceforth assume this interpretation of ^ \ With a

suitable choice of basis in ^ " , we have the following three cases:

(A) qx = q2 = q, ίS is irreducible, %$ = Γ(3)% where Γ(3) is the represen-

tation of §1 (II), and σ is a field automorphism. The characteristic of Fq

is not 3.

(B) q1 = q2 — q, $8 is reducible, ίS = E% where E is the representation

of §1 (IV), and a is a field automorphism.

(C) qγ — qz, q2 = q, ίS is irreducible, and ίS = Γo% where Γo is the re-

presentation of §1 (V) (with q, q0 replaced by qz, q), and σ is a field auto-

morphism.

In each of the above cases, let Sf\, i??, J2?, £fκ have the meaning

assigned to these symbols in the corresponding cases of §1. jg^, jg=f, ^ , ^

are subspaces of ^ by definition. Since Xll9 X\2, Xl2, Xl\ admit H29 their

images in ^ are also subspaces of 5^\ We have

(2J? ) Tfe subspaces determined by Xl2, X\2, Xlί9 Xl\ modulo X2 are respectively

fι> Jzfz, '£&, £?ι in cases [A) and (C). In case (B) the subspace £f determined
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by Xl\ modulo X2 is contained in <jgζ, J?J>, but £f ψ jgfj. If the field automor-

phism 9 appearing in E is non-trivial, then jgf = £f2.

Proof. ωx interchanges Xll9 X\2 as well as Xl2, Xl\ . Since these

subgroups all admit Hl9 the results claimed in cases (A) and (C) follow

from [5], (7C) and the remarks of § 1. Similarly, we can show that the

subspace jgf determined by Xl\ modulo X2 in case (B) is contained in

<«̂ 2, £?i>. If Sf = Sfi, then (2. 1) would hold, and as in the proof of

(2A), this gives a contradiction. If p is non-trivial, then (i) in §1(111)

holds. Since [jg^, XJ = 1 by [5], (7C), jgf is either jgf? or jg£, and thus

=S^ = Jδ^ Thus completes the proof.

(2C) /ft £ύtf&ϊ (-4) fl^rf (5), G ύ isomorphic to SL{39q), and in case (C),

ό/K0 is isomorphic to PGL{39q).

Proof We first note that Ko is trivial in cases (A) and (B), and that

Ko = HΓ1 is cyclic of order q2 + q + 1 in case (C). Thus \0/KQ\ = qz{qz - 1)

( # 2 - l ) . If 0^=1 (mod 3), then PGL{3,q), SL{3,q), and PSL{3,q) are all

isomorphic groups of order q*(qz — 1) {q2 — 1). Since (5//Γ0 is isomorphic to

PGL{3,q), SL(3,q), or PSL(3,q)xZ3, the result follows in this case. Thus

we may assume q = 1 (mod 3), so that the S3-subgroup T of 77 is non-trivial

with two generators.

Suppose case (A) or (B) holds, η normalizes T, and so centralizes some

element Γin T of order 3. Since \H: H1H2\= 2 so that T < HXH29 we may

express

(2. 2) * = *i(ri)*2(r2),

where ri, τ2 are elements in Fq such that τx

z = r2

3 = 1. If ^ = 1, then t&H2,

and so ί acts on 5 *̂ as scalar multiplication by some element in i^. But

since t centralizes Lγ and η, it follows that t centralizes Xll9 X\2 and so t

centralizes ^ , which is impossible. Thus C(η)ΠT is cyclic. Since C(η)πT

admits ωx and ω2, it follows that Γi and Γ2 are in <O. By (2. 2) and the

preceding discussion, we have that τ2 = 1. Thus t^Hl9 and since 0=BNB9

it readily follows that t^Z(ό), so that ό is isomorphic to SL{3,q) or

PSL{3,q)xZ3. Suppose 6 ^ PSL(3,0) X Z3. If q = i (mod 9), then the 53-

subgroup T oΐ H cannot be generated by 2 elements; if q & 1 (mod 9), then

C{η)C\T is non-cyclic. In either case we have a contradiction, so that

0 — SL(3, q) as claimed.
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Suppose case (C) holds. If ό/K0 is isomorphic to SL{3,q) or PSL{3,q)xZ3,

then there exists an element t of order a power of 3 in H but not in Ko

such that (t,Koy/Ko is the center of ό/K0. Again, we may express

t = hι{τι)h2{τ2)

where τl9 τ2 are elements in Fqs, Fq of order a power of 3. But ω2 and t

commute modulo Ko, and so τ2 = 1. Thus t = A ^ ) is in Hx. Moreover,

/ and η commute modulo Ko, and since Ko < 7^, it follows that tη, tη2

belong to Hx. In particular, t centralizes Xl2 and Xl\, By (1. 3) and (2B)

it follows that Tl«
2+«+1 = l. Since q2 + ? + 1 & 0 (mod 9), ί is an element

of order 3 in Hλ. On the other hand, q2 + q + 1 Ξ= 0 (mod 3) implies that

ίeϋΓ0, which is a contradiction. This completes the proof.

Let ^ be a non-zero element in Fq or Fqz, and μ a non-zero element

in Fq. Then in the corresponding cases (A), (B), (C), *0*IU)*2(A0 acts on

Lt as conjugation by (\__2d) a n c * o n ^2 as conjugation by Γ1

 2^) More-

over,

Since δ is a non-square in both Fq and i^β, it follows that for any non-

zero elements a in Fq or Fqz, β in Fβ, there exists an element h(a,β) in H

such that h(a,β) acts on Lx as conjugation by( λ and on Z,2

 as conjugation

by ί n\ and such that

The element h{a9β) is not uniquely determined by these conditions, but only

up to a factor of j . Let f be a fixed primitive element of order q — 1 in

Fq. In particular, we set ho(ξ) = h{ξ,£-1), and for any α^=0 in Fq9 we

define

(2. 3) ho(a) = A0(f)*,

where α = £*. This definition depends on making one of two possible choices

for Ao(£). If Ho is the set of all elements of the form ho(a)9 then Ho is cyclic

of order # - l a n d H=H1xH0. We note that AoΦ'^iAotf) = ^ ( f " 1 ) ,

Ao(Ώ"1ω2Ao(f) = ω2A2(£)> s o t h a t

(2.4)
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(22)) Suppose case {A) or (B) holds. Define the following elements and sub-

groups in SL(3,q).

«= r , b =

With a suitable choice of η and ho(ξ) there exists an isomorphism f of 0 onto SL(3, q)

such that

f(P) = P, f(H) = H9

fM = ώ, f(htf)) = (ah

f(h2(ξ)) = ab, f(hQ(ξ)) =

t is an integer such that 1 < t < q — 1 and (t, q — 1) = 1.

Proof Since P is an S^-subgroup of SL(3,q), it follows by (2C) that

there exists an isomorphism / of 0 onto SL(3,q) such that f(P) = P, f(X2) =

Z(P). In particular,/: N(P)ΠO^->N{P). But N{P)Π G = PHand N{P) = PH.

Thus f{H) is a complement of P in N{P), and so f{H) and H are conjugate

by some element c in P. Replacing / by the composition of / with the

inner automorphism of SL{3,q) induced by c, we may assume f(H) = H

and so / : N{H) Π 6 > N(H). But N(H) ΠO = <H, η, α>2> and N(H) = <H, rj, ώ>.

In particular, f~\τj) = hrf for some h in H and i = 1 or 2. We may assume

i = l by replacing / by the composition of / with the automorphism of

/ 1 \SL(3, q) defined by conjugating a matrix by 1 , and then passing onto

the contragredient of the resulting matrix. The preceding properties of /

are not affected by this replacement.

a and b generate H. Since Hx centralizes X2, it follows that f{H1) = (ab~1}.

Since Pω2f\p= l and PωnP= 1, we have that f{ω2) = hώ for some h in H.

Let

a
h = [ β

we have then
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(hωY =

Since f(ω2) has order 4, we must have β = 1, so that

f(ω2) =

Now

a\ /I

al \ — a - 1

Replacing / by the composition of / with the inner automorphism of SL(3, q)

induced by a , we may assume f(ω2) — ώ. The preceding properties
\ a'11

of / are not affected by this change. With / so fixed, we choose η so that

Suppose

/I 0 a

/(»2(1)) = 1 0 = 0 1
\β 0 l)

where α,

(—l)a?2(l), and hence

Since (_J J) = (J J) (_} J) (J }), we have ω2 =

- f(ω2) =

1 0 a 1 \ /I 0 α\
1 θ ] ί 0 1 1 0 U

1/ \-β 0 1/ \ 1/

α^ 0 2α-α2β

0 1 0

θ 0 1-αθ

Thus a = β = 1. Since

α 0
.0 a' - ! lΛθ lΛα-1 l/\0

we also have

la

f(h2(a)) = for

Identifying <Z(P),ώ> with SL{2,q) in the obvious way, we see that / restricted

to L2 induces an automorphism of SL{2,q) which fixes the elements of the

https://doi.org/10.1017/S0027763000013696 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013696


52 PAUL FONG

subgroup SL(2,p). Such an automorphism is necessarily one defined by ap-

plying a field automorphism τ of Fq to SL(2,q). Replacing / by the com-

position of / with the automorphism of SL(3, q) obtained by applying τ"1 to

the matrix coefficients, we may assume

1 0
1

]

f(x-2(a))= 0 1

\a 0 1/

for a ψ 0 in i^, so in particular, f(h2{ξ)) = ab. The earlier properties of /

are unaffected by this change. We now define the integer t by the condi-

tion

where 1 < t < q- 1 and (/, ^ — 1) = 1. Since ho(ξ)2 = h^ζ'^h^ζ), we have

that

f{ho(ζ))2 = = aι-'b

The integers 1 — t, 1+ t are even since (t, q — 1) = 1 and q is odd. Now

f(j) = (ab)(q~1)/2

9 so replacing ho(ξ) by Λ0(f)y if necessary, we may assume

that

where c = or

/(*„(£)) =

—1 I. But ho(ξ) transforms x2{a) onto α^α?"1).

This implies that c = 1, which completes the proof.

A similar result holds in case (C). We fix a primitive element θ of

order q3 — 1 in Fqz such that ξ = oq2+q+1, and represent elements of ό/K0 and

pGL{3,q) by elements in the corresponding cosets in G and GL(3,q).

(2E) Suppose case (C) holds. Define the following elements and subgroups in

PGL(3,q).
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With a suitable choice of η and ho{ζ), there exists an isomorphism f of ό/K0 onto

PGL(39q) such that

f(P) = P, f(H) = H, f(η) = rj

f(ω2) = ω, f{hM) = b\ f(h2(ξ)) = a*b

f{ho{ξ)) =ab^-^q2+q+1))/2.

t is an integer such that 1 < t < q — 1 and (t, q — 1) = 1.

Proof As in the proof of (2D) we can find an isomorphism / of G/Ko

onto PGL{3,q) such that/(P) = P, f(H)=H, and f(Hη) = Hη. Now H=<a,b>,

and since Hλ centralizes X29 it follows that f{Hx) = ζb>. Since Pω2nP= 1

and PωΓ)P = 1, we have f(ω2) = hώ for some h in H. Let h — \ β then

\ 1/

(/ι<ΰ)2 = £2

and since /(ω2)
 n a s order 4, we must have β2 = a. Thus

f(ω2) =
\—1

Now

/I

and as in the proof of (2D), we may assume that /(β>2) = ώ. With / so

fixed, we choose an element η of order a power of 3 so that f{ή) = 9j,

Moreover, we can assume

/I 0 a\ ,1

f(xi{a)) = \ 1 0 , / ( * . 2 ( α ) ) = 0 1

\ 1/ \α 0 1

so in part icular, f{h2{ξ)) = α2ό. We define the integer ί by the condition

w h e r e K K ? - l and U , ^ - l ) = l. It follows that

Since /̂ 0(?)2 = htf-^hjg), we have that

f{ho(ξ))2 = b-^q2+q
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Replacing ho(ξ) by ho{ξ)j if necessary, we may assume that

f{ho{ξ)) = fl*(l

/I \ /-I \
where c = [ 1 or 1 . Since hQ(ζ) transforms x2(a) onto x2{ξ~1a)9

\ 1/ \ 1/

it follows that c = 1. This completes the proof.

The results obtained so far are unchanged if the isomorphism φγ of

SL{2,q) onto Lx is replaced by the composition of φx with the automorphism

of Lλ induced by conjugation by an element h of H. Indeed, the subgroups

Xl9 X-i are not changed, though their elements are relabeled; the elements

of Hx remain unchanged since H is abelian. So certainly (2A) and (2B)

remain valid. (2C), (2D), and (2E) concern the subgroup 0 = (X29H9η9α)2>5

the same isomorphism /, as well as the same choice of elements η and

ho{ξ), work for the new φt. We shall refer to this change as a relabeling

of U by Z,Λ

3. In this section we show that the subgroup N(H) has a unique

multiplication table. We fix a choice of the elements η and ho(ξ) so that

(2D) and (2E) hold.

Suppose first that case (A) or (B) holds. Since H=H1xHQ, there are

uniquely determined integers r, s, u, v modulo q — 1 such that

(3.1)

We have the following result.

(3-4) In cases {A) and (B) the integer t of (2D) is 1. Moreover, r = —2,

5 = —3, u = v = 1 (mod q — 1).

Proo/. By (2D) there exists an isomorphism / of G onto SL{3,q) such

that f{hί(ξ)) = {ab-1)t, f(ho(ξ)) = a^-^Ψί+t^2

9 and f{η) = rj9 where β, ft, 9

have the meaning given in (2D). Since 9j : a—>{ab)~1 and η\ b >a, it

follows that

and so
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(3. 2) (mod (7-1).

-tr + - | - (1 + ί)5 = - t

The sum of these two congruences is

(3. 3) s = — 3t (mod 4 - 1).

If this is substituted back into the first congruence of (3. 2) and the common

factor t9 which is relatively prime to q — 1, is cancelled, we find that

(3. 4) r Ξ= - 2 + -f- (1 - *) (mod q - l)

Suppose case (A) holds. By (2B) the subspaces of ^ determined by

Xl\ and Xf modulo X2 are the lines J^f4 and jĝ f. Moreover, hx{ξ) acts as

scalar multiplication on each of these two lines, and (1. 1) shows that the

scalar multiple on jg^ is the inverse cube of that on jg^ . On the other

hand, using (2. 4) and (3. 1), we see that

Thus 3(— 2r + 5) = — 5 (mod q — 1) and so

(3. 5) 6r = 4s ( m o d q-l).

Substituting (3. 3) and (3. 4) into (3. 5) then gives - 12 + 9 (1 - t) = - 12ί

(mod q — 1), and thus 3̂  = 3 (mod q—1). Now t is an integer such that

1< t < q - 1 and (t, q - 1) = I. If t = 1, then r Ξ= - 2, S Ξ - 3 (mod ^-l)

by (3. 4) and (3. 5). Moreover, f(ho(ξ)) = b, f(hλ{ξ)) = ab~\ so that f(ko(ξ)γ

= rj^brj = a, and w = z; = 1 (mod q — 1).

We may then assume # = 1 (mod 3), and ί = 1 + - | - (̂  — 1) or
ό

t = l + -^-(q-l). Let

u = x.xfxuxnx^ u0 = xuxnx,.

Xl2 normalizes Uo and XfXlλXl\X2 since the subgroup M/X, is abelian. By

(2B) the subspaces of JΓ determined by Xi2, Xf, Xil9 Xl\ modulo X2 are

the lines jgζ, _gf, jĝ f, ^ J . Thus by (1. 1) Xl2 normalizes U as well. Since

U and Uo admit ωv

2, it follows that L\ has a representation U on the factor
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group ^ — UIUQ. Since \^\— q2 and j inverts <%/, this representation is

irreducible over Fp. But [Lv

2, H\] = 1 and H\ normalizes <%/. As in an

earlier argument, we see that H\ acts on ^/ as scalar multiplication by

elements of Fq. Thus <%/ can be considered as a vector space over Fq

which admits L\ as an irreducible group of linear transformations. It now

follows that with respect to a suitable basis, U has the form Γ% where τ is

a field automorphism of Fq. An element av of L\ is thus represented by

the matrix a\ Since XfU0IU0 and XXUQIUO admit Hi, [Xf, Xί2] < X2, and

ωv

2 interchanges XfU0IU0 and XJJQIUO, it follows by the remarks of § 1, (I)

that the subspace XJJQIU0 is the line <& of §1, (I). In particular, A2(£)'

acts on XJJQIUQ as multiplication by the scalar ξ~τ.

Suppose f = l + J L (ςr — l). By (2D) we have
ό

(3.6)

Since t is relatively prime to q—l, we may choose an integer w such that

i(/l +-i-(ςr — 1)) ΞΞΞ 1 (mod q—l). Now from (3.6) we find that

and so

(3. 7) b =

Since f{h2{ξ)v) = [abf = b~ι, it follows by (3. 7) that

and so in particular,

Thus ξr = £i-«*«-i)/s and τ fixes the l + _L (̂  — i) elements of (F3)
3. Now

any proper subfield of Fq has at most / y elements. If τ is non-trivial, then

1 + -4- (̂  — 1) < ^ ^, which is a contradiction since q> 5 in case (A). On

the other hand, if τ is trivial, then f-«>(9-i)/3 = ^ which is also impossible.

The case t = 1 + -f- (̂  — 1) can be excluded in a similar fashion,
o

Suppose case (B) holds. Let jg*7 be the subspace of 9^ determined by

Xl\ modulo X2. (2. 4) and (3. 1) show that h^ξ) acts on J£f as multiplica-
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tion by the scalar ζs. By (2B) jgf is a line in <jgf, JP^> different from

J?f4, and jg^ = ^ if the automorphism 9 appearing in E is non-trivial.

Whichever is the case, we have that the mapping a—>a~s is a field auto-

morphism of Fq. It then follows by (3. 3) that

(3. 8) 3t^p' (mod q-ϊ),

where i is an integer such that 0 < i < n. In particular, (3. 8) shows that

qmi (mod 3).

Using (2. 4) and (3. 1) we have as well that

The subspaces of ^ determined by Xf, Xll9 Xl2 modulo X2 are thus also

lines of $ "̂ invariant under the action of h^ξ). Since <$! inverts hx{ζ) and

interchanges Xl29 Xl\ as well as Xl19 Xf9 it follows that

rs + sv= — s
(3. 9) (mod tf-1).

- 2r + s = — 2r2 - 2su + rs + sz;

5 and g—1 are relatively prime by (3.3), (3.8). Cancelling s from the

first congruence in (3. 9), we have then

(3. 10) r + υ = - 1 (mod q - 1)

so that by (3. 4)

(3.11) H Ξ 1 - 1 ( 1 - f) (mod^-1).

The second congruence in (3. 9) can be simplified by (3. 10) to

(3. 12) 2su = 2 r - 2r2 - 2s (mod q - 1).

Now (2. 4) and (3. 1) also give

h2(ξ) : Xifα)'2 >x1(aξ-2r'iu+s+2ϋY2

K{ζ) : ^ ( α ) ^ ' 2 >x2(aξs+2v)ωzη2

Since h2{ξ) acts on $̂ ~ as multiplication by a scalar, it follows that

s + 2v= — 2r — 4u + s + 2v (mod 0 — 1)
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and so

(3. 13) 2r + Au = 0 (mod q — 1).

Multiplying (3. 13) by s and using (3. 12) to eliminate the term Asu, we

find that

(3. 14) 2rs + AY - 4r2 - 4s = 0 (mod q - 1).

But now (3. 3), (3. 4), (3. 8), (3. 14) give

(- 1 - p1) (- pι) - 2 - 2pι - (1 + vΎ + V = 0 (mod q - 1),

which simplifies to

(3. 15) p' = 3 (mod q-1).

Since (3,0—1) = 1, (3.15) and (3.8) show that f == 1 (mod q — 1), and so

t = 1, as 1 < t < q - 1. It now follows by (3. 3), (3. 4), and (3. 11) that

r~— 2, s ΞΞ — 3, v = l (mod q — 1). That u = l (mod ^ — 1) can be proved

as for case (A). This completes the proof.

(3J3) In case (A) the automorphism σ appearing in %$ is trivial. In case ( 5 ) ,

φ = 3 and q = 3U. If q = 3 n > 3, ίÂ /z ίA^ automorphisms p and σ appearing in

E and %$ are respectively the mappings a — > a3 and the identity. If q = 3, then

P and σ are the identy. The subspaces of ^ determined by Xl2, Xl\, X\2, Xlx

modulo X2 are jg^, ^f, Sfz, Sfi respectively.

Proof. We use the notation and calculations of the preceding proof.

From the congruences for r, s, u, v given in (3A), we have that

(3. 16)

X2{a)

X2(a)ω

xλaY

Xχ{a)ω

In case (A) the subspace of ^ determined by Xl2 modulo X2 is ^fx. Since

sg = Γ(3)α i n c a s e (A)? it follows from (1. 1) and (3. 16) that σ is trivial.

In case (B) we proceed as follows. Since p is odd and 0 < i < n, we

have 3 < p1 < q. On the other hand, pi = 3 (mod q — 1) by (3. 15), and so

pι = 3 and p = 3. Suppose q > 3. It then follows from (3. 16) that the

subspaces of ^ determined by Xl2, Xl2

2, X\2, Xlx modulo X2 are character-

istic subspaces for h^ξ) corresponding to four distinct characteristic values.
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These subspaces must then coincide up to order with the lines jg^, j^ξ, jg^,

jg j . Since %$ = Eσ, it follows by (1. 2) and (3. 16) that p is non-trivial. By

(2B) the subspace of ^ determined by Xl\ is <&\ the subspace determined

by Xl2 is then ^f\ which is &. Since [Xl1,Z1]< Xi\X2 by [5] (7C), the

subspace of ^ determined by X\ can only be J^J, and thus the subspace

determined by X\2 is _ĝ . It now follows from (1. 2) and (3. 16) that σ is

trivial and p is the mapping a —> a\ If q = 3, then p and <; can only

be the identity automorphism. By (3. 16) the line J^f4 of ̂  must be con-

tained in the subspace of ^ determined by (Xl\, Xl^ modulo X2. If jg^

is not Xlx modulo X2, then a non-zero vector υ in ^ can be represented

in the form

υ = x^(aγx^{βY2 (mod X2),

where a, β are non-zero elements in F3. But j£f4 admits D, and so the

three distinct vectors

vJ, vn, vh

are also in JzfA. This is clearly impossible, and so j^J is Xlt modulo X2.

The proof can now be completed as before. This completes the proof of

(3B).

Suppose now that case (C) holds. H=H1xH0 and so h^θY and ho(ξ)v

can be expressed as products of powers of hλ{θ) and ho(ζ). Since ho(ξ)v has

order dividing q — 1, we see that there are integers r, s modulo qz — 1, and

u, v modulo q — l9 such that

hλ(θ)η = hλ(θr)h0(θs)
(3. 17)

hM = Λi(ftt)Λ0(n

The field element #s is necessarily in Fq9 and so we may choose 5 so that

5 = S0(32 + 0 + D a n d θ* = ̂ S°

(3C) In case (C) ί& integer t of (2E) z> g —2. Moreover, r= — q2—q,

S^ΞΞ — q2 — q — 1 (mod <73 — 1), <zτzdί M Ξ= y = 1 (mod q — 1) if q ̂  1 (mod 3).

Tfe 5αm^ congruences hold if q = 1 (mod 3) <2/2ύ? ^ w c/w^w suitably.

Proof By (2E) there exists a n i somorphism / of (?/ϋΓ0

 o n t o PGL{3,q)

such that f(hι{θ)) = b\ f(hQ{ξ)) = ab^1't^2+q+1))/z

9 and f{η) = η, where a, £, 9

have the meaning given in (2E). We represent elements of όlK0 and

PGL{3,q) by elements in the corresponding cosets of G and GL{3,q). Since
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j : a—>{ab)~1 and 9j : b >a, it follows that

and so

(3. 18) ° (mod q—1)

Since t and q—1 are relatively prime, the second congruence can be ex-

pressed as

(3.19) r = - y ( l - t{q2+ q+1)) (mod q - l)

By (2B) the subspaces of ^ determined by Xl\, Xl2, and X\2 modulo

X2 are the subspaces J^J, jg^, and jgf respectively. Using (2. 4) and (3. 17)

we see that

X2{cc)ω^2 > x2{aθs)ω*η2

**/2\ / JU2\IXU J ώ

It now follows from (1. 3) that s = — rs — sv (mod 03 — 1), and so

(3. 20) r + v = — 1 (mod 0—1)

Moreover, (1.3) shows that θrs+sv = N(θs-2r), where N is the relative norm

of the extension Fq3/Fq9 so that

(3. 21) —so = s - 2r (mod q - 1).

Thus by (3. 21) and (3. 18) we have

2r Ξ= s + s0 = so(#2 + q + 2) Ξ= 4ί (mod 0—1)

On the other hand, we have by (3. 19) that

2rΞ= — 1 + 3* (mod q — 1).

These last two congruences show that t = — 1 (mod 0—1). Since t is an

integer with 1 < / < 0 — 1, it follows that I — q — 2 as claimed.* Also,

^ = so(02 + 0 + 1 ) so that s = — 02 — 0 — 1 (mod 03 — 1) by (3. 18).

Now (3. 19) and t = q — 2 imply that
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2r = - 1 + (q - 2) {q2 + q + 1) (mod 2{q - 1)).

But -H-( ί-2)tf+g+l) = te-l)tf-l)-4Ξ-4 (mod 2{q - 1)), and so

(3.22) r = —2, v = l (mod # — 1),

the last congruence following from (3. 20). Again (2. 14) and (3. 17) give

Since h2{ξ) acts on 5^* as multiplication by a scalar, it follows that

s + 2v = s + 2υ — 2r — Au (mod g — 1)

and so by (3. 22)

4u=4 (mod q— 1).

Thus

(3. 23) ho(ζY = h

where c is an element in Hλ of order dividing 4. Using (3. 23), (3. 17),

and the congruences r = — 2, s = — 3, v = l (mod # —1), we can compute

that

But ηz^H and so centralizes hx{ξ). Thus (c3)7 = c\ and ίy must centralize

c. Since 27 centralizes no involution in H, it follows that c = 1 and M Ξ I

(mod # — 1).

The subgroup Ko = {Hί)
Q~ί is central in 0. In particular, we have from

(3. 17) that

and so

rΞ=l (mod ^2 + q + 1).

Let r = 1 + ro{q2 + q+1); using (3. 22) we see that 3r0 = - 3 (mod g - 1).

If (? ̂  1 (mod 3), then r0 = — 1 (mod g — 1), and so r~ — q^ — q (mod g3—1)

as claimed. If # = 1 (mod 3) and r0 ξέ — 1 (mod #—-1), then

r = - ζ?2 - ζ? + -g- (^3 - 1) or - q2 - q + - | - (^3 - 1) (mod #3 - 1).
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Let ζ accordingly be Θ2^qz-^n or β(q3-1)/3. Since q* + q+i = o (mod 3), we

have that N(θζ) — ξ, and since # = 1 (mod 3), we have that hx(ζ) belongs

to Ko and hence commutes with η. If θ is replaced by θζ, the integer 5

(mod qι — 1) and the integers u, v (mod q — 1) of (3. 17) are unaffected by

this change by what we have already proved. On the other hand, r is

changed to — q2 — q (mod q3 — 1). This completes the proof.

(3D) In case (C) the automorphism σ appearing in ίβ is trivial.

Proof, Using the calculations of the preceding proof and the congru-

ences for 5 in (3C), we see that

hyUfl) : aL2(α)'2 > x-ziaθ-*2-*-1)*2.

Since the subspace of ^ determined by Xl\ modulo X2 is jĝ J, it follows

from (1. 3) that σ is trivial.

(3E) There exists an element η0 in ηH such that

= ηQ

2j2,

provided a possible relabeling of Lλ by Lλ

h^ζ) is made. In particular, N{H) has a

unique multiplication table.

Proof. Suppose first that case (A) or (B) holds. Since η : j—>j1—>j2

and j = Aj(— 1), it follows from (2D) and (3A) that

(3. 24) Λ = hQ{- 1), Λ = Ax(- 1)AO(- 1)

Now

(3. 25) ηz = 1, O)2lya)2 = η2j29

since the corresponding equations hold in /(G). Set then

The square of the right-hand side can be computed from (3A) and (3. 25)

we have

and so
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ω~ι

ιηωi = η2jh0{β).

We may assume β is a square in Fq by relabeling Lλ by Lλ

h^\ since the

transform of η by ω^^ is η2jh0{ξ3β). If ϊ is an element in Fq such that

βr2 = 1, and if we set

Vo = ?*i(r)*o(r)f

then η0 satisfies the equations of (3E). The multiplication table of N{H) is

then unique by (3A).

Suppose now that case (C) holds. Since η : j—> jx—> ;2, j •= h^— 1),

and -ί- (1 — {q — 2) (q2 + # + 1)) is even, we have by (2E) and (3C) that

(3. 24) holds. Moreover,

rf = 1, ωj^ωa = i?"1^ (mod Xo),

since the corresponding equations hold in f{G). Thus rf — tc, ω^ιηω2 =zy~1J2b

where κ9 λ are elements in Ko, and K has order a power of 3. Since

Ko < Z(<S), it follows that

and so ^3 = κ2. tc has order a power of 3, so there exists an integer i such

that λu = K. Since

we may assume rf = 1 by replacing η by ηλ~\ It then follows from (3C)

that (ηh)z = 1 as well, where h is any element in H of the form hλ{a)h0{β)

with a, β in Fq. Let ω^ιηω2 = V^Jzμ, where μ belongs to Ko. Since rf — 1,

the cube of this last equation gives μz = 1. If μ ψ 1, then q2 + q + 1 and

q—1 are divisible by 3, and it then follows that μ is in Hx

q2+q+l. Replacing

η by ημ, we may henceforth assume that (3. 25) holds.

Suppose

where a^Fqz and β^Fq. The square of the right-hand side can be com-

puted by (3C) we find

and so
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o)ΓW = vhMK(aq^).

Since ωλ

2 = j and j~ιηj = ηj2, it follows by (3. 24) that a = — 1 so that

The proof can now be completed exactly as in the cases (A) and (B).

4. In this section we shall show that the subgroup B = HP has a

unique multiplication table. We fix a choice of the elements η0 and ho(ζ)

so that (3E) holds. To simplify notation, we shall write τj0 as η\ η will

always have this meaning for the remainder of the paper.

(A) Suppose case (A) holds. If vί9 v29 v3, v± are the vectors in ^ determined

by x-2(— 1)\ xx(3~ιy2, x-.λ{3~ι)η, x-2(l)η2 modulo X2 respectively, then {υί9 v29 v3, v4]

is a basis for ^ such that the corresponding matrix form of $ is Γ ( 3 ) .

Proof The lines generated in ^ by vl9 v2, v3, vA are by (2B) the lines

J2t, =̂ 2> =S?> =̂ 4 respectively. Thus there exists a basis & of ^ consisting

of suitable scalar multiples of the Vt such that the matrix form of 23 with

respect to & is Γ(3). Using (3E) we calculate that

ωί : vA — > — vu v3 > v2.

If we compare this with (1. 1), we see that we may assume that & consists

of the vectors

(4. 1) vl9 av2, av3, υi9

where a is a scalar in Fq. Consider the representation U of L\ constructed

in the proof of (3A). There it was proved that if ux is the vector deter-

mined by x^iy2 modulo Uo, and if u2 = uf&9 then {ul9 u2} is a basis of

UIUO such that the corresponding matrix form of IX is Γτ, where τ is a field

automorphism of Fq. (The η appearing in (3A) has been changed to η09

but it is clear that the above considerations apply.) Using (3E) we see

that ω\ : Xι(ί)η2 —>Xi(l), so that u2 is the vector determined by y.x(l) modulo

Uo. In particular, it follows that

lx^)%xi(r)] = xi(-^ry2 (mod u0)

On the other hand, (4. 1) and (1. 1) imply that

[x-M^Ar^^x^-aβry2 (mod u0).
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Thus βτϊ = aβϊ for all β, ϊ in Fq. Setting β = ϊ = 1, we get that a = 1,

and so £$ is as claimed.

(4B) Suppose case (B) holds. If υl9 v29 v39 v4 are the vectors in ^ determined

by x~2(— 1)?> x~2(l)η2

9 %i(— l)η2

9 #-i(l) 9 modulo X2 respectively, then {υί9 v2, v39 v4} is

a basis for 5 ^ such that the corresponding matrix form of %$ is E.

Proof The lines generated in 5̂ ~ by vl9 v2, υ39 v4 are by (3B) the lines

J?ί, &ίi ^ 3 , J?4 respectively. Thus there exists a basis ^ of 3 ^ consisting

of suitable scalar multiples of the vt such that the matrix form of %$ with

respect to & is E. Using (3E) we find that

®i : 4̂ •—> - v3, v2 — > - vlm

If we compare this with (1. 2), we see that we may assume that & consists

of the vectors

(4. 2) υl9 υ2, av3, av4,

where a is a scalar in Fq. Since the matrix form of 23 with respect to

{vl9 v29 v39 v4} has essentially the same properties as E, differing only in the

entries * of (1. 2), we may change E so that (4B) holds.

(4C) Suppose case (C) holds. If vί9 v2, v3, v49 v59 vζ9 vl9 v8 are the vectors in

JΓ determined by x-2(-l)\ xx{- l)η\ x^- θψ9 x^-βy2, x^{-l)\ x-,{-θ)\

x-ά— θψ, X-2{IY2 modulo X2 respectively, then the v^ form a basis for ^ such that

the corresponding matrix form of ίS is ΓQ.

Proof The subspaces of ^ spanned over Fq by vx\ v29 υ39 v4; v59 v6, v7;

v8 respectively are by (2B) the subspaces J^A, j ^ 2 9 £/?39 ^ 4 . There thus

exists a basis & = {uί9u29u39u49u59ue,u79u8} of ^ w i t h ux in J^fl9 u29 u3,

u4 in Sf29 uζ9 u59 U7 in £%, u8 in j ^ J such that the matrix form of ίS with

respect to & is Γo. We can calculate using (3E) that ωx : υz > — vλ.

Comparing this with (1. 5), we see that we may assume

ux = vl9 u8 = v89 u2 = x^aY2,

where a is a scalar in Fqz. Now q2 + q — 1 and q3 — 1 are relatively prime,

so there exists an integer i such that θί(q2+q~ί) = θ. By (1. 3) and (1. 6), we

then have that h^θ1) : u2 > u3 >u4. Using (3C) and (3E) we compute

that htf*) '.XxiaY2' >xι(θa)η2

9 and thus

(4. 2) u2 = xM"2, u3 = xAθaY2, u4 =
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Since ω1 : x^a)7*2 >x^(—a)% it now follows by (1. 5), (1. 6) that

(4. 3) u5 = X-yHa)\ ue = x-άθa)', u7 = X-X{θ*a)\

To evaluate a, we proceed as in the proof of (4A). Let U — XιX\2

Xl1XllX2,U0 = Xl1XllXz. Xl2 normalizes Uo and X\2XlxXl\X29 since the

subgroup M\X2 is abelian. The subspaces of ^ determined by Xlz, X\2,

Xlί9 Xl\ modulo X2 are respectively jg^, £f29 jgff, jg^, and so it follows by

(1. 4) that Xl2 normalizes U as well. Since U and Uo admit ω\9 L\ then

has a representation U on the factor group <%/ = UjU0. Now [Lη

2,HU = 1,

and using (3C) we can calculate that h^θY acts on <%S as multiplication by

the scalar fl^+β-1. Since θq2+q~λ is a primitive root of unity of order #3—1,

we see that <%/ can be considered as a 2-dimensional vector space over Fqz

with L\ as an irreducible group of linear transformations. With respect to

a suitable basis, U then has the form Γτ for some field automorphism τ of

Fq, and an element av of L\ is then represented by the matrix a\ Since

X12UJUO and XJJJU0 admit i/L [Xϊ2, j?l2] < X2, and α>? : ̂ (l) ' 2 ^ ( 1 ) , it

follows that the vectors of U determined by ^(l)'2, ^(1) modulo Uo form

such a basis. In particular, we have that

[x-2(β)\ x^θ)] = Xί(~ βτθY2 (mod ί/0).

On the other hand, (4. 2), (1. 4), and (1. 6) imply that

[x-2(β)\ x1(θ)-] = Xi(aβθYt (mod J70).

Thus — βτθ = α̂S/? for all β in F ς . Setting β = 1 and cancelling θ, we get

that a - — 1, and thus the ̂  and w4 coincide. This completes the proof.

(4D) [x-2(a)\ X-2(βY2] = x2(- aβ) for all a, β in Fq.

Proof. Since [Xl29 Xl\~\ = X2 by [5] (7B), it follows that Xl2 normalizes

the elementary abelian subgroup Y = X2Xl\. Y also admits ωv

29 and so L\

has a representation g on F in which jv inverts Y. Now [Lv

2, H\] = 1 and

H\ is faithful on Y. It follows easily that Y can be considered as a 2-

dimensional vector space over Fq on which L? acts as an irreducible group

of linear transformations. With respect to a suitable basis, $ then has the

form Γr for some field automorphism τ of Fq. Since X2 and Xli admit

Hh [X2, I I 2 ] = 1, and ω? : x2(l) >x-2(l)v\ it follows that α2(l), x.2{l)η2 form

such a basis. In particular,
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for all a, β in Fq. Using (3C) or (3E) we can calculate that h2{ϊ)η : x2{δ)

-±(x2{7δ), and so τ is the trivial automorphism.

(4E) [x^ocY2, x-^β)71] = x2{- 3aβ) for all a, β in Fq in cases (A) and (B).

[x^aY2, x-ι(β)v1 = x2(aβ+ ΰβ + άβ) for all a, β in Fqz in case (C).

Proof Suppose first that case (A) holds. We note by [5] (6. 3) that

ll is a subgroup, and so by (4A) and (1. 1)

(4. 4) [<*(«), X-ΛβYΊ = x-z(- 3αj9)
2

The result now follows by conjugating this relation by ω2η
2. Suppose case

(B) holds. If {X\\ XI,] ψ 1, then (4D) and [5] (7B) imply that X\2XlxX2

and Xl2Xl\X2 are the centralizers of each other in the subgroup M. Since

XγXlxX2 and M admit L19 it would follow that Xl2Xl\X2 admits Lx as well,

contradicting the indecomposability of Sβ. Thus [X\2, X l J ^ l , which implies

(4E) since Fq has characteristic 3.

Suppose finally that case (C) holds. As in the case (A), we note that

XλXUXl\ is a subgroup, so that by (4C), (1. 4), (1. 6)

(4. 5) [^(α), a -ΛjSΠ - X-2(aβ + aβ + άβ)η\

Conjugating this by ω2η
2 then gives (4E).

As a result of (4D), (4E), and [5] (7B), it follows that M has a unique

multiplication table in all cases (A), (B), and (C). The next lemmas will

show that P has a unique multiplication table as well. Since the action of

H on P has been determined in §3, the subgroup B = HP will then have a

unique multiplication table.

(4F) The following commutator relations hold in case (A).

( i ) [x-M, XiW] = X-άZaβY2

( ϋ ) [xάβY2, xM] = X-ι(2aβyx-2(3a*βγ2x2(3aβη

(iii) [aL2(j9)', xMΊ = Xi(- aβ)η*x-i(- α 2 i3) '^ 2 (- α3/3)^2(α3/32)

(iv) [Xll Xί] = l

In particular, P — XXM has a unique multiplication table.

Proof We have already seen in the proof of (4E) that XJί^Xll is a

subgroup. Since \XuXl\\<,X2 by [5] (7C), it follows that [Xl9 Xlft < X2f)

X.X^Xll^l, which proves (iv). (i) follows from (4. 4). (4A) and (1. 1)

imply that
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[Xi(β)v\ Xi(a)] = x^(2aβyx.2(3a2

[x-2(β)\ *,(«)] = Xl(- aβrx^i- a*βYx-2(- a*βy2x2(g(a, β))

where /, g are functions from FqxFq into Fq. If we conjugate these rela-

tions by the element h^h^μ) and compare coefficients in x29 we find that

f(aλ-2μ,
(4.7)

Setting λ = μ, λ2 = μ successively in the first equation of (4. 7) shows

that f(a9β) = aβ2ϊ for some T in Fq; setting λ = v2, μ = v3 and then μ = λ2

successively in the second equation shows that g(a,β) = a3β2δ for some δ in

Fq. To evaluate 7 and δ, we use the commutator identity

(4. 8) [xy, z] = [x, z] ίx, z, y] [y, z\

Setting x = x^μΎ2, y = Xi{v)η2, z = x^a) in (4. 8) and taking into account (4E)

and the fact that Xlu Xl\9 and X2 centralize one another, we find by

comparing the coefficients in x2 that

aγ(μ + v)2 = aϊμ2 + aίv2 + 6aμv.

Thus T = 3, which proves (ii). Setting x = x-2{μ)\ y = X-2(v)\ z = xι(a) in

(4. 8) and using (4D) and (4E), we find by comparing the coefficients in x2

that

v)2 = δasμ2 + δazv2 — aιμv + 3a3 μv.

Thus ϊ = 1, which proves (in).

(4G) The following commutator relations hold in case (B).

( i ) MβY2, »i(α)] = α-.i(- *β)η

(ii) [x-2(β)\ xMl = X-2{- a*βy2

Xl(- aβγ'x-ά- a2βYx2{a*β2)

(iii) \Xlu XJ = [Xll XJ = 1.

/ft particular, P = XjM Λίzs Λ unique multiplication table.

Proof. By [5] (7C) we have that \Xl9 Xl\\ < X2, and the argument

given for (4F) (iv) now shows that \Xl\, X{\ = 1. By (4E) we also have

IXf, XlJ = 1; conjugating this by ω2η
2 then gives [X^XlJ = 1, which proves

(iii).

Let & be the basis of ^ given in (4B), so that by (3B) the matrix
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form of %$ with respect to this basis is E. Taking into account (4G) (iii),

we have in particular that

(4. 9) SJfoW) =

Thus

where / is a function from FqxFq into Fq. As in the proof of (4F), we

find that f(a,β) = aβ2r for some r in Fq. Setting x = xx(μY2, y = xMη\

z = x^ά) in (4. 8) and comparing the coefficients in x2, we find that

aγ{μ + v)2 = afμ2 + aTv\

so that T = 0. This proves (i).

By (4. 9) and (4B) we have that

(4. 10) lX-2(βY, xMl = 3.2(- a'βY'x^fia, β)Y\

X-M<*,β)Yx2{h{a,β)),

where /, g, h are functions from FqxFq into Fq. If we conjugate this

relation by h^Xjh^μ) and compare coefficients, we find that

(4. 11)

h(aλ~2μ, βλ3μ'2) = μ-ιh(a,β).

Setting λ = v2, μ = v3 and then μ — λ2 successively in each of the equations

of (4. 11) shows that

f(a,β) = 7aβ, g(a,β) = δa2β, h{a, β) = εa*β2,

where ΐ, δ, ε are elements in Fq.

To evaluate ε, we set x = x-2(μY, V - %-2M\ z = %M in (4. 8), and

compare coefficients in x2. This gives

Sa3{μ + vY = Sa3μ2 + εazv2 — a3μv,

so that 2ε = — 1, and ε = 1. Now (4. 10) implies that Xl2 normalizes

U = XιX\2Xl1Xl\X2, a group which already admits ω\. Since Xl2 and ω\
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normalize Uo = XlxXl\X2, it follows that L\ is represented on U/Uo. As in

the proofs of (3A) and (4A) we have then

[x.2(β)\ xMl^xA-aβΎ2 (mod Uo),

where p is a field automorphism of Fq. Thus — aβp = Taβ, and so ϊ = —1.

Finally, to evaluate δ, we set x = xλ(μ), y = Xι(v), z = x-2(βY in (4. 8), take

into account (4G) (i), and compare coefficients in x^x. This gives.

- δβ(μ + v)2 = -δβμ2 - δβv2 - βμv,

so that 2δ = 1 and δ = — 1. This completes the proof.

(4H) The following commutator relations hold in case (C).

( i ) [x^βY, x^a)-] = X-2(- aβ-aβ- άβy2

(ii) [x^βY2, Xl(a)-] = x-x{aβ + άjS)'&-2(- aάβ - άaβ - aaβY\

X2{~aββ-aββ-άββ)

(iii) [^^(iS)7, ^(α)] = x.iaβY'x^iaάβYx-.i- aάάβ)η2x2{aaάβ2)

(iv)

/ft particular, P — XXM has a unique multiplication table.

Proof. [5] (7C) implies that [XuXl\'\<tX%9 so the argument given for

(4F) (iv) is also valid for (4H) (iv). (i) follows from (4. 5). Now (4C),

(1. 4), (1. 6) imply that modulo X2

ίx^lY2, xM] == χ^(a + άYx-2{- άά - άa - aa)η2

(4. 12) ίXi(Θ)η2, xx{a)] Έ= χ^(aθ + άθ)vX-2{- aάθ - άaθ - a<xθ)η2

ίxx{θψ, Xx{a)-\ = x-x(άθ2 + άθ2Yx-2(- aάθ2 - άaθ2 - aάθψ.

An element β in Fqs can be expressed in the form β = b0 + bxθ + b2θ
2, where

b09 bl9 b2 are elements in Fq. Using (4. 12) and (4. 8) twice, we find that

(4. 13) [Xi(βY\ XiW] = x-άaβ + aβYx-2(- άάβ - άaβ - aaβY2.

where / is a function from FqsXFq3 into Fq. A similar argument shows

that

(4. 14) [x-2(βY, XiM] = x1(aβY2X-1(άάβYx-2(- aaάβY2.
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where g is a function from FqzXFq into Fq. Conjugating (4. 13) by ω2η
2

then gives

[Xi(-β), XiiaY2] = x-^άβ + άβ)vx2(-άάβ - άaβ - aaβ).

If we interchange a and β in this and compare the result with (4. 13), we

find that

f(a, β) = - aββ - άββ - άββ,

which proves (ii). If we conjugate (4. 14) by h1{λ)hQ{μ), where . is in Fqz

and μ is in Fq, and compare the coefficients in x2, we find that

(4.15)

Setting λ = v, μ = v2 in (4. 15), where υ is in Fq, shows that g{a,β) = g{a,l)β2.

To evaluate g{a,ϊ), we set x- x-2{μ)\ y = x-2M\ z = %M in (4. 8). Using

(4D) and (4E) in comparing the coefficients in x2, we find that

g(a, 1) (μ + v)2 = g(a, l)μ2 + g(a, l)v2 + 2aάάμv.

Thus g(a, 1) = ααα and g{a, β) = aάάβ2, which proves (iii).

5. The results of §§3, 4 and [5] § 6 now imply that G has a unique

multiplication table. Now it is not difficult to verify from the presentation

of the groups G2(q) and D\{q) in [2], [8] that these groups satisfy the condi-

tions (*), (**), (***) of § 2. Indeed, for G2(q) the required calculations can

be found in [11], and the verification for D\(q) can be done along similar

lines. In the case of G2{q)9 q\ — q2 — Q\ i n t n e c a s e of D\{q), qx = q\ q2 = q.

Since \G\ = \G2(q)\ in cases (A) and (B), and \G\ = \Dl(q)\ in case (C), we

have the following result.

(5A) In cases (A) and (B) the subgroup G is isomorphic to G2(q). In case

(C) G is isomorphic to D\(q).

(5B) Suppose G > G. Then there exists a subgroup V of G of odd order

such that G = V C{i), where i is any involution in G. In particular,

W\ = \G :C(j)\\VΓίCU)\.

Proof By [6], Chapter 9, Theorem 2. 1, there exists a subgroup V of

odd order such that G = VC(j). Now G has only one class of involutions,
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so that G — VC(i) for any involution i in G. This is enough to complete

the proof. We note that if

c= lVΓίC(i)l,

then c does not depend on the choice of /. We have \V\ = q4(q4 + q2 + l)c

in cases (A) and (B), \V\ = q*(q* + q4 + ΐ)c in case (C).

(5C) Suppose G>G, and set Y = HLλM, D = VC\Y9, where g<=G. If π

is the set of odd primes dividing q* — 1, and Dπ is an Sπ-subgroup of D, then

Dπ < (HzLtf for some k in G.

Proof We first note that D is solvable, this being a direct consequence

of the structure of Y and the oddness of |Z>|. Thus Dπ exists, and we have

Dπ ~ DπMΊMQ < (H2LxM)QIMg ~ {H2LX)\

the last group being the central product of Lχg and the cyclic subgroup H2

9

of order q — 1. Let πl9 π2 be the set of odd primes dividing q3 — 1, q* + 1

respectively, so that π = πx U π2. Since HZLX < Y, it follows that Y contains

an abelian Sπi-subgroup and a cyclic S*,,-subgroup. If Dπ is a π^group, then

Dπ < (HzLi)011 for some h in Y9 by a theorem of Wielandt [14]. Since g and

h are in G, the result follows. If Dπ is not a π^group, then D0=Z)ffΠ(LiM)g

must be a non-trivial normal Sπ2-subgroup of Dβ. We have Do < L/Λ' for

some h in F 7 by the theorem of Wielandt. Let Egh be the normalizer of

Do in Lx

gh\ Egh is then a dihedral group of order 2(& + 1). Since

and Mg are normal subgroups of Yg and /zeFg, it follows that

Dπ < (HzLM^nNiDo) < (H^MY^NiDoM911) = (H2EM)9h.

But H2EM has an abelian 5π-subgroup, so by a third application of the

theorem of Wielandt, D, < (H^,)9^ for some i in (H2EM)gh. Since #, A, t

are in G, (5C) follows.

(5D) G = G.

Proof Suppose otherwise. We consider first cases (A) and (B). Let

geG, D = Vf]Y9, and d— \D\. The number of elements in the complex

VYg is

(5 1} W Γ = - ^ - ^

a number which cannot exceed ]G1 = ^6(^6 — 1) (q2 — 1). Let d = dπdp and
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c = cπcp be the factorizations of d and c into their π- and p-factors, π being

as before the set of odd primes dividing q* — 1. By (5C) dπ divides cπ, so

that necessarily dp > q3cp.

Suppose cv ψl, so that dp > qz. Since Mg is a normal subgroup of Y°

of index q in every Sp-subgroup of Y9, it follows that IFDM^I > q2. But

(Xl2Xl\X2)
g has index q2 in M9, and so V0 (Xl2Xl2

2X2)
g ψ 1. In particular,

by taking </ = 1 and g = ωfl2, we find that

v n xi2xi\x2 ψ l, F n Xf x i 2 % ^ 1,

and since the subgroup Xl\X2 admits <X>, X_2y = L\, it follows by a theorem

of Dickson, [6], Chapter 2, Theorem 8. 4, and the oddness of \V\ that

(5.2)

By taking g = co2̂  and 0 = 1, we find that

and since the subgroup Xl2X2 admits (X29 X-2y
2 = L\\ it follows as before

that

(5. 3) VΠX12X2ΦI

(5.2), (5.3), and (4D) then imply that Vf)X2¥=l. The entire argument

repeated with Y replaced by Yω* yields VnX-2¥=l. This is a contradiction

by the theorem of Dickson and the oddness of | F | , and thus cp = 1.

An Sp-subgroup of V then has order q\ and no non-trivial ^-element

in V centralizes an involution of G. Thus P = XXM contains a subgroup S

of order q4 such that no non-trivial element in 5 centralizes an involution

in G. If \SΠM\>q\ then SΠ {X^X^Y Ψ 1 since {X^X^Y has index qz in

M, and this is impossible. Thus \SΠM\= qK Suppose case (A) holds.

Using (4A), (1.1), the existence of elements in S — M, and the relation

S^MψXl.XllX^ we can find elements s, t in SC]{Xl2

2X2 - X2), Sf^X^Xl2^

— Xl\X2) respectively. Then (4D), (4F) (iv), and the existence of s imply

that no element of S, when expressed as a product of elements from each

of the root subgroups of P, can involve a factor xl2{ά) with αf=0, But

then (4E) and the existence of/ imply that S Π M< XlxXl\X2, which is

impossible. Suppose case (B) holds. Using (4B), (4. 9), the existence of

elements in S — M, and the relation SOM^ XfX^Xc,, we can find an ele-

ment s in SΠiXllXfXlΆ-XfXliXz). (4D), (4E) then imply thet SΠM
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^XllXfXl.X^ so that SΠ (X1X-2)*2 Ψ1, which is impossible. Thus (5D)

follows in cases (A) and (B).

Consider now the case (C). Let g^G, D = VΓ\Y9, and d= \D\. The

number of elements in the complex VY9 is

JZUZLL = q'iq' + q' + Dciq'-Diq-Dq12

\VΠY9\ d
(5. 4)

= q1 V + q4 + 1) (q« - 1) (q - 1) ^

a number which cannot exceed \G\ = #12(#8 + #4 + 1) (#δ — 1) {q2 — 1). Again,

if π is the set of odd primes dividing qβ — 1 and d = dπdp, c — cπcp, then

dp>q7cp by (5C). Suppose first that cp=f=l, so that dp>q7. Since Mg is

a normal subgroup of Y9 of index q3 in every Sp-subgroup of Yg, it follows

that 17(ΊM f f |>^4. If VΓ)X2

9 = 1, then FΠMg is necessarily abelian by (4D),

(4E). But (4D), (4E) also show that ^ g = M9IX2

9 is a symplectic space of

dimension 8 over Fq, the inner product being the commutator. Since

VΓ)X2

g = 1, the image of Vf)Mg in 5^ 3 is a subgroup of order greater than

q\ such that any two vectors in {V Π M3)X2

gIX2

g are orthogonal. This is

impossible, and thus VΓiX2

9¥sl. Taking g=l and g = ω2, we find that

F n X 2 ^ l > K n l - z ^ l j which is impossible. Hence cp = l, and P then con-

tains a subgroup S of order q8 such that no non-trivial element in S

centralizes an involution in G. If \SnM\>q5, then SΓ\{X-iX-2)
v ¥* 1 since

(X-jX.g)11 has index q* in M, which is impossible. Thus |SΠM1= q*. Since

SΓ\X2 = 1, it follows that SΓ\M is abelian, but as before, this leads to a

contradiction. Thus G = G in all cases.

6. As a consequence of the work in the preceding sections, it now

follows that the theorem stated in the introduction holds if

(***) \G\ is divisible by {qxq2Y.

As remarked in § 2, (***) can only fail to hold in case q1 = q2 < 11. Thus

we shall assume that qt = q2 = q throughout this section, and indicate how

(***) can be seen to hold even if q < 11. We may moreover assume that

q > 5 since the case q = 3 has been done by Janko [7].

Let {a,β) = {l,2}, and set Kβ = O(C(Xβ)). Since Kβ/Xβ is inverted by

j and so is abelian, Kβ has a unique Sp-subgroup Mβ. If q5 does not

divide |G | , then one and only one of the following cases occurs by [5] (4E).
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( I ) Mβ = Xβ

(II) \MβIXβ\ = φ

(βA) Suppose q5 does not divide \G\. If (I) Atf/ώ for the index β, then

XιX2 is an Sv-subgroup of C(u) for every uψ\ in Xβ.

Proof Let N=O(C{u)), so that by [5] (3C), we have C(u) = LaN,

LaΓ)N= 1, and Xβ < N. Let S be an Sp-subgroup of C{u) containing XχX2.

Sf)N is then an S^-subgroup of N containing Xβ. If Sf)N>Xβ, then there

exists a subgroup R such that Xβ<\R< SΠN. Since (Xa,R> < S, it follows

that (Xa, R} is a p-group of order exceeding q2 which normalizes Xβ. But

N{Xβ) = HLaKβ by [5] (3B), so that XλX2 is an Sp-subgroup of N(Xβ). This

is a contradiction and so SΓ)N = Xβ, which then proves (6A).

(6B) Suppose qe does not divide \G\. If (I) holds for both indices a and

β, then XXX2 is an Sp-subgroup of G.

Proof Suppose not, and let S be a ^-subgroup of G with XλX2 <1 S.

Under the action of H, (X1X2)*= X\X2 — {1} is partitioned into four orbits:

XS, X2\ Ou O2.

Let zψl be chosen in Z(S)ΠX1X2; by (6A) we may assume that z&Ox.

Since XXX2 is an Sp-subgroup of N(XX) and N{X2), no element in S — XχX2

normalizes X1 or X2. By (βA) no element in X^UX^ is fused in G to an

element of Ox. Thus it follows that some element in XJ is fused to an

element in X2

%. In particular, we have by [5] (3C) that the S2-subgroups

of Lx and L2 are conjugate in G. But then these 52-subgroups would be

conjugate in C(j), which is a contradiction.

(6C) Suppose q* does not divide \G\. If (II) holds for the index β, then

Rβ - XaMβ is an Sp-subgroup of G and Z{Rβ) = Xβ. Moreover, (I) holds for the

index a.

Proof The 4-subgroup D normalizes Rβ, and ωa interchanges MβΠC{j1)

and Mβf)C{j2). Thus by the Brauer-Wielandt Theorem, we have that

MβΓ)C{j) = Xβ, \MβΠCUι)\ = 1M.ΠC(;2)| = q.

Moreover, [5] (4B) implies that

< (χaχh)\ Mβnc(j2) < (χcχdr\
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where a, c ε { l , —1}, and b, ί / e ( 2 , —2}. Since M^nCC/Ί) and

admit //, and # > 3 , it follows by [5] (4C) that

Mβf)C(j\) = XI or XI, Mβ{\C(j2) = X?2 or

Taking into account that ωa interchanges Mβf]C(jί) and M^ΠC^)* we see

that one of the following cases must occur:

(1) Mβ =

(2) Mβ=XβXlXl2

a

(3) Mβ = XβXjXf

(4) Mβ = XβXlβXlj

Suppose (1) holds. For any ω in N{H), we note that Rβf)Rωβ admits

D. Applying the Brauer-Wielandt Theorem with ω = ωaωβη9 we find that

(6. 1) RβΠRωβ = XlaXf for ω = ωaωβη.

Since Mβ/Xβ is abelian, (6. 1) implies that

(6. 2) [Xla, Xf] <XβΠXlaXf = 1,

so that Mβ is abelian. Conjugating (6 2) by ωβrf gives \Xla9 Xa] = 1, which

implies that Xla < Z(Rβ). In particular, i?;β'=XlαΛ:?XβXl2 j s contained as an

Sp-subgroup in C(Xa) = LβKa, and so Rω

β

aV > Ma. Since Xj < Z{Rω

β

aV), it fol-

lows that Xj induces trivial automorphisms on Ma\Xa, so that X} < Mα.

Conjugating this last relation by ωβ yields Xl\ < Ma, so in particular,

Xl2

β < i?^α7, and Xl\ < i?^, which is a contradiction. Thus case (1) cannot

occur, and a similar argument excludes case (2) as well.

Suppose (3) holds. Xβ9 X}, X}2 are permuted transitively by η, so that

η normalizes Mβ. Since Xβ < Z{Mβ), it follows that Mβ is abelian. Now

Mβ can be considered as a representation space for La over F^. Since

[La,Xβ] = 1 and j inverts XjXf, the representations of La on ^ and Mβ/Xβ

are in different p-blocks. Thus Mβ is a completely reducible Lα-module.

In particular, T=C(Xa)f]Mβ has order q2. Now T admits H, and T n C C / ) ^ .

Applying the Brauer-Wielandt Theorem and [5] (4B), (4C), we can deduce

that

T = XβX
η

β\ i = 1 or 2.
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Thus XΫ < C(Xa) = LβKa. If Xf < Mβf then case (1) or (2) would hold for

Ma, which we have just seen to be impossible. Thus Xf $ Ka, and since

Xf and Ka both admit H9 this implies that Xv/nKa = l. But now X?1

centralizes Xβ, and LβKJKa is isomorphic to SL(2, #). Thus XfKa = XβKaf

which is impossible since XβKa Π C(;) = XβXa9 while Jf !'/£« Π C(j) = Xa. Case

(3) then does not occur.

Suppose finally that (4) holds. If [Xlβ, Xlj] = 1, then conjugating this

relation by ωβη gives {Xβ,Xf1 = 1. Thus Lf = <Xβ, X.,)'2 < C(Xβ), which is

impossible since j2 inverts Xβ. Hence [Xlβ, Xlj] ψ 1, and since Xlβ and

Xlj admit H9 we find that [Xlβ, Xlj] = Xβ. A similar type of argument

shows that Z{Mβ) = Xβ. Thus Z(^) = Xβ9 so in particular, iV(^) < N{Xβ),

which is enough to show that Rβ is an 5p-subgroup of G. If (II) holds

for the index a, then Xa and Z^ would necessarily be conjugate in G,

which we showed to be impossible in the proof of (6B). This completes the

proof.

(βD) If \G\ is not divisible by q* then XXX2 is an Sp-subgroup of G.

Proof. <y> is an S2-subgroup of C(X1X2,j), so by [5] (2B) <;> is also an

S2-subgroup of C{XXX2). In particular, C M ) has a normal 2-complement

T, and the Frattini argument gives

N(X1Xi) =

Since N&XJnCU) = XiX2H, it follows that N(X1X2) = TH. If XλX2 is not
an Sp-subgroup of G, then XχX2 is not an S^-subgroup of T. Since

71 < CCY^), this is impossible by (6A) and (βC).

(6E) If q = 5 or 7, then q* divides \G\.

Proof We use the notation of [5], § 5. Since p 5 or 7, it follows

that q+ε = 6, so that |F1 = 9 . If ξ" centralizes Va, where a = l or 2,

then X = C(ya)IVa satisfies the conditions of [5] (3E). In particular, qz divides

\G\, and so q* divides \G\ by (6D). We may assume then that ζ does

not centralize V1 or V2. ζ must then fix exactly 3 elements in V, none of

which belong to V1*UF2*. The remaining 6 elements of V thus lie in orbits

of length 3 under the action of ζ, and a generator υx of Vx is necessarily

fused to a generator υ2 of V2 Since (al9bun> and (a2,b2,n} are 52-subgroups

of C(V2) and C(Vχ) respectively, these 2-groups are then conjugate in G. But
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then they would be conjugate in C(j), which is impossible. This completes

the proof of (6E).

(6F) If q=9 or 11, then q5 divides \G\.

Proof. We shall only outline the proof, since the calculations involved

are lengthy. Suppose (6F) fails to hold for q = 9. If £& is the set of all

elements of C(j) which are roots of j , 3-singular elements, or 5-elements in

Lx or L2, then it is not difficult to show using (6D) and [5] (3E) that &

is a union of classes of C(j) which are special in the sense of [9]. Moreover,

C{j) > C*(g) for every g in £z?9 where C*{g) is the extended centralizer of g

in G. C(j) has an irreducible character θ of degree 81 such that 1 — θ

vanishes on the elements of C(j) — LXL2 not in Si. C(j) also has 8 irredu-

cible characters Ξi9 1 < i < 8, of degree 80 such that 1 — θ + Ξi vanishes on

the elements of C(j) not in &. Decomposing the induced characters

(1 — θ + Ξi)* and applying the Suzuki order formula [9], we find

1 G | - 2 3 5 4 1 (χ-x(j)Ϋ

where δ = ± 1, 1 is an irreducible character of G, x = Z(l), and x, x + δ

are divisors of \G\. In particular, x — X{j) divides 27 34 5 41. Since

\C(j)\= (720)2, it follows that only a limited number of possibilities arise for

\G\, all of which turn out to be impossible.

If 0=11, then q = 3 (mod 8). Now whenever # = + 3 (mod 8), an

S2-subgroup S of G has order 64. The fusion of 2-elements in G then is

that designated as case I in [1]. By methods similar to those in [1], and

indeed, using [1] (4. 1), (4. 2), we can write down all possible decomposition

numbers for the principal 2-block of G. Up to this point, only the structure

of S need be assumed known. If in addition we use the fact that C(j) is

known, we can obtain the order formula

\G\ =q4(q2-mq2 + D

where |sc| is the degree of an irreducible character of G. Moreover, x + q2

divides q2{q2 - 1) {q2 + 1), x = 21 q2 ± 20q - 16 (mod 64), and (x + q2)2-Ax{q2+ϊ)2

is a square. In particular, for q = 11, the limited number of possibilities

which arise for \G\ turn out to be impossible except for the one case where

q* divides | G | .
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