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A CHARACTERIZATION OF THE FINITE SIMPLE
GROUPS PSp(4,q), G:(q), Di(q), II

PAUL FONG?Y

Our object in this paper is to prove the following result.

THEOREM. Let G be a fimite group satisfying the following conditions :

(*) G has subgroups Ly, L, such that L,~= SL(2,q,), L,~ SL(2,q,), [L,, L,]=1,
LnL,= s>, where j is an involution, and |C(j) : L,L,| = 2.

(#%) C(j) = LL(n>, where n2=1, Lt =1, L= L,

Then G = C()O(G), or G is isomorphic to one of the simple groups G.(q) or
Di(q), where q= min{q,q.}.

The groups G,(q) are the simple groups of order g%g®—1)(g>—1) dis-
covered by Dickson [3], [4] in the 1900’s. The groups Di(q) are the simple
groups of order ¢'%(¢°—1)(¢*—1)(¢*+ ¢* +1) discovered by Steinberg and
Tits [8], [13] in the 1950’s. These groups, for ¢ odd, thus take their place
among those finite simple groups which can be characterized by the struc-
ture of the centralizer of an involution.

Some remarks on the theorem and its proof may be appropriate at
this point. Condition () can be dropped if G is assumed to be not iso-
morphic with PSp(4,q), where g = min{g,q}. This is a consequence of
[5] (24) and [15]. Moreover, [5] (7]) implies that either ¢, and ¢, are equal,
or one is the cube of the other, these being in fact the values of the para-
meters ¢, ¢, in case G is G,(q) or Di(q). If (g,q.)? is assumed to divide |G|,
then it is fairly straightforward to construct a subgroup G of G which is
isomorphic to G,(q) or Dj(gq). This is accomplished by presenting G as a
group with a (B, N)-pair in the sense of Tits [12] and imposing a unique
multiplication table on B and on N, and hence on G. G can then be
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shown to be equal to G. That (q,q,)* does in fact divide |G| follows from
[5], §§5-7 except possibly in the cases g = ¢, < 11. These cases are in fact
non-exceptional, so that the theorem does hold without any conditions on
q, and g, other than those imposed by ().

The group G,(3) has been characterized by Janko [7] in terms of the
centralizer of an involution. G,@3) has also been characterized in quite
different terms by Thompson [11], and a characterization of the groups
G,(3") by Gorenstein is along lines of this latter characterization. Also, the
groups G,(2") have recently been characterized by Thomas [10] in terms of
the centralizer of an involution.

The author wishes to thank the National Science Foundation and the
British Research Council for their support of this research, a part of which
was done at the University of Warwick Symposium on Group Theory, 1966-
1967.

1. We begin with some remarks on representations of L = SL(2,q),
where ¢ is a power of an odd prime p.

(I) Let I be the natural representation of L as 2x2 matrices over F,,
7~ the underlying space of I, and % = {v,,v,} an ordered basis for &~ such
that an element in L is represented by itself with respect to %. Thus if
a= (a;;)€L, then

a:v;—>a; 0+ anuv, 1 =1,2,

Let &4, &4 be the subspaces of 77~ generated by v,, v, respectively. Clearly
& and & admit the subgroup

H={n@=(§ %.), a#0 in Fq].

If g>3, then any 1-dimensional subspace & of ~ admitting H must be
A or &, and these two lines can be distinguished by the relations (in
the semidirect product #°L)

A X]1=4, A X]1=1,

where X is the subgroup
X: {x(a): 1 q), o in Fq].

If ¢ =3, then every l-dimensional subspace & of 7~ admits H. Of the 4
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lines in 77, only &4 admits X. Since & = &°, where o = (_(1) (1)>, “Z
and &4 are distinguished again by the action of L on 7 .

(I¥) I induces a representation on the space °® of cubic homo-
geneous forms. If Z® is the ordered basis {v3, v,%,, v,0,% v,8} for 77O,
then the elements %4(a), 2(e), » in L are represented with respect to ZF®
respectively by the matrices

ol 1 3a 3a? a: 1
o 1 20 « —1
(1- 1) a-—l ’ 1 o ’ 1 .
a? 1 -1

We shall denote this matrix form of the representation by I'®. Let &,
%%, S, S, be the 1-dimensional subspaces of #7® generated by
the vectors in Z® respectively. By (1.1) the four lines in the set
{ A, L, S, L) are ordered by the action of X and o on °®. Suppose
& is a 1-dimensional subspace of 7”® admitting H, and # is a non-zero
vector in &#. If (py, pa, ps, ps) are the coordinates of » with respect to
ZF®, then for any a0 in F,, there exists 2,0 in F, such that

(dpyy apts, a sy, a™2py) = Aa(ft1, oy t3y ).

From this it readily follows that one of the following cases occurs:

i) FL=A A %G A

(i) ¢g=3o0r7 and ¥ (A L

(iii) ¢=3 or 5, and ¥ < ¥, > or { A, F>

(iv) q=38, and ¥ KA, L, (L F, or { A, L.
Since I'® is reducible if the characteristic of F, is 3 and we will be con-
cerned with I'® only if it is irreducible, we restrict our remarks to the case
g# 3. In (ii) among the 8 lines in <&, &>, only & centralizes X, and
then A= 2" In (iii) we have by (1.1) that among the 12 lines in
(A, L and (K, F>, only & centralizes X, and only &4 and &
centralizes X modulo &4. Then &4 = &5°, HA = &* Thus in cases (i),

(i), (ii1) for g+ 3, the lines &4, &, &4, & are distinguished by the action
of L on 7°®,

(III) Suppose 4 is the direct sum of I' and I'” = ", where p is the
representation of L obtained by applying the field automorphism p of F, to
the matrix coefficients of I. If 7' and %’ have the same meaning for
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I that 7~ and & have for I, then we make take &7/ @ 27~ as the under-
lying space for 4, and %’U % as an ordered basis for this space. Let
A, L L, A be the 1-dimensional subspaces spanned by the vectors in
F'U F respectively. Of the four lines in { A, &4, A, F}, only &4 and
&4 centralize X, and indeed, the set of vectors fixed under X is <{ &, &.
Then 4= 95", A= _F° Suppose & is a 1-dimensional subspace of
7' @7 admitting H. As in (II) we readily see that one of the following

cases occurs:

(1) < =%, %r Y L
(ii) p is the identity automorphism, and & <<{ A, &> or (K, 4>
(i) ¢=3, and & is arbitrary.

In (ii) <K%, &> if and only if [ X]=1. Let # be a non-zero
vector in &, and set u,=u, u,=u" if LKL >, and u, = —u",
u, =u if (A, ¥4>. Then u,, u, span a subspace Z/ admitting L,
and with respect to this basis, L is represented on % by I'. Since one of
the sums 7' + %/, 7~ + 2/ 1is direct, we may assume after a change of
notation that (i) in fact holds. We note that in (iii) the same assumption
can be made if we know that ¢£c( &, &> or (¥, &>, and this is the
case if and only if [ &2, X*1=1 or [ &, X]=1.

(IV) Suppose E is an indecomposable representation of L such that

I'(g) =
(1. 2) E(g) = (
0 Ig)

where I and I” are as in (III). Since p does not divide the order of
{H, »>, we may assume #* in (1. 2) vanishes for ¢ in <H, o). Let %', &
be the ordered bases for I7, I'; we may assume with abuse of notation that
F'UF is a basis for the underlying space of E .giving the matrix form
(1.2). Let &4, &4, 4, A be the 1-dimensional subspaces spanned res-
pectively by the vectors in %'U %. Since E is indecomposable, it has a
unique proper subrepresentation. In particular, the subset {4, &} is
distinguished among all 2-element subsets of { &, &, &4, A} in that
{ A, &> admits L. We can then conclude as in (I) that the lines &, &,

A, Ainl{LA S HAb Al are’distinguished by the action of L. Suppose
& is a 1-dimensional subspace admitting H. One of the cases (i), (ii),
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(iii) of (III) must then hold. In (ii) and (iii) we note that if [ &, X]=1,
then (%4, &>. Moreover, if [ ¥, X]1=1 and <(&°, &> admits L,
then (¥, &> =< %A, %>, and we may then conclude that &¥= &,
F*= 4. Similarly, if [, X]1=1 (mod (&K, ¥>) and FELLAE, F,
then ¥ = &, &°= 4.

(V) If g=gq4, let @ = a% for @ in F,, so that «—> a is an automor-
phism of order 3 of F, with fixed field F,. Let #°, &~ and &, & have
the meaning for I, I that 2~ and & have for I', and let I'xI'xI’ be
the representation of L induced on VxVxV. The set BBl of vectors

Wy = VX7, X7, Wy = Uy X Ty XUy
Wy = VX Ty XUy We = VX Ty XUy
Wy = VX Ty Xy Wy = Vy X Ty XD,y
Wy = Uy X T X0y Wy = Uy X Ty X Ty

is then a basis for the underlying space V¥l = VxVxV. It is easily checked
that with respect to this basis, 4(a) is represented by

aca
aala
acla
(1. 3) adla
alaa
alaa
alaa
l/aaa
z(a) isTrepresented by
1l «a a a aa aa ad «ada
1 00 0 & a aa
1 0 & 0 o aa
1. 4) 1 a a 0 aa
1 0 0 14
1 0 &
1 &
1
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and o by

(1. 5) -1

-1

Let 6 be an element of order ¢g—1 in F,. The vectors

Uy = W, Us = W5 + ws + Wy

@6 Uy = Wy + wy + w, ug = 0w + Gws + Gw,
s = 0w, + Gw; + Gw, w; = 0w; + 02w + 0w,
uy = 2w, + 02w, + 02w, Uy = Wy

also form a basis &, of #"Bl. Let 7, be the vector space spanned by
B, over Fyp; 77, is contained in 7711, but not as a subspace. Using (1. 4),
(1. 5) it is not difficult to see that 7, admits L. The representation I, of
L afforded by the basis %, in 27, is then equivalent to I'xI'xI. Let
L Gy A, F be the subspaces of 77, spanned over Fq, by u,; s, #s, t4;
Us, Ug, U ug respectively. These subspaces admit H by (1. 3), (1. 6). Since
S, & are 1-dimensional, they are irreducible under H. & and &,
which are 3-dimensional, are also irreducible under H, as a consideration
of the characteristic values of A4() on these subspaces shows. &4, ¢4 are
non-equivalent H-modules for g¢,>3, since the characteristic values (046)
and (060)! of h(#) on &% and &4 are then distinct. &4 and &4 are non-
equivalent without this condition on ¢, Otherwise by (1. 3), (1. 6), §4/8
must be equal to 6/69, 6/, or 6/65. If 44/6 is 8/§e or 6/64, then 6% =1,
which is impossible. If §4/6 is 6/, then 6%+%D =1, which is also im-
possible since 0<2(gf + g, —1)<(g—1)(gi + ¢+ 1) =¢g—1.

Suppose & is a subspace of 7, admitting H. If either ¢,>3 and
&7 is 1-dimensional, or & is 3-dimensional, then & must be &, &, &,
or &4 by the Frobenius-Schur Theorem. Moreover, &4 and &4 are dis-
tinguished by the relations [, X1=1, [, XI< &4 by (L. 4), (1.6), and
then =9, =" If ¢=3 and & is 1-dimensional, then the
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Frobenius-Schur Theorem gives £<( %, &>. But only & among the
four lines in ¢ &, &) centralizes X, and then ¢4 = &45*. Thus in all
cases, the subspaces &4, &4, %4, & are distinguished by the action of L on
7"

Let ® be the regular representation of F, considered as an algebra over
F,. If 8 is any one of the representations I, I'®, 4, E, or T, then the
representations % o B constitute up to equivalence, all representations over
F, of L of degree not greater than 4, where ¢ = p", in which j is repre-
sented by — 7. This is essentially [5] (LE).

2. Throughout the remainder of this paper, G will be a finite group
satisfying

(*) G has subgroups L,, L, such that L,~SL(2,q), L,~~SL(2,q),
[L, L,J=1, LinL, =<j>, where j is an involution, and |C(j) : L,L,] = 2.

Such groups have been studied in [5], and as the present paper is a
continuation of [5], we shall continue with the notation of [5]. Suppose
G #+ C()O(G), so that by [5], (24) C(j) = L,L<{n>, where n?=1. If L,"=L,,
then G~ PSp(4,q) with g= ¢, = g, by [15]. This case may then be excluded
as done, and so by [6], (24) and (7I), G satisfies the condition

(#x) C(j) = LL<{n>, where n®=1, L"=1L,, L"=L, ¢ and ¢, are
equal, or one is the cube of the other.

§§5-7 of [5] show that |G| is divisible by (gqg)? if it is not the case
that ¢, = ¢, <11. We consider in addition, then, the condition

(v) ]G] 1is divisible by (g,4.)%.
The exceptional cases ¢, = g, <11 will be discussed at the end in §6.

k(3

Set >g=qg=p" By () qa=¢=¢, or g=¢, ¢=g. In the

latter case, we shall set @ = o', @ = a®®. Recalling the notation and results
of [5], we have the following. The images of (1 a) (1 ) (a ) ( 1)
? g g 1) \a 1/° a™) \—1
under the isomorphism ¢, of SL(2,q;) onto L; are z(a), x-;(a), hia), o;
respectively, i =1,2. X,, X_;, H;, are the subgroups of L, generated by
elements of the form x,(a), 2-,(a), h;(a) respectively. & is a non-square of
order a power of 2 in F,, and C(j) = {L,L,, ko>, where h, acts on L; as
conjugation by the matrix (1 5), and £k = hy(0)hy(67Y). In particular,
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holohy = 0:hy(67Y), and so wi'hew; = hoh,(8). The subgroup H = <H,H,, h,
is abelian of order (¢, —1) (g, —1). If D is the 4-subgroup of H, then

N(D) = N(H) = {H, o, 05,7,
where 7 is an element of order a power of 3 permuting the involutions
J = JoiuJj. of D cyclically.
Let K= 0(C(X,)); we have then L,NnK=1, CX,) = LK, and N(X,) =

HL,K. The element j inverts K/X,. If M is the S,-subgroup of K, then
M can be factored as

M= Xz(X—1X-2)”(X1X—z)72-

P=X,M is then a p-subgroup of order (q,¢,)}. If B = HP, then G=BN(H)B
is a subgroup of G with a Bruhat decomposition. The order of G is

(:142)° (¢ — 1) (¢} — 1) (¢lq} + qug. + 1)

Let P=X,X7,X?, B=HP, and N=<H, o, 7>. Then G = BNB is also a
subgroup of G with a Bruhat decomposition. The order of G is

ai(gi —1) (g2 + 1) (¢, — 1),

and G/K, is isomorphic to PGL(3,q), SL(3,q), or PSL(3,q)XZ,;, where K,=
H* < Z(6).

(24)  The representation B of L, induced on the elementary abelian p-group
7" = M|X, is indecomposable.

Proof. Suppose not. Then 7~ ="' @ 7", where 7/ and 7~ are
subspaces admitting L,. Now j inverts 7, and thus j inverts °/ and "'
as well. Since |7 |=¢ if gg=g=qand |7 |=¢ if ¢, = ¢, ¢ =gq, it fol-
lows that we must have |77 |=g¢* and ¢, = ¢, = q. Moreover, if L', B’* are
the representations of L, induced on 277/, &' respectively, then bases can
be chosen in 7', 7 so that B’ ' =RoI, B’ =RoI, where R is the
regular representation of F, considered as an algebra over F,. Now
& = X1X,/X, admits H,, and by [5], (7C), [¥, X;1=1. As in §1 (III),
we find that [ ¥, X;1< &4, and so

2.1 [X7,, X1< X23X,

By [5], (6. 3) U= X,X1°X7,X7}X, is a subgroup. Since [M,M]<X,, it now
follows by (2. 1) that X7, normalizes U. o} normalizes U as well, since
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0} = 0,® (mod H). Thus L} normalizes U. On the other hand, the sub-
group U, = X7,X2(X, admits L} as well, since X2, and »} clearly normalize
U, Thus the elementary p-group %/ = UJU, of order ¢* admits L}; let I
be the representation of L} on %/. With obvious identifications we can
choose as before a basis in % so that W=%RoI. Since X7*U,/U, and
X,Uy/U, admit H}, [X7%, X2,] < X,, and o} interchanges X72U,/U, and X,U,/U,,
it follows by the remarks of §1(I) that [X,, X2,]=X7* (mod U,), which
contradicts (2. 1). This completes the proof.

By (2A4) the commuting algebra € of 8 is completely primary. Now
[L, H]=1 and H, normalizes #°. If h is an element in H, centralizing
7, then k centralizes X7, and X?! modulo X,. Since % normalizes X7,
and X7Z, it follows that & centralizes X7,, X2, and so % centralizes [X7,, X?3]=X,
as well. Thus ze()y. Since j inverts &7, we have that k=1, and H,
is then embedded in €. In particular, H, is isomorphic to a cyclic subgroup
of order g—1 in a finite field, say of p™ elements. If ¢g=p", then »" —1
divides p™ —1, and necessarily » divides m. Thus H, acts on &~ as scalar
multiplication by elements of F,, and 2~ can then be considered as a vector
space over F, admitting L, as an indecomposable group of linear transfor-
mations. We shall henceforth assume this interpretation of 7°. With a
suitable choice of basis in 7, we have the following three cases:

(A) ¢ =¢, =g, B is irreducible, B = I'®s, where I'® is the represen-
tation of §1 (II), and ¢ is a field automorphism. The characteristic of F,
is not 3.

(B) ¢ =g¢,=4¢q, B is reducible, ¥ = E°, where E is the representation
of §1 (IV), and ¢ is a field automorphism.

(C) ¢1=¢% ¢ =g, B is irreducible, and B = Iy, where I', is the re-
presentation of §1 (V) (with ¢, ¢, replaced by ¢3, q), and ¢ is a field auto-
morphism.

In each of the above cases, let &4, &4, &4, &4 have the meaning
assigned to these symbols in the corresponding cases of §1. &, &, A, A
are subspaces of &~ by definition. Since X2, X7?, X7,, X’} admit H,, their
images in 2 are also subspaces of °. We have

(2B) The subspaces determined by X,, X71%, X2,, X% modulo X, are respectively
LAy Fy Ay A in cases (A) and (C). In case (B) the subspace &7 determined
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by X2} modulo X, is contained in { A, >, but L+ F. If the field automor-
phism p appearing in E is non-trivial, then & = &.

Proof. o, interchanges X7,, X7* as well as X2, X7%. Since these
subgroups all admit H,, the results claimed in cases (A) and (C) follow
from [5], (7C) and the remarks of §1. Similarly, we can show that the
subspace & determined by X2} modulo X, in case (B) is contained in
(S, L. If &= &, then (2.1) would hold, and as in the proof of
(2A), this gives a contradiction. If p is non-trivial, then (i) in §1 (III)
holds. Since [, X1=1 by [5], (7C), & is either & or &, and thus
& =% . Thus completes the proof.

(2C) In cases (A) and (B), G is isomorphic to SL(3,q), and in case (C),
GIK, is isomorphic to PGL(3,q).

Proof. We first note that K, is trivial in cases (A) and (B), and that
K, = H?' is cyclic of order g2+ ¢+ 1 in case (C). Thus |G/K,| = ¢¥(g* — 1)
(?—1). If ¢g#£1 (mod 3), then PGL(3,q), SL(3,q), and PSL(3,q) are all
isomorphic groups of order ¢(¢*—1)(q2—1). Since G/K, is isomorphic to
PGL(3,q), SL(3,q), or PSL(3,q) X Z;, the result follows in this case. Thus
we may assume g=1 (mod 3), so that the S;-subgroup T of H is non-trivial
with two generators.

Suppose case (A) or (B) holds. 7 normalizes 7, and so centralizes some
element ¢ 'in T of order 3. Since |H: HH,|=2 so that T < H,H,, we may

express
(2. 2) t = hl(Tl)h2(72)9
where ¢, 7, are elements in F, such that r?=¢3=1. If r, =1, then t€H,,

and so ¢ acts on 2~ as scalar multiplication by some element in F,. But
since ¢ centralizes L, and %, it follows that # centralizes X7,, X7 and so ¢
centralizes 7, which is impossible. Thus C(»)NT is cyclic. Since C(p)NT
admits w, and ,, it follows that #°* and ¢“2 are in <¢#>. By (2. 2) and the
preceding discussion, we have that r, =1. Thus t€H,, and since G=BNB,
it readily follows that teZ(G), so that G is isomorphic to SL(3,q) or
PSL(3,q)XZ;. Suppose C:PSI(B,q)xZa. If g=1 (mod 9), then the S-
subgroup T of H cannot be generated by 2 elements; if ¢ #1 (mod9), then
CNT is non-cyclic. In either case we have a contradiction, so that
G~ SL(3,q) as claimed.
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Suppose case (C) holds. If G/K, is isomorphic to SL(3, ) or PSL(3, q)X Zs,
then there exists an element ¢ of order a power of 3 in H but not in K,
such that <¢, K)/K, is the center of G/K,. Again, we may express

t = hl(’z'x)hz(’fz)

where 7,, 7, are elements in F, F;, of order a power of 3. But w, and ¢
commute modulo K,, and so r,=1. Thus ¢ = &,(z,) is in H,. Moreover,
t and 7 commute modulo K, and since K, < H,, it follows that #, "
belong to H,. In particular, ¢ centralizes X2, and X?}. By (1. 3) and (2B)
it follows that 7,?**%*' =1, Since ¢*+ g+ 1%0 (mod 9), ¢ is an element
of order 3 in H;. On the other hand, ¢*+ ¢+ 1=0 (mod 3) implies that
teK,, which is a contradiction. This completes the proof.

Let 2 be a non-zero element in F, or F;, and g a non-zero element
in F,. Then in the corresponding cases (A), (B), (C), Ak, (2)hy(z) acts on
L, as conjugation by (12_25> and on L, as conjugation by (1;1—25)' More-
over,

(Rohy(R)ho(p2))* = hy(2267) ho(p07").

Since ¢ is a non-square in both F, and F.;, it follows that for any non-
zero elements « in F, or F;, B in F,, there exists an element A(a,p) in H

such that %(a, ) acts on L, as conjugation by<1 a) and on L, as conjugation

by (1 13>, and such that

h(a, B)* = hy(a™)hy(B7).

The element %(«a, 8) is not uniquely determined by these conditions, but only
up to a factor of j. Let & be a fixed primitive element of order ¢—1 in
F,. In particular, we set hky¢) = h(£, &), and for any a0 in F, we
define

(2. 3) ho(er) = hyo(&),

where a = £&'. This definition depends on making one of two possible choices
for n4€). If H, is the set of all elements of the form 4y (a), then H, is cyclic
of order g—1and H= H,xH,, We note that hy€&) " 0,h&) = 0,k (E"),
ho(8) @, ho(8) = wohy(€), so that

0’?”’0(@“’1 = ho@)’h(&)
w;1h0(5)0)2 = ho(E)hz(f—l)-

(2. 4
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(2D) Suppose case (A) or (B) holds. Define the following elements and sub-
groups in SL(3, q).

3 1 0 0 1
e fofe b et
1 & 0 —1 0
0 0 1 1 * =x *
a):( 01 0), P:{( 1 *” H={ * )}
-1 00 1 *

With a suitable choice of 7 and hy(€) there exists an isomorphism f of G onto SL(3, q)
such that

FP) =P fH)=H f)=1
Flo) =@, F(E) = (ab™),
F (@) = ab, F(hy(&) = ae=orapron,

t is an integer such that 1< t<gq—1 and (¢,q—1)=1.

Proof. Since P is an S,-subgroup of SL(3,q), it follows by (2C) that
there exists an isomorphism f of G onto SL(3, g) such that fP) =P, f(X,)=
Z(P). In particular, f: N(P)nG —> N(P). But N(P)nG = PHand N(P)=PH.
Thus f(H) is a complement of P in N(P), and so f(H) and H are conjugate
by some element ¢ in P. Replacing f by the composition of f with the
inner automorphism of SL(3,q) induced by ¢, we may assume f(H)=H
and so f: N(H)nG—> N(H). But N(H)NG = (H,7,,> and N(H) = <H,7,e>.
In particular, /() = hy’ for some % in H and i =1 or 2. We may assume
i =1 by replacing f by the composition of f with the automorphism of

1
SL(3,q) defined by conjugating a matrix by ( 1 ), and then passing onto

1
the contragredient of the resulting matrix. The preceding properties of f

are not affected by this replacement.
a and b generate H. Since H, centralizes X,, it follows that f(H,)=<{ab™").

Since P2nP =1 and P°nP=1, we have that f(w,) = k& for some % in H.

Let
o
h = ( B ) ;
a—l‘B—l

we have then
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\

(iia‘))2=(_ﬁ—l £ _ﬁ_l).

Since f(w,) has order 4, we must have =1, so that

[44
f(wz)=< o 1 )
—

e S0 =)

Replacing f by the composition of f with the inner automorphism of SL(3,¢q)

Now

induced by o 1), we may assume f(o,) = @ The preceding properties
o
of f are not affected by this change. With f so fixed, we choose 7 so that
) =1.
Suppose

where «, peF,. Since _(1) (1)> = <é %) (_% (1)> <(l) D, we have w, = 2,(1)x_,
(—1)w,(1), and hence

1 0 « 1 1 0 « 1—af 0 2a—a?B
a“)=f(co2)=< 1 0)( 01 >< 1 0)=< 0 1 0 )
1/ \—=p 0 1 1 -5 0 1—eaf

Thus « = 8=1. Since

6 o)=Grot D6 DG D6 71

we also have
o
S (hy () = 1 for acF,.
a—l

Identifying <Z(P), @y with SL(2, ¢) in the obvious way, we see that f restricted
to L, induces an automorphism of SL(2,q) which fixes the elements of the
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subgroup SL(2,p). Such an automorphism is necessarily one defined by ap-
plying a field automorphism - of F, to SL(2,q). Replacing f by the com-
position of f with the automorphism of SL(3,q) obtained by applying ! to
the matrix coefficients, we may assume

1 0 «a 1
f(xz(a))=< 1 0), f(x-z(a))=<0 1 )
1 a 0 1

for @ =0 in F,, so in particular, f(h,(€)) = ab. The earlier properties of f
are unaffected by this change. We now define the integer ¢ by the condi-

tion

f(hy(8) = (ab™),
where 1< ¢<g—1 and (¢, g—1)=1. Since hy&)? = h,(6")hy(&), we have
that
S (ho(8)? = (ab™")"t(ab) = at~thi+e,

The integers 1 — ¢, 14 ¢ are even since (f, g—1)=1 and ¢ is odd. Now
f(J) = (@) 272, so replacing ho&) by hy(&)j if necessary, we may assume
that

F(hy(8)) = at~v/2pa+tyze,

1 1
where c=( 1 or ( -1 ) But %,(&) transforms w,(a) onto x,(a&™?).
1 —1

This implies that ¢ =1, which completes the proof.

A similar result holds in case (C). We fix a primitive element 6 of
order ¢* —1 in Fy such that & = 2**7*1 and represent elements of G/K, and
pGL(3,q) by elements in the corresponding cosets in G and GL(3,q).

(2E)  Suppose case (C) holds. Define the following elements and subgroups in
PGL(3,q).
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With a suitable choice of 7 and hy(&), there exists an isomorphism f of G|K, onto
PGL(3,q) such that

flo) =@, fU(0) =¥, fhE) = @
F(ho(&)) = apa-taira+ie,

t ts an integer such that 1< t<q—1 and (t,q —1) = 1.

Proof. As in the proof of (2D) we can find an isomorphism f of G/K,
onto PGL(3,q) such that f(P) = P, f(H)=H, and f(Hy)=Hj. Now H={a,b),
and since H, centralizes X,, it follows that f(H,) = <b>. Since P%nP=1

o~ _ - - o
and P°NP=1, we have f(w,) = h@ for some % in H Let & =< B ); then
1

— —x
(h@)z = ( & > ’
-

and since f(w,) has order 4, we must have 82 = a. Thus

8
f(a)2> = ( 8 ) .
—1

Pl T0 )= e

and as in the proof of (2D), we may assume that f(o,) =a@. With f so

Now

fixed, we choose an element 7 of order a power of 3 so that f(3) = 7.
Moreover, we can assume

1 0 « 1
flay(a) = ( 1 0> ’ fw-y(a)) = (0 1 >,
1 a 0 1

so in particular, f(h,(¢)) = a®». We define the integer ¢ by the condition
S(hy(0)) = 0",

where 1<t<¢g—1 and (¢,g—1)=1. It follows that f(h,(&) = pr@+2+n,
Since hy(£)2 = h,(E7)hy(E), we have that

f(ho(f))z = b-a<q2+q+1)<azb) = @2hl=t (@3 a+),
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Replacing (&) by ho(&)j if necessary, we may assume that

F(hy(8)) = abit-t(a®+a+1r2p

1 —1
where ¢ = ( 1 ) or ( 1 ) . Since #,(&) transforms z,(a) onto x,(é'a),
1 1

it follows that ¢ = 1. This completes the proof.

The results obtained so far are unchanged if the isomorphism ¢, of
SL(2,q) onto L, is replaced by the composition of ¢, with the automorphism
of L, induced by conjugation by an element & of H. Indeed, the subgroups
X,, X., are not changed, though their elements are relabeled; the elements
of H, remain unchanged since H is abelian. So certainly (2A) and (2B)
remain valid. (2C), (2D), and (2E) concern the subgroup G = (X,, H,7, o)}
the same isomorphism f, as well as the same choice of elements » and
ho&), work for the new ¢,. We shall refer to this change as a relabeling
of L, by L,".

3. In this section we show that the subgroup N(H) has a unique
multiplication table. We fix a choice of the elements  and #%,(&) so that
(2D) and (2E) hold.

Suppose first that case (A) or (B) holds. Since H= H,XxH,, there are
uniquely determined integers 7, s, #, v modulo g—1 such that

hy(8)" = Rhy(E7)Ro(E°)
ho(g)” = hx(eu)ho@D)

(3. 1)

We have the following result.

(84) In cases (A) and (B) the integer t of (2D) is 1. Moreover, r= —2,
s=-3, u=v=1 (mod q—1).

Proof. By (2D) there exists an isomorphism f of G onto SL(3,q) such
that f(:(8)) = (@b™)", f(h(€)) = a®=72p0+02 and f(y) =7, where a, b,
have the meaning given in (2D). Since 7:a—>(ab)™ and 7:b—>aq, it

follows that

S(hi(ETVho(€%)) = 771 F (Ry(€))F = a™2*b7",

and so
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trt o (1= t)s=—2t
(3.2 (mod ¢g—1).
—tr+ L0+ Hs=—1t

The sum of these two congruences is

(3. 3) s=—3t (mod g—1).

If this is substituted back into the first congruence of (3. 2) and the common
factor #, which is relatively prime to ¢ — 1, is cancelled, we find that

(3. 4) r=-2+-3-(1—1 (mod g—1)

Suppose case (A) holds. By (2B) the subspaces of 7~ determined by
X2: and X7* modulo X, are the lines &4 and &4. Moreover, h,(&) acts as
scalar multiplication on each of these two lines, and (1. 1) shows that the
scalar multiple on &4 is the inverse cube of that on ¢. On the other
hand, using (2. 4) and (3. 1), we see that

By(8) © @y(@)?2" — zy(af’)"2”

hy(§) xl(ayz —> (a2

Thus 3(—2r +s)=—s (mod ¢—1) and so

(3. 5) 67 =4s (mod gq—1).

Substituting (3. 3) and (3. 4) into (3.5) then gives —12+9(1—¢)= — 12¢
(mod ¢—1), and thus 3¢=3 (mod ¢—1). Now ¢ is an integer such that
1<t<g—1and ({,g—1)=1. If t=1, then r=—2, s=—3 (mod ¢—1)

by (3. 4) and (3.5). Moreover, f(ho(&)=1b, (&) =ab™, so that f(hy()
=75%j=a, and u=v=1 (mod ¢—1).

We may then assume g=1 (mod 3), and t=1+%) (g—1) or

=1+%(q—1). Let

U = XIXYzlengXg, UO = XZlXZ%XZ.

X7, normalizes U, and X7°X2,X7%X, since the subgroup M/X, is abelian. By
(2B) the subspaces of &~ determined by X7,, X7°, X7, X2} modulo X, are
the lines &4, &4, &4, &4 . Thus by (1. 1) X2, normalizes U as well. Since
U and U, admit o}, it follows that L3 has a representation 11 on the factor
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group %/ = U/U,. Since |Z/|=¢* and j inverts 7/, this representation is
irreducible over F,. But [L}, H}]=1 and H] normalizes Z/. As in an
earlier argument, we see that H7] acts on %/ as scalar multiplication by
elements of F,, Thus 2/ can be considered as a vector space over F,
which admits Lj as an irreducible group of linear transformations. It now
follows that with respect to a suitable basis, U has the form I”, where ¢ is
a field automorphism of F,. An element 4’ of L} is thus represented by
the matrix a*. Since X71°U,/U, and X,U,/U, admit H3, [X7’, X2,]< X,, and
o} interchanges X7*U,/U, and X,U,/U,, it follows by the remarks of §1, (I)
that the subspace X,U,/U, is the line &4 of §1, (I). In particular, £,(&)’
acts on X,U,/U, as multiplication by the scalar £.

Suppose ¢ =1+ —é—(q— 1). By (2D) we have

F(hy(8)) = a'+a-vr3p=i=(a=1/3
(3. 6)
f(ho(é)) = g~ (a=D/6pl+(a—1)/6,

Since ¢ is relatively prime to g— 1, we may choose an integer w such that
w(l + % (q— 1)) =1 (mod ¢—1). Now from (3. 6) we find that

b = (] (§)@DE R (€)1 HaTIE)
and so
(3.7 b= f(h,(§)@™D0hy(£)).
Since f(hy(€)") = (ab)g = b7, it follows by (3. 7) that
hy(€)" = hy(§)7w@™D/5hy(€)7,
and so in particular,

hy(8) 1 xy(a) —> x(@E1Hwla=1/8),

Thus & = g-w@-1/3 and ¢ fixes the 14+ —:13— (g—1) elements of (F,?. Now
any proper subfield of F, has at most y/; elements. If ¢ is non-trivial, then
1+ —:1)’— (g—1) <y gq, which is a contradiction since ¢=>5 in case (A). On
the other hand, if ¢ is trivial, then &9/ =1, which is also impossible.
The case t=1 +—:23~(q— 1) can be excluded in a similar fashion.

Suppose case (B) holds. Let ¢~ be the subspace of 2~ determined by
X2 modulo X,. (2.4) and (3. 1) show that 4,(§) acts on & as multiplica-
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tion by the scalar &. By (2B) & is a line in (&, &> different from
F, and ¥ = & if the automorphism p appearing in E is non-trivial.
Whichever is the case, we have that the mapping a —> «~* is a field auto-
morphism of F,. It then follows by (3. 3) that

(3. 8) 3t=p" (mod g—1),

where ¢ is an integer such that 0 <i <#x. In particular, (3. 8) shows that
g#1 (mod 3).
Using (2. 4) and (3. 1) we have as well that

ha(8) 1 ay(@)” —> xy(@f2r+e)?
hy(8) : ay(a)*" —> xl(a$2r2+2su—rs—sv)wl’l

e ¢ )" —> g,

The subspaces of 7~ determined by X71°, X2,, X7, modulo X, are thus also
lines of 7~ invariant under the action of 4,(§). Since o, inverts £,(&) and
interchanges X7,, X72% as well as X7, X7°, it follows that

rs+sv=-—s
(3.9 (mod ¢—1).
—2r+s=—2r>—2su + rs + sv

s and ¢—1 are relatively prime by (3. 3), (3.8). Cancelling s from the
first congruence in (3. 9), we have then

(3. 10) r+v=—1 (mod g—1)
so that by (3. 4)

3

(3. 11) v=1~--(1—1# (modg¢—1).

The second congruence in (3. 9) can be simplified by (3. 10) to
(3. 12) 2su=2r—2r*—2s (mod qg—1).
Now (2. 4) and (3. 1) also give

ho(8) 1 ay(a)” ——> ay (@27 —tursr2oyr?

ho(8) : wy(@)°2" —> my(fo¥20)""
Since %,(€) acts on 2~ as multiplication by a scalar, it follows that

s+2v=—2r—4u+ s+ 2 (mod qg—1)
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and so

(3. 13) 2r +4u=0 (mod g—1).

Multiplying (3. 13) by s and using (3. 12) to eliminate the term 4su, we
find that

(3. 14) 2rs + 4r —4r* —4s=0 (mod q—1).

But now (3. 3), (3. 4), (3. 8), (3. 14) give
(—1=p")(=p)—2—2p"—(1+p)+4p'=0 (mod ¢ —1),

which simplifies to

(3. 15) p'=3 (mod g—1).

Since (3,¢q—1) =1, (3.15) and (3. 8) show that ¢=1 (mod ¢—1), and so
t=1, as 1<t<qg—1. It now follows by (3. 3), (3.4), and (3. 11) that
r=—2, s=—3, v=1 (mod ¢g—1). That =1 (mod g—1) can be proved
as for case (A). This completes the proof.

(3B) In case (A) the automorphism o appearing in B is trivial. In case (B),
p=3and q=3". If q=3">3, then the automorphisms p and o appearing in
E and B are respectively the mappings a —> o and the identity. If q=3, then
o and o are the identy. The subspaces of 7~ determined by X7,, X213, X712, X7,
modulo X, are £, &, S, & respectively.

Progf. We use the notation and calculations of the preceding proof.

From the congruences for 7, s, #, v given in (3A), we have that

2y(a)*e" —> @y(af¥) 2"

(3. 16) (&) : ) )
7 —— x,(af)"

y(a

)
xg(a)wzvz —> (@& 27
)
;(a)®

In case (A) the subspace of #~ determined by X2, modulo X, is ¢&4. Since
R = T® in case (A), it follows from (1. 1) and (3. 16) that ¢ is trivial.

In case (B) we proceed as follows. Since p is odd and 0<i <#n, we
have 3<p'< ¢  On the other hand, »* =3 (mod ¢—1) by (3. 15), and so
p*=3 and p=3. Suppose ¢g>3. It then follows from (3. 16) that the
subspaces of 7~ determined by X7,, X7f, X1?, X2, modulo X, are character-
istic subspaces for #,(¢) corresponding to four distinct characteristic values.
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These subspaces must then coincide up to order with the lines &4, &, &,
4. Since 8= E°, it follows by (1. 2) and (3. 16) that p is non-trivial. By
(2B) the subspace of 7~ determined by X7} is ¢4; the subspace determined
by Xz, is then 5, which is . Since [X7,, X,]< XX, by [5] (7C), the
subspace of 7~ determined by X7, can only be &, and thus the subspace
determined by X7% is &. It now follows from (1. 2) and (3. 16) that ¢ is
trivial and p is the mapping a—> . If ¢g=3, then p and ¢ can only
be the identity automorphism. By (3. 16) the line ¢4 of 7~ must be con-
tained in the subspace of &~ determined by (X2}, X7,> modulo X,. If &4
is not X2, modulo X,, then a non-zero vector v in & can be represented
in the form

v =1a_,(a)%-,(p)" (mod X,),

where «, 8 are non-zero elements in F;.  But & admits D, and so the
three distinct vectors

U], U“, U]Z

are also in &4. This is clearly impossible, and so ¢4 is X?; modulo X,.
The proof can now be completed as before. This completes the proof of
(3B).

Suppose now that case (C) holds. H= H,xH, and so h6)" and hy&)”
can be expressed as products of powers of %,(6) and he(¢). Since %,(£)” has
order dividing ¢ —1, we see that there are integers », s modulo ¢# —1, and
#, v modulo ¢—1, such that

hy(0)" = ki (07) Do (0°)
ho(€)" = hy(E")o(8") .

(3. 17)

The field element ¢° is necessarily in F,, and so we may choose s so that
=5o(g®+ g+ 1) and 6° = &%,

(8C) In case (C) the integer ¢ of (2E) is q— 2. Moreover, r=— ¢* — g,
s=—q¢*—q—1 (mod ¢*—1), and u=v=1 (mod g—1) ¢f g=1 (mod 3).
The same congruences hold if ¢q=1 (mod 3) and 0 is chosen suitably.

Proof. By (2E) there exists an isomorphism f of G/K, onto PGL(3,q)
such that f(h,(0) = b, f(ho(&)) = abi-t@+e+0/2. and  f(y) = 7, where a, b, 7
have the meaning given in (2E). We represent elements of G/K, and
PGL(3,q) by elements in the corresponding cosets of G and GL(3,g). Since
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7:a—>(ab)! and 7 :b—>a, it follows that
F(R(0)Ro(6°)) = 57 f (Ry(0))7] = a

and so

So=1
(3. 18) (mod g—1)

rt+—;—(1—t((12+q+1))3050
Since ¢ and ¢g—1 are relatively prime, the second congruence can be ex-
pressed as

1

(3. 19) 75—7(1—t(q2+q+1)) (mod ¢—1)

By (2B) the subspaces of 2~ determined by X73, X2,, and X7 modulo
X, are the subspaces &, &4, and ¢4 respectively. Using (2. 4) and (3. 17)
we see that
Zy(@)2” —> ()2
hi(0) : X)) 2" ——> 2, (@7 ) 2

2,(a)” —> x, (> ~27)7"

It now follows from (1. 3) that s=—rs— sv (mod ¢*—1), and so
(3. 20) r+v=—1 (mod ¢g—1)

Moreover, (1. 3) shows that #7*** = N(#:~27), where N is the relative norm
of the extension Fj/F, so that

(3. 21) —so=s—2r (mod ¢g—1).
Thus by (3. 21) and (3. 18) we have
=5+ s,=s(q®+ q+2) =4t (mod g—1)
On the other hand, we have by (3. 19) that
2r=—1+4 3¢t (mod ¢—1).

These last two congruences show that t=—1 (mod g—1). Since ¢ is an
integer with 1<f<g—1, it follows that t=g¢—2 as claimed. Also,
s=so(g?+ g+ 1) so that s=—¢*—g—1 (mod ¢*—1) by (3. 18).

Now (3.19) and ¢t = ¢— 2 imply that
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2r=—1+4(q—2 (¢ +q+1) (mod 2(g—1)).
But —1+4+(¢g—2)(¢*+q+1)=(q—1)(¢*—1) —4=—4 (mod 2(¢—1)), and so
(3. 22) =—-2 wv=1 (mod g—1),
the last congruence following from (3. 20). Again (2. 14) and (3. 17) give
()27 —> wy (e +20)
le) (@) —> @, (ag s rev=tustry®,
Since %,(¢) acts on 2~ as multiplication by a scalar, it follows that
s+20=s+4+20—2r —4u (mod ¢g—1)
and so by (3. 22)

4u=4 (mod q—1).

Thus

(3. 23) ho(€)" = hy(E)Ro(&)c,

where ¢ is an element in H, of order dividing 4. Using (3. 23), (3.17),
and the congruences »r=—2, s=—3, v=1 (mod ¢g—1), we can compute
that

By(8)" = hy(§)c3(c™).

But »*H and so centralizes %,(§). Thus (¢%)” = ¢%, and 7 must centralize
c¢. Since 7 centralizes no involution in H, it follows that ¢=1 and #=1
(mod g —1).

The subgroup K, = (H,)?"! is central in G. In particular, we have from
(8. 17) that

hy(0)"F = Ry(0)07D = hy(6797D),
and so
r=1 (mod ¢+ g+ 1).

Let » =1+ r,(¢*+ g+ 1); using (3. 22) we see that 37,=—3 (mod q—1).
If g#1 (mod 3), then r,=—1 (mod ¢—1), and so r=— ¢* — ¢ (mod ¢—1)
as claimed. If g=1 (mod 3) and 7,# —1 (mod ¢—1), then

rE—qz—q-l-—é—(qa—l) or —qz—q+~§—(q3——l) (mod ¢ —1).
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Let ¢ accordingly be §2@-b/s or ¢@*-v/3,  Since ¢*+ ¢+ 1=0 (mod 3), we
have that N(#f) =&, and since g=1 (mod 3), we have that #£,({) belongs
to K, and hence commutes with 7. If 8 is replaced by 6¢, the integer s
(mod ¢*—1) and the integers #, v (mod g—1) of (3. 17) are unaffected by
this change by what we have already proved. On the other hand, r is
changed to —¢*—¢ (mod ¢*—1). This completes the proof.

(3D) In case (C) the automorphism o appearing in B is trivial.

Proof. Using the calculations of the preceding proof and the congru-
ences for s in (3C), we see that

7y (0) : 2_g(@)” —> x_y(af9=1"1)7,

Since the subspace of 27~ determined by X2} modulo X, is &, it follows
from (1. 3) that ¢ is trivial.

(BE)  There exists an element 7, in nH such that
70 =1, 07’0 = 1%, 030w, = 767,
provided a possible relabeling of L, by L,"® is made. In particular, N(H) has a

unique multiplication table.

Proof. Suppose first that case (A) or (B) holds. Since 7 :j—>j,—>7,
and j = h(—1), it follows from (2D) and (3A) that

(3. 24) jx = ko(_ 1), jz = hx(_ l)ko(— 1)
Now
(3. 25) 7t =1, 07w, =19,

since the corresponding equations hold in f(G). Set then
o710, = *hi(e)ho(P).

The square of the right-hand side can be computed from (3A) and (3. 25);
we have

o190, = 7k, (a®f ) ho(a’8™),

and so
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o790, = 727 ho(p).
We may assume g is a square in F, by relabeling L, by L,*®, since the
transform of 7 by ,"® is 92jhy(&%g). If 7 is an element in F, such that
gr2 =1, and if we set

0o = nhy(T)ho(7),

then 7, satisfies the equations of (3E). The multiplication table of N(H) is
then unique by (3A).

Suppose now that case (C) holds. Since n:j—>j,——>17, j=h(—1),
and %(1—(q—2)(q2+q—|—1)) is even, we have by (2E) and (3C) that
(3. 24) holds. Moreover,

P=1, 0;'me, =777, (mod K,),

since the corresponding equations hold in f (G). Thus P*=k, w370, =7714,4,
where k, 12 are elements in K, and x has order a power of 3. Since
K, < Z(G), it follows that

£ =70 = wy'PPa, = (171 7:2)° = 1732,

and so 23 =% r has order a power of 3, so there exists an integer i such
that 2% =&,  Since

(«02—1‘)3 — vsz—si = gl = 1’

we may assume 7° =1 by replacing » by »a7%. It then follows from (3C)
that (ph)* =1 as well, where % is any element in H of the form Z,(a)ky(p)
with «, 8 in F,. Let w;'nw, = 77'j,p, where g belongs to K, Since 7° =1,
the cube of this last equation gives g2 =1, If p+#1, then ¢+ ¢+ 1 and
q—1 are divisible by 3, and it then follows that g is in H,****!, Replacing
7 by 7g, we may henceforth assume that (3. 25) holds.

Suppose

w7'nw; = 9*h,(a)h(B),

where acFp; and geF,. The square of the right-hand side can be com-
puted by (3C); we find

o710, = k(@B ) ho(a B

and so
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o7 0.2 = phy(@)hy(a?®+e+?),
Since w,®=j and j™'pj =7j, it follows by (3. 24) that « = — 1 so that
o7'70, = 777 h(B).
The proof can now be completed exactly as in the cases (A) and (B).

4. In this section we shall show that the subgroup B = HP has a
unique multiplication table. We fix a choice of the elements 7, and ()
so that (3E) holds. To simplify notation, we shall write 7, as 7; 7 will
always have this meaning for the remainder of the paper.

(A)  Suppose case (A) holds. If v, vy, vs, vy are the vectors in 7~ determined
by x_o(—1)7, 2,370, 2_4(371)", 2-,(1)" modulo X, respectively, then {v,, vy, vs, v,}
is a basis for 77 such that the corresponding matrix form of B is I'®,

Progf. The lines generated in &~ by vy, v,, v;, v, are by (2B) the lines
A, A, S, A respectively.  Thus there exists a basis . Z of 7~ consisting
of suitable scalar multiples of the v, such that the matrix form of B with
respect to # is I'®. Using (3E) we calculate that

OV —> — Uy, V3 —> Vs
If we compare this with (1. 1), we see that we may assume that & consists
of the vectors
(4. 1) Vyy QUgy U3y Uy,

where « is a scalar in F,. Consider the representation U of L} constructed
in the proof of (3A). There it was proved that if #, is the vector deter-
mined by 2,(1)” modulo U, and if u,= u,*", then {u,, u,} is a basis of
UlU, such that the corresponding matrix form of U is I™, where ¢ is a field
automorphism of F,. (The » appearing in (3A) has been changed to 7,,
but it is clear that the above considerations apply.) Using (3E) we see
that 3 : 2,(1)” —> ,(1), so that u, is the vector determined by =,(1) modulo
U, In particular, it follows that

[2-5(8), 2, ("] = 2,(—F7)" (mod U,)
On the other hand, (4. 1) and (1. 1) imply that
[2-(8)", 2(1)]= z,(— apr)™ (mod U,).
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Thus 7 = apr for all g, v in F,.  Setting f=7=1, we get that a=1,
and so Z 1is as claimed.

(4B)  Suppose case (B) holds. If vy, vy vs, v, are the vectors in 7~ determined
by x_o(—1)7, @,(1)", ,(— 1), 2_,(1)" modulo X, respectively, then {vy, vy, vs, v} is
a basis for 7~ such that the corresponding matrix form of B is E.

Proof. The lines generated in 7~ by v, vy, v, v, are by (3B) the lines
A, S, L, A respectively. Thus there exists a basis & of 7 consisting
of suitable scalar multiples of the v, such that the matrix form of ¥ with
respect to & is E. Using (3E) we find that

O V—> — Vs, Vy—> — Uy,

If we compare this with (1. 2), we see that we may assume that % consists
of the vectors

(4. 2) U1y Ugy QU3 QU4

where « is a scalar in F,.  Since the matrix form of B with respect to
{vy, vy, vs, v} has essentially the same properties as E, differing only in the
entries * of (1. 2), we may change E so that (4B) holds.

(4C)  Suppose case (C) holds. If vy, vy vsy vy, sy sy Vg, Vg are the vectors in
7" determined by x_,(— 1), x(—1)%, x(— 00", x,(— 0", 2., (— 1), x2_,(—0),
2oy (— 6%, x-,(1)"" modulo X, respectively, then the v, form a basis for 7~ such that
the corresponding matrix form of B is I,

Proof. 'The subspaces of 7~ spanned over F, by v,; vy, vs, 043 s, s, V73
vy respectively are by (2B) the subspaces &4, &4, 4, FA. There thus
exists a basis F = {uy, sy, ths, 0y, Us, Ug, g, 65} Of ¥~ with u, In G4, u,, us,
uy In &4, wus, ug, 4y in &4, ug in &4 such that the matrix form of ¥ with
respect to & is I, ~We can calculate using (3E) that o, :v,—> —u,.
Comparing this with (1. 5), we see that we may assume

2
Uy =0y, Ug =0y Uy =x(a)”,

where a is a scalar in Fi.  Now ¢+ g—1 and ¢* — 1 are relatively prime,
so there exists an integer i such that #ie**?2-D =9, By (1. 3) and (1. 6), we
then have that 4,(¢") : u,—> u;—> u,. Using (3C) and (3E) we compute
that #,(6") : x,(a)” —> 2,(0a)”, and thus

(4. 2) Uy = 2y(@)”, us = 2,(00)”, wu, = 2,(0%0)".
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Since o, : #,(e)” —> x_,(— @)?, it now follows by (1. 5), (1. 6) that
(4. 3) us = 0-4(a)", us = v-,(02)", u; = x_,(6*a)".

To evaluate «, we proceed as in the proof of (4A). Let U= X,X7?
X2 X1:X,, U,=X2,X"2X,. X2, normalizes U, and X72X?,X7}X,, since the
subgroup M/X, is abelian. The subspaces of #~ determined by XZ,, X172,
2, X% modulo X, are respectively &£, &4, A4, &, and so it follows by
(1. 4) that X7, normalizes U as well. Since U and U, admit o}, L} then
has a representation I on the factor group % =U/U,. Now [L}, H}]=1,
and using (3C) we can calculate that %,(6)” acts on %/ as multiplication by
the scalar #¢*+e-1,  Since #?**¢~! is a primitive root of unity of order ¢*—1,
we see that 2/ can be considered as a 2-dimensional vector space over Fg
with L3 as an irreducible group of linear transformations. With respect to
a suitable basis, 1 then has the form ™ for some field automorphism < of
F,, and an element &” of L} is then represented by the matrix a7. Since
X1°UJU, and XU /U, admit Hj, [X7?, X2,1< X,, and o} : 2,1)" —> x,(1), it
follows that the vectors of U determined by 2,(1)”, x,(1) modulo U, form
such a basis. In particular, we have that

[x-5(8)", ,(0)] = a,(— £0)" (mod Uy).-
On the other hand, (4. 2), (1. 4), and (1. 6) imply that
[x_4(B)", x,(0)] = xl(aﬁg)'ﬂ (mod UO).

Thus — g0 =aps for all pin F,. Setting =1 and cancelling 4, we get
that &« = — 1, and thus the v; and #; coincide. This completes the proof.

(4D)  [x_y(a@), 2-5(8)"™1 = ay(— aB) for all @, B in F,

Proof. Since [X2,, X?3]1= X, by [5] (7B), it follows that X?, normalizes
the elementary abelian subgroup Y = X,X2{. Y also admits }, and so L}
has a representation 9 on Y in which ;7 inverts ¥. Now [L}, H]]=1 and
H7 is faithful on Y. It follows easily that ¥ can be considered as a 2-
dimensional vector space over F, on which L} acts as an irreducible group
of linear transformations. With respect to a suitable basis, 9 then has the
form I for some field automorphism = of F,,  Since X, and X2} admit
Hi, [X,, X,1=1, and w} : 2,(1) —> 2_,(1)”, it follows that ,(1), 2_,(1)” form
such a basis. In particular,

[2-2(a), 2-5(8)"] = @o(— a*p)
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for all «, g in F,. Using (3C) or (3E) we can calculate that 7&,(7)" : x,(5)
— (2,(78), and so ¢ is the trivial automorphism.

(4E)  [2y (), 2-,(B)"] = a,(— 3af) for all e, B in F, in cases (A) and (B).
[y ()”, 2-4(B)"] = @(af + a@f + af) for all e, B in Fy in case (C).

Proof. Suppose first that case (A) holds. We note by [5] (6. 3) that
X, X7, X7% is a subgroup, and so by (4A) and (1. 1)
(4. 4) [2(@), 2-,(8)"] = a_o(— 3ep)™.
The result now follows by conjugating this relation by w2  Suppose case
(B) holds. If [X7*, X7,]# 1, then (4D) and [5] (7B) imply that X7°X7,X,
and X72,X72}X, are the centralizers of each other in the subgroup M. Since
X712X7, X, and M admit L,, it would follow that X7,X2(X, admits L, as well,
contradicting the indecomposability of ®. Thus [X7?, X2,1=1, which implies
(4E) since F, has characteristic 3.

Suppose finally that case (C) holds. As in the case (A), we note that
X, X7,X7% is a subgroup, so that by (4C), (1. 4), (1.6)

(4. 5) [2y(@), 2-,(B)"] = w-o(af + af + ap)™.

Conjugating this by ,n? then gives (4E).

As a result of (4D), (4E), and [5] (7B), it follows that M has a unique
multiplication table in all cases (A), (B), and (C). The next lemmas will
show that P has a unique multiplication table as well. Since the action of
H on P has been determined in §3, the subgroup B = HP will then have a
unique multiplication table.

(4F)  The following commutator relations hold in case (A).

(1) [, 2i(@)] = z-o(3ap)™

(ii)  [2(B)", @(@)] = 2-,(2ap)x-o(3a28)"x,(3a5?)

(i) [2-o(8), @(@)] = a(— af)2y(— a?B)a—o(— a®B)"xs(a?p?)
(iv) [X24, X]=1

In particular, P= XM has a unique multiplication table.

Proof. We have already seen in the proof of (4E) that X,X7,X7} is a
subgroup. Since [X,, X2{1< X, by [5] (7C), it follows that [X,, X2}1< X,N
X, X7,X2} =1, which proves (iv). (i) follows from (4. 4). (4A) and (1. 1)
imply that
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s [ ()7, 2y(@)] = 2,208 2_o(3028)" 2, f (e, B)
) [t-o(B)", ()] = 2i(— @) 2_,(— a®B)w_o(— a*B)"2,(g(a, B)

where f, g are functions from F,xF, into F,. If we conjugate these rela-
tions by the element %,(2)k,(¢) and compare coefficients in x,, we find that
flaa?p, ap™) = p~'f (@, B)
4. 7)
glar™?p, p2p?) = p~'g(a, B).

Setting 1= p, 22 =g successively in the first equation of (4. 7) shows
that f(a,B) = ap?r for some 7 in F,; setting A2=1?, p =% and then p =2
successively in the second equation shows that g(e,f) = 8% for some § in
F,. To evaluate 7 and 5, we use the commutator identity

(4. 8) [xy, 21 = [, 21[x, 2, y1[y, 2]

Setting » = x,(¢)”, y = 2,()”", 2z = x;(@) in (4. 8) and taking into account (4E)
and the fact that X7, X2}, and X, centralize one another, we find by
comparing the coefficients in «, that

ar(p + v)t = arp? + arv? + 6apy.

Thus 7 =3, which proves (ii). Setting == x2_,(¢)", ¥ = 2-,(v)", 2 = x,(e) in
(4. 8) and using (4D) and (4E), we find by comparing the coefficients in x,
that

dad(p + v)? = dadp? 4 dadv? — oy + 3aipy.
Thus 7 =1, which proves (iii).

(4G)  The following commutator relations hold in case (B).
(i) @7 w@]=z.(— ap)

(ii> [x-2(8)", ()] = x_o(— “3.3>ﬂ2x1(_ 0‘.3)’7237—1('_ a?B)'xy(aB?)
(1) [X2, X 1=[X2%, X,1=1.
In particular, P= X,M has a unique multiplication table.

Proof. By [5] (7C) we have that [X,, X2}]< X,, and the argument
given for (4F) (iv) now shows that [X2}, X,1=1. By (4E) we also have
[X1?, X2,1 = 1; conjugating this by w,? then gives [X;,X2,] =1, which proves
(i),

Let Z be the basis of 7~ given in (4B), so that by (3B) the matrix
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form of ¥ with respect to this basis is E. Taking into account (4G) (iii),
we have in particular that

(4. 9) Blay(a) = 1

= QR O %

Thus

[xl(ﬁ)n‘é” w ()] = 2 (— af)'z,(f(a, B)),

where f is a function from F,xF, into F,. As in the proof of (4F), we
find that f(a,p) = e for some 7 in F,. Setting x = 2,(2)", y=2,0)",
z = u,(a) in (4. 8) and comparing the coeflicients in z,, we find that

ar(pe + v)? = arp? + alv?,

so that ¥ =0. This proves (i).
By (4. 9) and (4B) we have that

(4. 10) [-o(B), @ (@)] = aoy(— @*B)",(f (e, B))".
-1(9(a, B))"ay(h(a, §)),

where f, g, k are functions from F,xF, into F,. If we conjugate this
relation by 7%;(A)h,(z#) and compare coefficients, we find that

Sflaa™?p, B3p™?) = 2p~ f(a, B)
(4. 11) glaa™2p, B2%p~%) = 27'g(a, §)
h(ad™2p, B3p?) = pih(a, B).

Setting 2 =%, g =1° and then p = 2* successively in each of the equations
of (4. 11) shows that

fla,p) =Tap, gla,f) =da’p, hla,p) = eca’,

where 7, 4, ¢ are elements in F,.
To evaluate ¢, we set x=2_,(p)", ¥y = 2_,(v)", z=uax,(a) In (4. 8), and
compare coefficients in »,. This gives

ea’(p + v)? = eadp? + eadv? — adpy,

so that 2¢=—1, and e¢=1. Now (4. 10) implies that X7, normalizes
U=XX1"X1,X!X,, a group which already admits w}. Since X2, and o}
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normalize U, = X2,X2}X,, it follows that L} is represented on U/U,. As in
the proofs of (3A) and (4A) we have then

[2-5(B)", a(e)]= xl(-—aﬁ”)”2 (mod UO),

where p is a field automorphism of F,. Thus —ap’ =7ap, and so 7 = —1.
Finally, to evaluate 3, we set x=uax(n), ¥y =), 2=2,(8)" in (4 8), take
into account (4G) (i), and compare coefficients in z_,. This gives.

— 0B + v)* = —appt — 3BV — Py,
so that 26 =1 and 6 = —1. This completes the proof.

(4H) The following commutator relations hold in case (C).
(1) LB, w(@)] = 25(— ap— af— ap)”
(i) [0, 2(@)] = a-s(aB + aP)'a-o(— @aap — aaf — aaf)™
wy(— apf — afp — app)
(111) [2-2(B)", @i(e)] = xl(aﬁ)ﬂzx—l(a&.@)ﬂx—z(‘ ad&ﬁ)nzxz(adaﬁz)

(iv) [X2, X,]=1.
In particular, P= X,M has a unique multiplication table.

Proof. [5] (7C) implies that [X;, X2{]1< X,, so the argument given for
(4F) (iv) 1s also valid for (4H) (iv). (i) follows from (4.5). Now (4C),
(1. 4), (1.6) imply that modulo X,

[, (1)7”, 2(@)] =2 (@ + @)—p(— @& — da — aa)”
(4. 12) [,(0)7", (@)1= w-y(@f + @0)'2-s(— @@ — aad — acd)”

(5,627, 2(a)] = x_(af? + ad%) "%_y(— @aad® — aal® — aab?)™.
An element g in F, can be expressed in the form g = b, + 5,0 -+ b,6%, where
boy by, by are elements in F,. Using (4. 12) and (4. 8) twice, we find that

(4. 13) [x,(8), #,(e)] = a-,(@f + aB)'x-o(— @aB — aaf — aaf)™.
5(f (e, B)),
where f is a function from FpXxF,s into F,. A similar argument shows
that
(4. 14) [2_o(B)", :(@)] = x(aB)"2- (@@ B) 2_o(— a@af)™.
,(g(et, B)),
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where g is a function from FpxF, into F,.  Conjugating (4. 13) by wy?
then gives

=

[xx(_'ﬁ)y x1(a)']2] = x—l(dﬁ"' C:Y.g)”xz(—d&.@ - &“B— a&ﬁ .
@_o(—f(a, P)).

If we interchange « and g in this and compare the result with (4. 13), we
find that

Sla,p) = — algﬁ_ &ﬁ:ﬁ — app,
which proves (ii). If we conjugate (4. 14) by & (2)he(r), where 2 is in Fp
and g is in F,, and compare the coefficients in z,, we find that

(4. 15) 9laa 2y, B22°+ 9+ p™2) = pg(a, f).

Setting 2=y, g =1 in (4. 15), where v is in F,, shows that g(a, ) = g(a, 1)
To evaluate g(a,1), we set z = z_,(p)", ¥ = 2_,(v)’, 2z =x(a) in (4. 8). Using
(4D) and (4E) in comparing the coefficients in x,, we find that

g(a,1) (1 + v)? = gla, D) pe® + gla, 1)v? + 2a@ap.
Thus g(e,1) = aaa and g(a, f) = aaag?, which proves (iii).

5. The results of §§3, 4 and [5] §6 now imply that G has a unique
multiplication table. Now it is not difficult to verify from the presentation
of the groups G,(g) and Di(g) in [2], [8] that these groups satisfy the condi-
tions (%), (#x), (#xx) of §2. Indeed, for G,(g) the required calculations can
be found in [11], and the verification for Di(q) can be done along similar
lines. In the case of G,(g), ¢; = ¢, = ¢; in the case of Di¢g), ¢ =¢% ¢ =q.
Since |G|=]G,(g)] in cases (A) and (B), and |G|=|D%(g)| in case (C), we
have the following result.

(5A) In cases (A) and (B) the subgroup G is isomorphic to Gy(q). In case

(C) G s isomorphic to D3(q).

(5B)  Suppose G>G.  Then there exists a subgroup V of G of odd order
such that G =V +C(i), where i is any involution in G. In particular,

Vi=1G:CiHIVNCHI.

Proof. By [6], Chapter 9, Theorem 2.1, there exists a subgroup V of
odd order such that G = VC(j). Now G has only one class of involutions,
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so that G = VC(i) for any involution i in G. This is enough to complete
the proof. We note that if

¢ =[VnCQl,

then ¢ does not depend on the choice of i. We have |V]| = q'(¢' + ¢* + 1)c
in cases (A) and (B), |V|= ¢*¢®*+ ¢*+ 1)c in case (C).

(5C) Suppose G>G, and set Y = HL.M, D=VnY’, where gcG. If =
is the set of odd primes dividing ¢ —1, and D, is an S,-subgroup of D, then
D, < (H,L)* for some k in G.

Proof. We first note that D is solvable, this being a direct consequence
of the structure of ¥ and the oddness of |D|. Thus D, exists, and we have

D, =~ D.M°IM° < (H,L,M)°'|M° = (H,L,)’,

the last group being the central product of L, and the cyclic subgroup H,’
of order g—1. Let z,, 7, be the set of odd primes dividing ¢ —1, ¢ +1
respectively, so that z = r,Un,.  Since H,L, <Y, it follows that Y contains
an abelian S, -subgroup and a cyclic S,,-subgroup. If D, is a r,-group, then
D, < (H,L,)’* for some % in Y’ by a theorem of Wielandt [14]. Since g and
h are in G, the result follows. If D, is not a z-group, then Dy=D,N(L,M)’
must be a non-trivial normal S,,-subgroup of D,. We have D,< L,/ for
some k in Y’ by the theorem of Wielandt. Let E’* be the normalizer of
D, in L,*; E°" is then a dihedral group of order 2(q; +1). Since (H,L,M)’
and M’ are normal subgroups of Y7 and keY?, it follows that

D, < (H,L,M)"*N N(D,) < (H,L,M)"* N N(D,M°") = (H,EM)"".

But H,EM has an abelian S,-subgroup, so by a third application of the
theorem of Wielandt, D, < (H,L,)’** for some { in (HLbEM)™. Since g, h, i
are in G, (5C) follows.

(5D) G =0.

Proof. Suppose otherwise. We consider first cases (A) and (B). Let
geG, D=vnY? and d=|D|. The number of elements in the complex
VY? is

WVIHYl _ qYg*+ @+ De(®—1)(g—1)¢° _ 5 ¢ _ —1) . d'¢
6.1 Apay = g = ¢ —Ng— 1~

a number which cannot exceed |G|= ¢%(¢* —1)(¢*—1). Let d =d,d, and
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¢ = c.c, be the factorizations of 4 and ¢ into their z- and p-factors, = being
as before the set of odd primes dividing ¢°—1. By (5C) 4. divides ¢,, so
that necessarily d, > ¢’c,.

Suppose ¢, #1, so that d,> ¢ Since M’ is a normal subgroup of Y’
of index ¢ in every S,-subgroup of Y7, it follows that |VNM’] > 4% But
(X2,X73X,)’ has index ¢* in M?, and so VN(X%,X2}X,)’1. In particular,
by taking g =1 and ¢ = w,7?, we find that

VNXnX21%2X, +1, VNX3X2iX, + 1,

and since the subgroup X7:X, admits <X,, X_,)>” = L3, it follows by a theorem
of Dickson, [6], Chapter 2, Theorem 8. 4, and the oddness of |V]| that

(5. 2) VNnX21X,+1.
By taking ¢ =0y and g =1, we find that
VNnX3t XX, +1, VNX2:X2LX,+1,

and since the subgroup X7,X, admits (X,, X_,»" = L}?, it follows as before
that

(5. 3) VnXnX, +1

(5. 2), (5.3), and (4D) then imply that VnX,+ 1. The entire argument
repeated with Y replaced by Y yields VNX_,# 1. This is a contradiction
by the theorem of Dickson and the oddness of |V]|, and thus ¢, = 1.

An S,-subgroup of V then has order ¢!, and no non-trivial p-element
in V centralizes an involution of G. Thus P= X,M contains a subgroup S
of order ¢* such that no non-trivial element in S centralizes an involution
in G. If |SNM|> ¢, then SN(X_;X_,)”#+ 1 since (X_,X_,)’ has index ¢* in
M, and this is impossible. Thus |SNM|=¢% Suppose case (A) holds.
Using (4A), (1. 1), the existence of elements in S— M, and the relation
SNM= X7,X2:X,, we can find elements s, ¢ in SN(X2X, — X,),SN (X2, X72X,
— X13X,) respectively. Then (4D), (4F) (iv), and the existence of s imply
that no element of S, when expressed as a product of elements from each
of the root subgroups of P, can involve a factor zZ,(a) with e+ 0. But
then (4E) and the existence of ¢ imply that SNM < X7,X2}X;, which is
impossible. Suppose case (B) holds. Using (4B), (4. 9), the existence of
elements in S — M, and the relation SNM # X7°X7,X,, we can find an ele-
ment s in SN(X73X7°X2,X, — X71?X7,X,). (4D), (4E) then imply thet SN M
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< X73X7°X1,X,, so that SN(X,X_,)” #+ 1, which is impossible. Thus (5D)
follows in cases (A) and (B).

Consider now the case (C). Let gG, D=VnY’ and d = |D|. The
number of elements in the complex VY7’ is

WYL ¢*(g* + ¢ + De(g® — 1) (g — 1)g™
vnY?| d
(5. 4)

— 12(,8 4 41) (gf — -1 g’c
¢4 +¢'+ (" = Dg—1)

a number which cannot exceed |G| = ¢"%(¢® + ¢* + 1) (¢ — 1) (¢* —1). Again,
if z is the set of odd primes dividing ¢*—1 and d = d.d,, ¢ = c.c,, then
d,>q'c, by (5C). Suppose first that ¢, +1, so that d,>¢’. Since M’ is
a normal subgroup of Y’ of index ¢* in every S,-subgroup of Y, it follows
that [VnM’|>¢'. If VnX,’ =1, then VNM’ is necessarily abelian by (4D),
(4E). But (4D), (4E) also show that 7 = M‘/X,’ is a symplectic space of
dimension 8 over F, the inner product being the commutator. Since
VNnX,’ =1, the image of VNM’ in 7’ is a subgroup of order greater than
q', such that any two vectors in (VN M’)X,’/X," are orthogonal. This is
impossible, and thus VNX,’+1. Taking g=1 and g= 0, we find that
VnX,+1, VNnX.,#1, which is impossible. Hence ¢, =1, and P then con-
tains a subgroup S of order ¢* such that no non-trivial element in S
centralizes an involution in G. If [SNM|>¢% then SN(X_,X_,)’+# 1 since
(X_;X_,)" has index ¢* in M, which is impossible. Thus |SNM|=¢. Since
SNX, =1, it follows that SNM is abelian, but as before, this leads to a
contradiction. Thus G = G in all cases.

6. As a consequence of the work in the preceding sections, it now
follows that the theorem stated in the introduction holds if

(#%x) |G| is divisible by (g,q.)%

As remarked in §2, (s+#*) can only fail to hold in case ¢ = ¢ <11. Thus
we shall assume that ¢, = g, = ¢ throughout this section, and indicate how
() can be seen to hold even if g<11. We may moreover assume that
g >5 since the case ¢ =3 has been done by Janko [7].

Let {a,f8} = {1,2}, and set K; = O(C(X;)). Since K,/X, is inverted by
j and so is abelian, K, has a unique S,-subgroup M,  If ¢¢® does not
divide |G|, then one and only one of the following cases occurs by [5] (4E).
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(I) M;=X;
A0 1MylX;] = ¢*

(6A)  Suppose q° does not divide |G|. If (1) holds for the index 8, then
X, X, ts an S,-subgroup of C(u) for every u+1 in X,

Proof. Let N=O(C(u)), so that by [5] (3C), we have C(u)= L.N,
L.NN=1, and X; < N. Let S be an S,-subgroup of C(x) containing X,X,.
SN N is then an S,-subgroup of N containing X,. If SNN> X, then there
exists a subgroup R such that X;<]R< SNN. Since <X,,R> < S, it follows
that <X,,R) is a p-group of order exceeding ¢* which normalizes X;. But
N(X;) = HL.K; by [5] (3B), so that XX, is an S,-subgroup of N(X,;). This
is a contradiction and so SNN = X;, which then proves (6A).

(6B)  Suppose q° does not divide |G|. If (I) holds for both indices o and
B, then XX, is an S,-subgroup of G.

Proof. Suppose not, and let S be a p-subgroup of G with X,X, <]S.
Under the action of H, (X, X,)*= X, X, — {1} is partitioned into four orbits:

X#, X#, Oy On.

Let z+1 be chosen in Z(S)NX,X,; by (6A) we may assume that z=0,.
Since X, X, is an S,-subgroup of N(X;) and N(X,), no element in S— XX,
normalizes X; or X,. By (6A) no element in X#UX,* is fused in G to an
element of O,. Thus it follows that some element in X# is fused to an
element in X,*. In particular, we have by [5] (3C) that the S,-subgroups
of L, and L, are conjugate in G. But then these S,-subgroups would be
conjugate in C(j), which is a contradiction.

(6C)  Suppose q° does not divide |G|. If (1) holds for the index B, then
Ry = X, M, is an S,-subgroup of G and Z(R;) = X5~ Moreover, (1) holds for the
index a.

Proof. The 4-subgroup D normalizes R;, and o, interchanges M;nC(j,)
and M;NC(j,). Thus by the Brauer-Wielandt Theorem, we have that

M;NC(G) = Xy, IM;0C3GHY] = IM;nC0HI = g
Moreover, [5] (4B) implies that

M;NC(J7) < (XoX,), MyNC(7) < (X.X0)",
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where @, c {1, —1}, and b, d= {2, —2}. Since M,NC(j,) and M,NC(j,)
admit H, and ¢>3, it follows by [5] (4C) that

M,nC(j,) = X7 or X3, M;nC(j,) = X3 or X732

Taking into account that o, interchanges M,NC(j;) and M,NC(j;), we see
that one of the following cases must occur:

1) M, =X,X7,X*
@ M,=X,X1X12
3) M, =X,X1X7*
@) M, =X, X1,X1}

Suppose (1) holds. For any o in N(H), we note that R;,NR; admits
D. Applying the Brauer-Wielandt Theorem with o = w.0, we find that

(6. 1) R;,NR; = X2, X7* for o = w.00.

Since M,/X, is abelian, (6. 1) implies that

(6. 2) X%, X?*1< X,NnX2, X' =1,

so that M, is abelian. Conjugating (6. 2) by wg* gives [XZ,, X.] =1, which
implies that X7, < Z(R,). In particular, Rj"=X7,X}X.X7? is contained as an
S,-subgroup in C(X,) = L;K,, and so R3” > M,. Since X7 < Z(R3*), it fol-
lows that X3 induces trivial automorphisms on M,/X,, so that X} < M..
Conjugating this last relation by w, yields X7} < M, so in particular,
X75 < Ry=", and X3 < R;, which is a contradiction. Thus case (1) cannot
occur, and a similar argument excludes case (2) as well.

Suppose (3) holds. X, X}, X3® are permuted transitively by 5, so that
n normalizes M,. Since X, < Z(M,), it follows that M, is abelian. Now
M; can be considered as a representation space for L, over F,.  Since
[Ley,X:]=1 and j inverts Xj;X}", the representations of L, on X; and M;/X,
are in different p-blocks. Thus M, is a completely reducible L,-module.
In particular, T=C(X.) N M, has order .. Now T admits H, and TnC(j)=X,.
Applying the Brauer-Wielandt Theorem and [5] (4B), (4C), we can deduce
that

T=XX}, i=1or 2
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Thus X' < C(X,) = L,K.. If X}’ < M,, then case (1) or (2) would hold for
M., which we have just seen to be impossible. Thus X} %< K,, and since
X} and K, both admit H, this implies that X}'nK,=1. But now X}'
centralizes X,, and L,K,/K, is isomorphic to SL(2,q). Thus X}'K, = X;K,,
which is impossible since X,K,NC(j) = X,X,, while X}'K,nC(j) = X,.  Case
(8) then does not occur.

Suppose finally that (4) holds. If [X7;, X23]1=1, then conjugating this
relation by w; gives [X;, X31=1. Thus L} = (X;, X_»»" < C(X,), which is
impossible since j, inverts X;, Hence [XZ, X231+ 1, and since X7, and
X7 admit H, we find that [X7,, X23]=X,. A similar type of argument
shows that Z(M,) = X;. Thus Z(R,) = X,, so in particular, N(R;) < N(X,),
which is enough to show that R, is an S,-subgroup of G. If (II) holds
for the index @, then X, and X, would necessarily be conjugate in G,
which we showed to be impossible in the proof of (6B). This completes the
proof.

(6D) If |G| is not divisible by q° then XX, is an S,-subgroup of G.

Proof. {j> is an S,-subgroup of C(X,X,,j), so by [5] (2B) <j> is also an
S,-subgroup of C(X,X,). In particular, C(X,X,) has a normal 2-complement
T, and the Frattini argument gives

NXX,) = (N(X:X,) N C() - C(X,Xo).

Since N(X,X,)nC(j) = X, X,H, it follows that N(X,X;) = TH. If XX, is not
an S,-subgroup of G, then XX, is not an S,-subgroup of 7.  Since
T < C(X,X,), this is impossible by (6A) and (6C).

(6E) If q=5 or 7, then ¢° divides |G].

Proof. We use the notation of [5], §5. Since ¢g=5 or 7, it follows
that g+ e¢=6, so that |[V]=9. If ¢ centralizes V,, where a =1 or 2,
then X = C(V.)/V, satisfies the conditions of [5] (3E). In particular, ¢* divides
|Gl, and so ¢° divides |G| by (6D). We may assume then that { does
not centralize V, or V,. ¢ must then fix exactly 3 elements in V, none of
which belong to V#UV,2#.  The remaining 6 elements of V thus lie in orbits
of length 3 under the action of &, and a generator v, of V, is necessarily
fused to a generator v, of V,. Since <ay,b;,n> and <a, b,, n> are S,-subgroups
of C(V,) and C(V,) respectively, these 2-groups are then conjugate in G. But
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then they would be conjugate in C(j), which is impossible. This completes
the proof of (6E).

(6F) If q=19 or 11, then ¢¢ divides |G|.

Proof. We shall only outline the proof, since the calculations involved
are lengthy. Suppose (6F) fails to hold for ¢=9. If & is the set of all
elements of C(j) which are roots of j, 3-singular elements, or 5-elements in
L, or L,, then it is not difficult to show using (6D) and [5] (3E) that &
is a union of classes of C(j) which are special in the sense of [9l. Moreover,
C(j) = C*(g) for every g in &, where C*(g) is the extended centralizer of g
in G. C(j) has an irreducible character § of degree 81 such that 1—¢
vanishes on the elements of C(j) — L,L, not in &. C(j) also has 8 irredu-
cible characters 5;, 1< i <8, of degree 80 such that 1 — @+ &, vanishes on
the elements of C(j) not in <. Decomposing the induced characters
(1—6+ 5,)* and applying the Suzuki order formula [9], we find

— old4,q8,E53, _x(x'i‘@L
|G| = 2".38.5%. 412 @—10))

where ¢ = +1, x is an irreducible character of G, x=1x(1), and 2, 2+
are divisors of |G]. In particular, z—x(j) divides 27.3*.5.41.  Since
|C(j)| = (720)?, it follows that only a limited number of possibilities arise for
|G|, all of which turn out to be impossible.

If ¢g=11, then ¢g=3 (mod 8). Now whenever g=+3 (mod 8), an
S,-subgroup S of G has order 64. The fusion of 2-elements in G then is
that designated as case I in [1]. By methods similar to those in [1], and
indeed, using [1] (4. 1), (4. 2), we can write down all possible decomposition
numbers for the principal 2-block of G. Up to this point, only the structure
of S need be assumed known. If in addition we use the fact that C(j) is
known, we can obtain the order formula

— 42 — 1)3( 2 2 x(x'i'l)
1G] = q'q* — 1%¢* + 1)* ey

where |x| is the degree of an irreducible character of G. Moreover, z+¢?
divides ¢*(g* —1) (¢* + 1), 2=27¢* %+ 20¢ — 16 (mod 64), and (z + ¢%)*—4x(¢g*+1)?
is a square. In particular, for ¢ =11, the limited number of possibilities

which arise for |G| turn out to be impossible except for the one case where
¢® divides |G]|.
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