A CHARACTERIZATION OF THE FINITE SIMPLE GROUPS PSp(4,q), $\mathbf{G}_{2}(\mathbf{q}), \mathbf{D}_{\mathbf{4}}^{2}(\mathbf{q})$, II

PAUL FONG ${ }^{1)}$

Our object in this paper is to prove the following result.
Theorem. Let G be a finite group satisfying the following conditions:
(*) G has subgroups L_{1}, L_{2} such that $L_{1} \simeq S L\left(2, q_{1}\right), L_{2} \simeq S L\left(2, q_{2}\right),\left[L_{1}, L_{2}\right]=1$, $L_{1} \cap L_{2}=\langle j\rangle$, where j is an involution, and $\left|C(j): L_{1} L_{2}\right|=2$.
(**) $C(j)=L_{1} L_{2}\langle n\rangle$, where $n^{2}=1, L_{1}^{n}=L_{1}, L_{2}^{n}=L_{2}$.
Then $G=C(j) O(G)$, or G is isomorphic to one of the simple groups $G_{2}(q)$ or $D_{4}^{2}(q)$, where $q=\min \left\{q_{1}, q_{2}\right\}$.

The groups $G_{2}(q)$ are the simple groups of order $q^{6}\left(q^{6}-1\right)\left(q^{2}-1\right)$ discovered by Dickson [3], [4] in the 1900's. The groups $D_{4}^{2}(q)$ are the simple groups of order $q^{12}\left(q^{6}-1\right)\left(q^{2}-1\right)\left(q^{8}+q^{4}+1\right)$ discovered by Steinberg and Tits [8], [13] in the 1950's. These groups, for q odd, thus take their place among those finite simple groups which can be characterized by the structure of the centralizer of an involution.

Some remarks on the theorem and its proof may be appropriate at this point. Condition ($* *$) can be dropped if G is assumed to be not isomorphic with $\operatorname{PSp}(4, q)$, where $q=\min \left\{q_{1}, q_{2}\right\}$. This is a consequence of [5] (2A) and [15]. Moreover, [5] (7I) implies that either q_{1} and q_{2} are equal, or one is the cube of the other, these being in fact the values of the parameters q_{1}, q_{2} in case G is $G_{2}(q)$ or $D_{4}^{2}(q)$. If $\left(q_{1} q_{2}\right)^{3}$ is assumed to divide $|G|$, then it is fairly straightforward to construct a subgroup \tilde{G} of G which is isomorphic to $G_{2}(q)$ or $D_{4}^{2}(q)$. This is accomplished by presenting \tilde{G} as a group with a (B, N)-pair in the sense of Tits [12] and imposing a unique multiplication table on B and on N, and hence on \widetilde{G}. \widetilde{G} can then be

[^0]shown to be equal to G. That $\left(q_{1} q_{2}\right)^{3}$ does in fact divide $|G|$ follows from [5], §§5-7 except possibly in the cases $q_{1}=q_{2} \leqslant 11$. These cases are in fact non-exceptional, so that the theorem does hold without any conditions on q_{1} and q_{2} other than those imposed by (*).

The group $G_{2}(3)$ has been characterized by Janko [7] in terms of the centralizer of an involution. $G_{2}(3)$ has also been characterized in quite different terms by Thompson [11], and a characterization of the groups $G_{2}\left(3^{n}\right)$ by Gorenstein is along lines of this latter characterization. Also, the groups $G_{2}\left(2^{n}\right)$ have recently been characterized by Thomas [10] in terms of the centralizer of an involution.

The author wishes to thank the National Science Foundation and the British Research Council for their support of this research, a part of which was done at the University of Warwick Symposium on Group Theory, 19661967.

1. We begin with some remarks on representations of $L=S L(2, q)$, where q is a power of an odd prime p.
(I) Let Γ be the natural representation of L as 2×2 matrices over F_{q}, \mathscr{V} the underlying space of Γ, and $\mathscr{B}=\left\{v_{1}, v_{2}\right\}$ an ordered basis for \mathscr{V} such that an element in L is represented by itself with respect to \mathscr{B}. Thus if $a=\left(\alpha_{i j}\right) \in L$, then

$$
a: v_{i} \longrightarrow \alpha_{i 1} v_{1}+\alpha_{i 2} v_{2}, \quad i=1,2 .
$$

Let $\mathscr{L}_{1}, \mathscr{L}_{2}$ be the subspaces of \mathscr{V} generated by v_{1}, v_{2} respectively. Clearly \mathscr{L}_{1} and \mathscr{L}_{2} admit the subgroup

$$
H=\left\{h(\alpha)=\left(\begin{array}{ll}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right), \alpha \neq 0 \text { in } F_{q}\right\} .
$$

If $q>3$, then any 1 -dimensional subspace \mathscr{L} of \mathscr{V} admitting H must be \mathscr{L}_{1} or \mathscr{L}_{2}, and these two lines can be distinguished by the relations (in the semidirect product $\mathscr{\mathscr { }} L$)

$$
\left[\mathscr{L}_{1}, X\right]=\mathscr{L}_{2},\left[\mathscr{L}_{2}, X\right]=1
$$

where X is the subgroup

$$
X=\left\{x(\alpha)=\left(\begin{array}{cc}
1 & \alpha \\
& 1
\end{array}\right), \alpha \text { in } F_{q}\right\} .
$$

If $q=3$, then every 1 -dimensional subspace \mathscr{L} of \mathscr{V} admits H. Of the 4
lines in \mathscr{V}, only \mathscr{L}_{2} admits X. Since $\mathscr{L}_{1}=\mathscr{L}_{2}^{\omega}$, where $\omega=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right), \mathscr{L}_{1}$ and \mathscr{L}_{2} are distinguished again by the action of L on \mathscr{V}.
(II) $\quad \Gamma$ induces a representation on the space $\mathscr{V}^{(3)}$ of cubic homogeneous forms. If $\mathscr{B}^{(3)}$ is the ordered basis $\left\{v_{1}{ }^{3}, v_{1}{ }^{2} v_{2}, v_{1} v_{2}{ }^{2}, v_{2}{ }^{3}\right\}$ for $\mathscr{Y}^{(3)}$, then the elements $h(\alpha), x(\alpha), \omega$ in L are represented with respect to $\mathscr{B}^{(3)}$ respectively by the matrices

$$
\left(\begin{array}{lll}
\alpha^{3} & & \tag{1.1}\\
& \alpha & \\
& & \alpha^{-1} \\
& & \\
& \alpha^{-3}
\end{array}\right),\left(\begin{array}{cccc}
1 & 3 \alpha & 3 \alpha^{2} & \alpha^{3} \\
& 1 & 2 \alpha & \alpha^{2} \\
& & 1 & \alpha \\
& & & 1
\end{array}\right),\left(\begin{array}{ll}
& \\
\mathbf{L}^{-1}
\end{array}\right) .
$$

We shall denote this matrix form of the representation by $\Gamma^{(3)}$. Let \mathscr{L}_{1}, $\mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$, be the 1-dimensional subspaces of $\mathscr{V}^{(3)}$ generated by the vectors in $\mathscr{B}^{(3)}$ respectively. By (1.1) the four lines in the set $\left\{\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}\right\}$ are ordered by the action of X and ω on $\mathscr{V}^{(3)}$. Suppose \mathscr{L} is a 1-dimensional subspace of $\mathscr{V}^{(3)}$ admitting H, and u is a non-zero vector in \mathscr{L}. If $\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right)$ are the coordinates of u with respect to $\mathscr{B}^{(3)}$, then for any $\alpha \neq 0$ in F_{q}, there exists $\lambda_{\alpha} \neq 0$ in F_{q} such that

$$
\left(\alpha^{3} \mu_{1}, \alpha \mu_{2}, \alpha^{-1} \mu_{3}, \alpha^{-3} \mu_{4}\right)=\lambda_{\alpha}\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right) .
$$

From this it readily follows that one of the following cases occurs:
(i) $\mathscr{L}=\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$
(ii) $q=3$ or 7 , and $\mathscr{L} \subseteq\left\langle\mathscr{L}_{1}, \mathscr{L}_{4}\right\rangle$
(iii) $q=3$ or 5 , and $\mathscr{L} \subseteq\left\langle\mathscr{L}_{1}, \mathscr{L}_{3}\right\rangle$ or $\left\langle\mathscr{L}_{2}, \mathscr{L}_{4}\right\rangle$
(iv) $q=3$, and $\mathscr{L} \subseteq\left\langle\mathscr{L}_{1}, \mathscr{L}_{2}\right\rangle,\left\langle\mathscr{L}_{2}, \mathscr{L}_{3}\right\rangle$, or $\left\langle\mathscr{L}_{3}, \mathscr{L}_{4}\right\rangle$.

Since $\Gamma^{(3)}$ is reducible if the characteristic of F_{q} is 3 and we will be concerned with $\Gamma^{(3)}$ only if it is irreducible, we restrict our remarks to the case $q \neq 3$. In (ii) among the 8 lines in $\left\langle\mathscr{L}_{1}, \mathscr{L}_{4}\right\rangle$, only \mathscr{L}_{4} centralizes X, and then $\mathscr{L}_{1}=\mathscr{L}_{4}^{\omega}$. In (iii) we have by (1.1) that among the 12 lines in $\left\langle\mathscr{L}_{1}, \mathscr{L}_{3}\right\rangle$ and $\left\langle\mathscr{L}_{2}, \mathscr{L}_{4}\right\rangle$, only \mathscr{L}_{4} centralizes X, and only \mathscr{L}_{3} and \mathscr{L}_{4} centralizes X modulo \mathscr{L}_{4}. Then $\mathscr{L}_{2}=\mathscr{L}_{3}^{\omega}, \mathscr{L}_{1}=\mathscr{L}_{4}{ }^{\text {a }}$. Thus in cases (i), (ii), (iii) for $q \neq 3$, the lines $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ are distinguished by the action of L on $\mathscr{V}^{(3)}$.
(III) Suppose Δ is the direct sum of Γ and $\Gamma^{\prime}=\Gamma^{\rho}$, where ρ is the representation of L obtained by applying the field automorphism ρ of F_{q} to the matrix coefficients of Γ. If \mathscr{V}^{\prime} and \mathscr{B}^{\prime} have the same meaning for
Γ^{\prime} that \mathscr{V} and \mathscr{B} have for Γ, then we make take $\mathscr{V}^{\prime} \oplus \mathscr{V}$ as the underlying space for Δ, and $\mathscr{B} \mathscr{B}^{\prime} \cup \mathscr{B}$ as an ordered basis for this space. Let $\mathscr{L}_{1}, \mathscr{L}_{2} \mathscr{L}_{3}, \mathscr{L}_{4}$ be the 1-dimensional subspaces spanned by the vectors in $\mathscr{B}^{\prime} \cup \mathscr{B}$ respectively. Of the four lines in $\left\{\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}\right\}$, only \mathscr{L}_{2} and \mathscr{L}_{1} centralize X, and indeed, the set of vectors fixed under X is $\left\langle\mathscr{L}_{2}, \mathscr{L}_{4}\right\rangle$. Then $\mathscr{L}_{1}=\mathscr{L}_{2}^{\omega}, \mathscr{L}_{3}=\mathscr{L}_{4}^{\omega}$. Suppose \mathscr{L} is a 1-dimensional subspace of $\mathscr{V}^{\prime} \oplus \mathscr{V}$ admitting H. As in (II) we readily see that one of the following cases occurs:
(i) $\mathscr{L}=\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$
(ii) ρ is the identity automorphism, and $\mathscr{L} \subseteq\left\langle\mathscr{L}_{1}, \mathscr{L}_{3}\right\rangle$ or $\left\langle\mathscr{L}_{2}, \mathscr{L}_{4}\right\rangle$
(iii) $q=3$, and \mathscr{L} is arbitrary.

In (ii) $\mathscr{L} \subseteq\left\langle\mathscr{L}_{2}, \mathscr{L}_{1}\right\rangle$ if and only if $[\mathscr{L}, X]=1$. Let u be a non-zero vector in \mathscr{L}, and set $u_{1}=u, u_{2}=u^{\omega}$ if $\mathscr{L} \subseteq\left\langle\mathscr{L}_{1}, \mathscr{L}_{3}\right\rangle$, and $u_{1}=-u^{\omega}$, $u_{2}=u$ if $\mathscr{L} \subseteq\left\langle\mathscr{L}_{2}, \mathscr{L}_{4}\right\rangle$. Then u_{1}, u_{2} span a subspace \mathscr{U} admitting L, and with respect to this basis, L is represented on \mathscr{U} by Γ. Since one of the sums $\mathscr{V}^{\prime}+\mathscr{U}, \mathscr{V}+\mathscr{U}$ is direct, we may assume after a change of notation that (i) in fact holds. We note that in (iii) the same assumption can be made if we know that $\mathscr{L} \subseteq\left\langle\mathscr{L}_{1}, \mathscr{L}_{3}\right\rangle$ or $\left\langle\mathscr{L}_{2}, \mathscr{L}_{1}\right\rangle$, and this is the case if and only if $\left[\mathscr{L}, X^{\omega}\right]=1$ or $[\mathscr{L}, X]=1$.
(IV) Suppose E is an indecomposable representation of L such that

$$
E(g)=\left(\begin{array}{cc}
\Gamma^{\prime}(g) & * \tag{1.2}\\
0 & \Gamma(g)
\end{array}\right)
$$

where Γ and Γ^{\prime} are as in (III). Since p does not divide the order of $\langle H, \omega\rangle$, we may assume $*$ in (1.2) vanishes for g in $\langle H, \omega\rangle$. Let $\mathscr{B}^{\prime}, \mathscr{B}$ be the ordered bases for Γ^{\prime}, Γ; we may assume with abuse of notation that $\mathscr{B}^{\prime} \cup \mathscr{B}$ is a basis for the underlying space of E giving the matrix form (1.2). Let $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ be the 1-dimensional subspaces spanned respectively by the vectors in $\mathscr{B}^{\prime} \cup \mathscr{B}$. Since E is indecomposable, it has a unique proper subrepresentation. In particular, the subset $\left\{\mathscr{L}_{3}, \mathscr{L}_{4}\right\}$ is distinguished among all 2 -element subsets of $\left\{\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{1}\right\}$ in that $\left\langle\mathscr{L}_{3}, \mathscr{L}_{4}\right\rangle$ admits L. We can then conclude as in (I) that the lines $\mathscr{L}_{1}, \mathscr{L}_{2}$, $\mathscr{L}_{3}, \mathscr{L}_{4}$ in $\left\{\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}\right\}$ are distinguished by the action of L. Suppose \mathscr{L} is a 1-dimensional subspace admitting H. One of the cases (i), (ii),
(iii) of (III) must then hold. In (ii) and (iii) we note that if $[\mathscr{L}, X]=1$, then $\mathscr{L} \subseteq\left\langle\mathscr{L}_{2}, \mathscr{L}_{4}\right\rangle$. Moreover, if $[\mathscr{L}, X]=1$ and $\left\langle\mathscr{L}^{\omega}, \mathscr{L}\right\rangle$ admits L, then $\left\langle\mathscr{L}^{\mathrm{u}}, \mathscr{L}\right\rangle=\left\langle\mathscr{L}_{3}, \mathscr{L}_{4}\right\rangle$, and we may then conclude that $\mathscr{L}=\mathscr{L}_{4}$, $\mathscr{L}^{\omega}=\mathscr{L}_{3}$. Similarly, if $[\mathscr{L}, X] \equiv 1\left(\bmod \left\langle\mathscr{L}_{3}, \mathscr{L}_{4}\right\rangle\right)$ and $\mathscr{L} \ddagger\left\langle\mathscr{L}_{3}, \mathscr{L}_{4}\right\rangle$, then $\mathscr{L}=\mathscr{L}_{2}, \mathscr{L}^{\omega}=\mathscr{L}_{1}$.
(V) If $q=q_{0}{ }^{3}$, let $\bar{\alpha}=\alpha^{q_{0}}$ for α in F_{q}, so that $\alpha \longrightarrow \bar{\alpha}$ is an automorphism of order 3 of F_{q} with fixed field $F_{q_{0}}$. Let $\overline{\mathscr{V}}, \overline{\mathscr{V}}$ and $\overline{\mathscr{B}}, \overline{\mathscr{B}}$ have the meaning for $\bar{\Gamma}, \bar{\Gamma}$ that \mathscr{V} and \mathscr{B} have for Γ, and let $\Gamma \times \bar{\Gamma} \times \overline{\bar{\Gamma}}$ be the representation of L induced on $V \times \bar{V} \times \overline{\bar{V}}$. The set $B^{[3]}$ of vectors

$$
\begin{array}{ll}
w_{1}=v_{1} \times \bar{v}_{1} \times \bar{v}_{1} & w_{5}=v_{1} \times \bar{v}_{2} \times \bar{v}_{2} \\
w_{2}=v_{2} \times \bar{v}_{1} \times \bar{v}_{1} & w_{6}=v_{2} \times \bar{v}_{1} \times \bar{v}_{2} \\
w_{3}=v_{1} \times \bar{v}_{2} \times \overline{\bar{v}}_{1} & w_{7}=v_{2} \times \bar{v}_{2} \times \overline{\bar{v}}_{1} \\
w_{4}=v_{1} \times \bar{v}_{1} \times \overline{\bar{v}}_{2} & w_{8}=v_{2} \times \bar{v}_{2} \times \bar{v}_{2}
\end{array}
$$

is then a basis for the underlying space $V^{[3]}=V \times \bar{V} \times \overline{\bar{V}}$. It is easily checked that with respect to this basis, $h(\alpha)$ is represented by
(1. 3)
$x(\alpha)$ is represented by

$$
\left(\begin{array}{cccccccc}
1 & \alpha & \bar{\alpha} & \bar{\alpha} & \bar{\alpha} \bar{\alpha} & \bar{\alpha} \alpha & \alpha \bar{\alpha} & \alpha \bar{\alpha} \bar{\alpha} \tag{1.4}\\
& 1 & 0 & 0 & 0 & \bar{\alpha} & \bar{\alpha} & \bar{\alpha} \bar{\alpha} \\
& & 1 & 0 & \bar{\alpha} & 0 & \alpha & \alpha \bar{\alpha} \\
& & & 1 & \bar{\alpha} & \alpha & 0 & \bar{\alpha} \alpha \\
& & & & 1 & 0 & 0 & \alpha \\
& & & & & 1 & 0 & \bar{\alpha} \\
& & & & & & 1 & \bar{\alpha} \\
& & & & & & & 1
\end{array}\right)
$$

and ω by

$$
\left(\begin{array}{ccccccc}
& & & & & & \tag{1.5}\\
& & & -1 & & & \\
& & & & & -1 & \\
& & & & & & -1 \\
& 1 & & & & & \\
& & 1 & & & & \\
& & & 1 & & & \\
-1 & & & & & &
\end{array}\right)
$$

Let θ be an element of order $q-1$ in F_{q}. The vectors

$$
\begin{array}{ll}
u_{1}=w_{1} & u_{5}=w_{5}+w_{6}+w_{7} \\
u_{2}=w_{2}+w_{3}+w_{4} & u_{6}=\theta w_{5}+\bar{\theta} w_{6}+\bar{\theta} w_{7} \\
u_{3}=\theta w_{2}+\bar{\theta} w_{3}+\bar{\theta} w_{4} & u_{7}=\theta^{2} w_{5}+\bar{\theta}^{2} w_{6}+\bar{\theta}^{2} w_{7} \tag{1.6}\\
u_{4}=\theta^{2} w_{2}+\bar{\theta}^{2} w_{3}+\bar{\theta}^{2} w_{4} & u_{8}=w_{8}
\end{array}
$$

also form a basis \mathscr{B}_{0} of $\mathscr{V}^{[3]}$. Let \mathscr{V}_{0} be the vector space spanned by \mathscr{B}_{0} over $F_{p_{0}} ; \mathscr{V}_{0}$ is contained in $\mathscr{V}^{[3]}$, but not as a subspace. Using (1. 4), (1.5) it is not difficult to see that \mathscr{V}_{0} admits L. The representation Γ_{0} of L afforded by the basis \mathscr{B}_{0} in \mathscr{V}_{0} is then equivalent to $\Gamma \times \bar{\Gamma} \times \overline{\bar{\Gamma}}$. Let $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ be the subspaces of \mathscr{V}_{0} spanned over $F_{q_{0}}$ by $u_{1} ; u_{2}, u_{3}, u_{4}$; $u_{5}, u_{6}, u_{7} ; u_{8}$ respectively. These subspaces admit H by (1.3), (1.6). Since $\mathscr{L}_{1}, \mathscr{L}_{1}$ are 1-dimensional, they are irreducible under $H . \mathscr{L}_{2}$ and \mathscr{L}_{3}, which are 3-dimensional, are also irreducible under H, as a consideration of the characteristic values of $h(\theta)$ on these subspaces shows. $\mathscr{L}_{1}, \mathscr{L}_{4}$ are non-equivalent H-modules for $q_{0}>3$, since the characteristic values $(\theta \bar{\theta} \bar{\theta})$ and $(\theta \bar{\theta} \bar{\theta})^{-1}$ of $h(\theta)$ on \mathscr{L}_{1} and \mathscr{L}_{4} are then distinct. \mathscr{L}_{2} and \mathscr{L}_{3} are nonequivalent without this condition on q_{0}. Otherwise by (1.3), (1.6), $\bar{\theta} \bar{\theta} / \theta$ must be equal to $\theta / \bar{\theta} \bar{\theta}, \bar{\theta} / \bar{\theta} \theta$, or $\bar{\theta} / \theta \bar{\theta}$. If $\bar{\theta} \bar{\theta} \mid \theta$ is $\bar{\theta} / \bar{\theta} \theta$ or $\bar{\theta} / \theta \bar{\theta}$, then $\theta^{2}=1$, which is impossible. If $\bar{\theta} \bar{\theta} \mid \theta$ is $\theta / \bar{\theta} \bar{\theta}$, then $\theta^{2\left(q^{2}+q_{0}-1\right)}=1$, which is also impossible since $0<2\left(q_{0}^{2}+q_{0}-1\right)<\left(q_{0}-1\right)\left(q_{0}^{2}+q_{0}+1\right)=q-1$.

Suppose \mathscr{L} is a subspace of \mathscr{V}_{0} admitting H. If either $q_{0}>3$ and \mathscr{L} is 1-dimensional, or \mathscr{L} is 3-dimensional, then \mathscr{L} must be $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}$, or \mathscr{L}_{4} by the Frobenius-Schur Theorem. Moreover, \mathscr{L}_{4} and \mathscr{L}_{3} are distinguished by the relations $\left[\mathscr{L}_{4}, X\right]=1,\left[\mathscr{L}_{3}, X\right] \leqslant \mathscr{L}_{4}$ by (1.4), (1.6), and then $\mathscr{L}_{1}=\mathscr{L}_{4}^{\omega}, \mathscr{L}_{2}=\mathscr{L}_{3}^{\omega}$. If $q_{0}=3$ and \mathscr{L} is 1-dimensional, then the

Frobenius-Schur Theorem gives $\mathscr{L} \subseteq\left\langle\mathscr{L}_{1}, \mathscr{L}_{1}\right\rangle$. But only \mathscr{L}_{4} among the four lines in $\left\langle\mathscr{L}_{1}, \mathscr{L}_{4}\right\rangle$ centralizes X, and then $\mathscr{L}_{1}=\mathscr{L}_{4}^{\prime \prime}$. Thus in all cases, the subspaces $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ are distinguished by the action of L on \mathscr{V}_{0}.

Let \Re be the regular representation of F_{q} considered as an algebra over F_{p}. If \mathfrak{B} is any one of the representations $\Gamma, \Gamma^{(3)}, \Delta, E$, or Γ_{0}, then the
 F_{p} of L of degree not greater than $4 n$, where $q=p^{n}$, in which j is represented by $-I$. This is essentially [5] (1E).
2. Throughout the remainder of this paper, G will be a finite group satisfying
(*) G has subgroups L_{1}, L_{2} such that $L_{1} \simeq S L\left(2, q_{1}\right), \quad L_{2} \simeq S L\left(2, q_{2}\right)$, $\left[L_{1}, L_{2}\right]=1, L_{1} \cap L_{2}=\langle j\rangle$, where j is an involution, and $\left|C(j): L_{1} L_{2}\right|=2$.

Such groups have been studied in [5], and as the present paper is a continuation of [5], we shall continue with the notation of [5]. Suppose $G \neq C(j) O(G)$, so that by [5], (2A) $C(j)=L_{1} L_{2}\langle n\rangle$, where $n^{2}=1$. If $L_{1}{ }^{n}=L_{2}$, then $G \simeq P S p(4, q)$ with $q=q_{1}=q_{2}$ by [15]. This case may then be excluded as done, and so by [5], $(2 A)$ and (7I), G satisfies the condition
(**) $C(j)=L_{1} L_{2}\langle n\rangle$, where $n^{2}=1, L_{1}{ }^{n}=L_{1}, L_{2}{ }^{n}=L_{2} . \quad q_{1}$ and q_{2} are equal, or one is the cube of the other.
§§5-7 of [5] show that $|G|$ is divisible by $\left(q_{1} q_{2}\right)^{3}$ if it is not the case that $q_{1}=q_{2} \leqslant 11$. We consider in addition, then, the condition
(***) $|G|$ is divisible by $\left(q_{1} q_{2}\right)^{3}$.
The exceptional cases $q_{1}=q_{2} \leqslant 11$ will be discussed at the end in $\S 6$.
Set $q_{1} \geqslant q_{2}=q=p^{n} . \quad$ By ($* *$) $q_{1}=q_{2}=q$, or $q_{1}=q^{3}, q_{2}=q$. In the latter case, we shall set $\bar{\alpha}=\alpha^{q}, \bar{\alpha}=\alpha^{q^{2}}$. Recalling the notation and results of [5], we have the following. The images of $\left(\begin{array}{ll}1 & \alpha \\ & 1\end{array}\right),\left(\begin{array}{cc}1 & 1 \\ \alpha & 1\end{array}\right),\left(\begin{array}{cc}\alpha & \alpha^{-1}\end{array}\right),\binom{1}{-1}$ under the isomorphism ϕ_{i} of $S L\left(2, q_{i}\right)$ onto L_{i} are $x_{i}(\alpha), x_{-i}(\alpha), h_{i}(\alpha), \omega_{i}$ respectively, $i=1,2 . \quad X_{i}, X_{-i}, H_{i}$ are the subgroups of L_{i} generated by elements of the form $x_{i}(\alpha), x_{-i}(\alpha), h_{i}(\alpha)$ respectively. δ is a non-square of order a power of 2 in F_{q}, and $C(j)=\left\langle L_{1} L_{2}, h_{0}\right\rangle$, where h_{0} acts on L_{i} as conjugation by the matrix $\binom{1}{\delta}$, and $h_{0}{ }^{2}=h_{1}\left(\delta^{-1}\right) h_{2}\left(\delta^{-1}\right)$. In particular,
$h_{0}{ }^{-1} \omega_{i} h_{0}=\omega_{i} h_{i}\left(\delta^{-1}\right)$, and so $\omega_{i}^{-1} h_{0} \omega_{i}=h_{0} h_{i}(\delta)$. The subgroup $H=\left\langle H_{1} H_{2}, h_{0}\right\rangle$ is abelian of order $\left(q_{1}-1\right)\left(q_{2}-1\right)$. If D is the 4 -subgroup of H, then

$$
N(D)=N(H)=\left\langle H, \omega_{1}, \omega_{2}, \eta\right\rangle,
$$

where η is an element of order a power of 3 permuting the involutions $j=j_{0}, j_{1}, j_{2}$ of D cyclically.

Let $K=O\left(C\left(X_{2}\right)\right)$; we have then $L_{1} \cap K=1, C\left(X_{2}\right)=L_{1} K$, and $N\left(X_{2}\right)=$ $H L_{1} K$. The element j inverts K / X_{2}. If M is the S_{p}-subgroup of K, then M can be factored as

$$
M=X_{2}\left(X_{-1} X_{-2}\right)^{\eta}\left(X_{1} X_{-2}\right)^{\eta}
$$

$P=X_{1} M$ is then a p-subgroup of order $\left(q_{1} q_{2}\right)^{3}$. If $B=H P$, then $\tilde{G}=B N(H) B$ is a subgroup of G with a Bruhat decomposition. The order of \tilde{G} is

$$
\left(q_{1} q_{2}\right)^{3}\left(q_{1}^{2}-1\right)\left(q_{2}^{2}-1\right)\left(q_{1}^{2} q_{2}^{2}+q_{1} q_{2}+1\right)
$$

Let $\hat{P}=X_{2} X_{-2}^{\eta} X_{-2}^{\eta}$, $\hat{B}=H \hat{P}$, and $\hat{N}=\left\langle H, \omega_{2}, \eta\right\rangle$. Then $\hat{G}=\hat{B} \hat{N} \hat{B}$ is also a subgroup of G with a Bruhat decomposition. The order of \hat{G} is

$$
q_{2}^{3}\left(q_{2}^{3}-1\right)\left(q_{2}+1\right)\left(q_{1}-1\right),
$$

and \hat{G} / K_{0} is isomorphic to $\operatorname{PGL}(3, q), S L(3, q)$, or $\operatorname{PSL}(3, q) \times Z_{3}$, where $K_{0}=$ $H^{q-1} \leqslant Z(\hat{G})$.
(2A) The representation \mathfrak{B} of L_{1} induced on the elementary abelian p-group $\mathscr{V}=M / X_{2}$ is indecomposable.

Proof. Suppose not. Then $\mathscr{V}=\mathscr{V}^{\prime} \oplus \mathscr{V}^{\prime \prime}$, where \mathscr{V}^{\prime} and $\mathscr{V}^{\prime \prime}$ are subspaces admitting L_{1}. Now j inverts \mathscr{Y}, and thus j inverts \mathscr{V}^{\prime} and $\mathscr{V}^{\prime \prime}$ as well. Since $|\mathscr{V}|=q^{4}$ if $q_{1}=q_{2}=q$ and $|\mathscr{V}|=q^{8}$ if $q_{1}=q^{3}, q_{2}=q$, it follows that we must have $|\mathscr{Y}|=q^{4}$ and $q_{1}=q_{2}=q$. Moreover, if $\mathfrak{B}^{\prime}, \mathfrak{B}^{\prime \prime}$ are the representations of L_{1} induced on $\mathscr{V}^{\prime}, \mathscr{V}^{\prime \prime}$ respectively, then bases can be chosen in $\mathscr{V}^{\prime}, \mathscr{V}^{\prime \prime}$ so that $\mathfrak{F}^{\prime}=\Re \circ \Gamma$, $\mathfrak{B}^{\prime \prime}=\Re \circ \Gamma$, where \Re is the regular representation of F_{q} considered as an algebra over F_{p}. Now $\mathscr{L}=X_{-2}^{\eta} X_{2} / X_{2}$ admits H_{1}, and by [5], (7C), [$\left.\mathscr{L}, X_{1}\right]=1$. As in $\$ 1$ (III), we find that $\left[\mathscr{L}^{\omega_{1}}, X_{1}\right] \leqslant \mathscr{L}$, and so

$$
\begin{equation*}
\left[X_{-2}^{\eta}, X_{1}\right] \leqslant X_{-2}^{\eta_{2}^{2}} X_{2} \tag{2.1}
\end{equation*}
$$

By [5], (6. 3) $U=X_{1} X_{1}^{\eta} X^{\eta}{ }_{1} X_{2}^{\eta}{ }_{2}^{2} X_{2}$ is a subgroup. Since [$\left.M, M\right] \leqslant X_{2}$, it now follows by (2.1) that $X \underline{-}_{2}$ normalizes $U . \quad \omega_{2}^{\eta}$ normalizes U as well, since
$\omega_{2}^{\eta} \equiv \omega_{2} \eta^{2}(\bmod H)$. Thus L_{2}^{η} normalizes U. On the other hand, the subgroup $U_{0}=X_{-1}^{\eta} X_{2}^{\eta} X_{2}$ admits L_{2}^{η} as well, since X_{-2}^{η} and ω_{2}^{η} clearly normalize U_{0}. Thus the elementary p-group $\mathscr{U}=U / U_{0}$ of order q^{2} admits L_{2}^{η}; let \mathfrak{u} be the representation of $L_{2}^{\prime \prime}$ on \mathscr{U}. With obvious identifications we can choose as before a basis in \mathscr{U} so that $\mathfrak{U}=\mathfrak{R} \circ \Gamma$. Since $X_{1}^{{ }^{2}} U_{0} / U_{0}$ and $X_{1} U_{0} / U_{0}$ admit $H_{2}^{\eta},\left[X_{1}^{\eta}, X_{-2}^{\eta}\right] \leqslant X_{2}$, and ω_{2}^{η} interchanges $X_{1}^{\eta} U_{0} / U_{0}$ and $X_{1} U_{0} / U_{0}$, it follows by the remarks of $\S \mathbf{1}(\mathrm{I})$ that $\left[X_{1}, X_{{ }_{-2}}^{\eta}\right] \equiv X_{1}^{\eta}\left(\bmod U_{0}\right)$, which contradicts (2.1). This completes the proof.

By $(2 A)$ the commuting algebra \mathbb{C} of \mathfrak{B} is completely primary. Now [L_{1}, H_{2}] $=1$ and H_{2} normalizes \mathscr{V}. If h is an element in H_{2} centralizing \mathscr{V}, then h centralizes X_{-2}^{η} and X_{-2}^{n} modulo X_{2}. Since h normalizes X_{-2}^{η} and X_{-2}^{n}, it follows that h centralizes $X_{-2}^{\eta}, X_{-2}^{n}$, and so h centralizes $\left[X_{-2}^{\eta}, X_{-2}^{n}{ }_{2}^{2}\right]=X_{2}$ as well. Thus $h \in\langle j\rangle$. Since j inverts \mathscr{V}, we have that $h=1$, and H_{2} is then embedded in \mathfrak{C}. In particular, H_{2} is isomorphic to a cyclic subgroup of order $q-1$ in a finite field, say of p^{m} elements. If $q=p^{n}$, then $p^{n}-1$ divides $p^{m}-1$, and necessarily n divides m. Thus H_{2} acts on \mathscr{V} as scalar multiplication by elements of F_{q}, and \mathscr{V} can then be considered as a vector space over F_{q} admitting L_{1} as an indecomposable group of linear transformations. We shall henceforth assume this interpretation of \mathscr{V}. With a suitable choice of basis in \mathscr{V}, we have the following three cases:
(A) $q_{1}=q_{2}=q, \mathfrak{B}$ is irreducible, $\mathfrak{B}=\Gamma^{(3) \sigma}$, where $\Gamma^{(3)}$ is the representation of $\S 1$ (II), and σ is a field automorphism. The characteristic of F_{q} is not 3 .
(B) $q_{1}=q_{2}=q, \mathfrak{B}$ is reducible, $\mathfrak{B}=E^{\sigma}$, where E is the representation of $\S 1$ (IV), and σ is a field automorphism.
(C) $q_{1}=q^{3}, q_{2}=q, \mathfrak{B}$ is irreducible, and $\mathfrak{B}=\Gamma_{0}{ }^{\circ}$, where Γ_{0} is the representation of $\S 1(\mathrm{~V})$ (with q, q_{0} replaced by q^{3}, q), and σ is a field automorphism.

In each of the above cases, let $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ have the meaning assigned to these symbols in the corresponding cases of $\S 1 . \mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ are subspaces of \mathscr{V} by definition. Since $X_{1}{ }_{1}, X_{1}^{\eta^{2}}, X_{-2}^{n}, X_{-2}^{\eta_{2}^{2}}$ admit H_{2}, their images in \mathscr{V} are also subspaces of \mathscr{V}. We have
(2B) The subspaces determined by $X_{-2}^{\eta_{2}}, X_{1}^{\eta^{2}}, X_{-1}^{n}, X_{-2}^{\eta_{2}^{2}}$ modulo X_{2} are respectively $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ in cases (A) and (C). In case (B) the subspace \mathscr{L} determined
by $X^{{ }^{n}}{ }_{2}^{2}$ modulo X_{2} is contained in $\left\langle\mathscr{L}_{2}, \mathscr{L}_{4}\right\rangle$, but $\mathscr{L} \neq \mathscr{L}_{4}$. If the field automorphism ρ appearing in E is non-trivial, then $\mathscr{L}=\mathscr{L}_{2}$.

Proof. ω_{1} interchanges $X_{-1}^{\eta}, X_{1}^{\eta}$ as well as $X_{-2}^{\eta}, X_{-2}^{\eta}$. Since these subgroups all admit H_{1}, the results claimed in cases (A) and (C) follow from [5], (7C) and the remarks of §1. Similarly, we can show that the subspace \mathscr{L} determined by X_{2}^{n} modulo X_{2} in case (B) is contained in $\left\langle\mathscr{L}_{2}, \mathscr{L}_{4}\right\rangle$. If $\mathscr{L}=\mathscr{L}_{4}$, then (2.1) would hold, and as in the proof of $(2 \mathrm{~A})$, this gives a contradiction. If ρ is non-trivial, then (i) in $\S \mathbf{1}$ (III) holds. Since $\left[\mathscr{L}, X_{1}\right]=1$ by [5], (7C), \mathscr{L} is either \mathscr{L}_{2} or \mathscr{L}_{1}, and thus $\mathscr{L}=\mathscr{L}_{2}$. Thus completes the proof.
(2C) In cases (A) and $(B), \hat{G}$ is isomorphic to $S L(3, q)$, and in case (C), \hat{G} / K_{0} is isomorphic to $\operatorname{PGL}(3, q)$.

Proof. We first note that K_{0} is trivial in cases (A) and (B), and that $K_{0}=H_{1}^{q-1}$ is cyclic of order $q^{2}+q+1$ in case (C). Thus $|\hat{G}| K_{0} \mid=q^{3}\left(q^{3}-1\right)$ $\left(q^{2}-1\right)$. If $q \not \equiv 1(\bmod 3)$, then $\operatorname{PGL}(3, q), S L(3, q)$, and $\operatorname{PSL}(3, q)$ are all isomorphic groups of order $q^{3}\left(q^{3}-1\right)\left(q^{2}-1\right)$. Since \hat{G} / K_{0} is isomorphic to $\operatorname{PGL}(3, q), S L(3, q)$, or $\operatorname{PSL}(3, q) \times Z_{3}$, the result follows in this case. Thus we may assume $q \equiv 1(\bmod 3)$, so that the S_{3}-subgroup T of H is non-trivial with two generators.

Suppose case (A) or (B) holds. η normalizes T, and so centralizes some element t in T of order 3 . Since $\left|H: H_{1} H_{2}\right|=2$ so that $T \leqslant H_{1} H_{2}$, we may express

$$
\begin{equation*}
t=h_{1}\left(\tau_{1}\right) h_{2}\left(\tau_{2}\right) \tag{2.2}
\end{equation*}
$$

where τ_{1}, τ_{2} are elements in F_{q} such that $\tau_{1}{ }^{3}=\tau_{2}{ }^{3}=1$. If $\tau_{1}=1$, then $t \in H_{2}$, and so t acts on \mathscr{V} as scalar multiplication by some element in F_{q}. But since t centralizes L_{1} and η, it follows that t centralizes $X_{-1}^{\eta}, X_{1}^{\eta^{2}}$ and so t centralizes \mathscr{V}, which is impossible. Thus $C(\eta) \cap T$ is cyclic. Since $C(\eta) \cap T$ admits ω_{1} and ω_{2}, it follows that $t^{\omega_{1}}$ and $t^{\omega_{2}}$ are in $\langle t\rangle$. By (2.2) and the preceding discussion, we have that $\tau_{2}=1$. Thus $t \in H_{1}$, and since $\hat{G}=\hat{B} \hat{N} \hat{B}$, it readily follows that $t \in Z(\hat{G})$, so that \hat{G} is isomorphic to $S L(3, q)$ or $\operatorname{PSL}(3, q) \times Z_{3}$. Suppose $\hat{G} \simeq \operatorname{PSL}(3, q) \times Z_{3}$. If $q \equiv 1(\bmod 9)$, then the $S_{3}-$ subgroup T of H cannot be generated by 2 elements; if $q \not \equiv 1(\bmod 9)$, then $C(\eta) \cap T$ is non-cyclic. In either case we have a contradiction, so that $\hat{G} \simeq S L(3, q)$ as claimed.

Suppose case (C) holds. If \hat{G} / K_{0} is isomorphic to $\operatorname{SL}(3, q)$ or $\operatorname{PSL}(3, q) \times Z_{3}$, then there exists an element t of order a power of 3 in H but not in K_{0} such that $\left\langle t, K_{0}\right\rangle / K_{0}$ is the center of \hat{G} / K_{0}. Again, we may express

$$
t=h_{1}\left(\tau_{1}\right) h_{2}\left(\tau_{2}\right)
$$

where τ_{1}, τ_{2} are elements in $F_{q^{3}}, F_{q}$ of order a power of 3. But ω_{2} and t commute modulo K_{0}, and so $\tau_{2}=1$. Thus $t=h_{1}\left(\tau_{1}\right)$ is in H_{1}. Moreover, t and η commute modulo K_{0}, and since $K_{0} \leqslant H_{1}$, it follows that $t^{\eta}, t^{\eta^{2}}$ belong to H_{1}. In particular, t centralizes X_{-2}^{η} and X_{-2}^{2}. By (1.3) and (2B) it follows that $\tau_{1}{ }^{q^{2}+q+1}=1$. Since $q^{2}+q+1 \not \equiv 0(\bmod 9), t$ is an element of order 3 in H_{1}. On the other hand, $q^{2}+q+1 \equiv 0(\bmod 3)$ implies that $t \in K_{0}$, which is a contradiction. This completes the proof.

Let λ be a non-zero element in F_{q} or $F_{q^{3}}$, and μ a non-zero element in F_{q}. Then in the corresponding cases (A), (B), (C), $h_{0} h_{1}(\lambda) h_{2}(\mu)$ acts on L_{1} as conjugation by $\binom{1}{\lambda-2 \delta}$ and on L_{2} as conjugation by $\left({ }^{1} \mu-2 \delta\right)$. Moreover,

$$
\left(h_{0} h_{1}(\lambda) h_{2}(\mu)\right)^{2}=h_{1}\left(\lambda^{2} \delta^{-1}\right) h_{2}\left(\mu^{2} \delta^{-1}\right) .
$$

Since δ is a non-square in both F_{q} and $F_{q^{3}}$, it follows that for any nonzero elements α in F_{q} or $F_{q^{3}}, \beta$ in F_{q}, there exists an element $h(\alpha, \beta)$ in H such that $h(\alpha, \beta)$ acts on L_{1} as conjugation $\operatorname{by}\left({ }^{1}{ }_{\alpha}\right)$ and on L_{2} as conjugation by $\left(\begin{array}{ll}1 & \beta\end{array}\right)$, and such that

$$
h(\alpha, \beta)^{2}=h_{1}\left(\alpha^{-1}\right) h_{2}\left(\beta^{-1}\right) .
$$

The element $h(\alpha, \beta)$ is not uniquely determined by these conditions, but only up to a factor of j. Let ξ be a fixed primitive element of order $q-1$ in $F_{q^{*}}$ In particular, we set $h_{0}(\xi)=h\left(\xi, \xi^{-1}\right)$, and for any $\alpha \neq 0$ in F_{q}, we define

$$
\begin{equation*}
h_{0}(\alpha)=h_{0}(\xi)^{i}, \tag{2.3}
\end{equation*}
$$

where $\alpha=\xi^{i}$. This definition depends on making one of two possible choices for $h_{0}(\xi)$. If H_{0} is the set of all elements of the form $h_{0}(\alpha)$, then H_{0} is cyclic of order $q-1$ and $H=H_{1} \times H_{0}$. We note that $h_{0}(\xi)^{-1} \omega_{1} h_{0}(\xi)=\omega_{1} h_{1}\left(\xi^{-1}\right)$, $h_{0}(\xi)^{-1} \omega_{2} h_{0}(\xi)=\omega_{2} h_{2}(\xi)$, so that

$$
\begin{align*}
& \omega_{1}^{-1} h_{0}(\xi) \omega_{1}=h_{0}(\xi) h_{1}(\xi) \\
& \omega_{2}^{-1} h_{0}(\xi) \omega_{2}=h_{0}(\xi) h_{2}\left(\xi^{-1}\right) . \tag{2.4}
\end{align*}
$$

(2D) Suppose case (A) or (B) holds. Define the following elements and subgroups in $S L(3, q)$.

$$
\begin{aligned}
& a=\left(\begin{array}{lll}
\xi & & \\
\xi^{-1} & \\
& & 1
\end{array}\right), \quad b=\left(\begin{array}{lll}
1 & & \\
\xi & \\
& & \xi^{-1}
\end{array}\right), \quad \tilde{\eta}=\left(\begin{array}{rrr}
0 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right), \\
& \widetilde{\omega}=\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad \tilde{P}=\left\{\left(\begin{array}{lll}
1 & * & * \\
& 1 & * \\
& & 1
\end{array}\right)\right\}, \quad \tilde{H}=\left\{\left(\begin{array}{lll}
* & & \\
& * & \\
& & *
\end{array}\right)\right\} .
\end{aligned}
$$

With a suitable choice of η and $h_{0}(\xi)$ there exists an isomorphism f of \hat{G} onto $\operatorname{SL}(3, q)$ such that

$$
\begin{aligned}
& f(\hat{P})=\tilde{P}, \quad f(H)=\tilde{H}, \quad f(\eta)=\tilde{\eta} \\
& f\left(\omega_{2}\right)=\tilde{\omega}, \quad f\left(h_{1}(\xi)\right)=\left(a b^{-1}\right)^{t} \\
& f\left(h_{2}(\xi)\right)=a b, \quad f\left(h_{0}(\xi)\right)=a^{(1-t) / 2} b^{(1+t) / 2}
\end{aligned}
$$

t is an integer such that $1 \leqslant t \leqslant q-1$ and $(t, q-1)=1$.
Proof. Since \tilde{P} is an S_{p}-subgroup of $S L(3, q)$, it follows by (2C) that there exists an isomorphism f of \hat{G} onto $S L(3, q)$ such that $f(\hat{P})=\tilde{P}, f\left(X_{2}\right)=$ $Z(\widetilde{P})$. In particular, $f: N(\hat{P}) \cap \hat{G} \longrightarrow N(\widetilde{P})$. But $N(\hat{P}) \cap \hat{G}=\hat{P} H$ and $N(\widetilde{P})=\widetilde{P} \tilde{H}$. Thus $f(H)$ is a complement of \widetilde{P} in $N(\widetilde{P})$, and so $f(H)$ and \tilde{H} are conjugate by some element c in \tilde{P}. Replacing f by the composition of f with the inner automorphism of $S L(3, q)$ induced by c, we may assume $f(H)=\widetilde{H}$ and so $f: N(H) \cap \hat{G} \longrightarrow N(\tilde{H})$. But $N(H) \cap \hat{G}=\left\langle H, \eta, \omega_{2}\right\rangle$ and $N(\tilde{H})=\langle\tilde{H}, \tilde{\eta}, \tilde{\omega}\rangle$. In particular, $f^{-1}(\tilde{\eta})=h \eta^{i}$ for some h in H and $i=1$ or 2 . We may assume $i=1$ by replacing f by the composition of f with the automorphism of $S L(3, q)$ defined by conjugating a matrix by $\left(1_{1}^{1}\right)$, and then passing onto the contragredient of the resulting matrix. The preceding properties of f are not affected by this replacement.
a and b generate \tilde{H}. Since H_{1} centralizes X_{2}, it follows that $f\left(H_{1}\right)=\left\langle a b^{-1}\right\rangle$. Since $\hat{P}^{\omega_{2}} \cap \hat{P}=1$ and $\tilde{P} \tilde{\omega} \cap \tilde{P}=1$, we have that $f\left(\omega_{2}\right)=\tilde{h} \tilde{\omega}$ for some \tilde{h} in \tilde{H}. Let

$$
\tilde{h}=\left(\begin{array}{lll}
\alpha & & \\
& \beta & \\
& \alpha^{-1} \beta^{-1}
\end{array}\right) ;
$$

we have then

$$
(\tilde{h} \tilde{\omega})^{2}=\left(\begin{array}{lll}
-\beta^{-1} & & \\
& \beta^{2} & \\
& & -\beta^{-1}
\end{array}\right)
$$

Since $f\left(\omega_{2}\right)$ has order 4 , we must have $\beta=1$, so that

$$
f\left(\omega_{2}\right)=\left({ }_{-\alpha^{-1}}{ }^{\alpha}\right)
$$

Now

$$
\left(\begin{array}{lll}
1 & & \\
& \alpha^{-1} & \\
& & \alpha
\end{array}\right)\left(\begin{array}{lll}
& & \\
-\alpha^{-1}
\end{array}\right)\left(\begin{array}{lll}
1 & & \\
& \alpha & \\
& & \alpha^{-1}
\end{array}\right)=\left(\begin{array}{ll}
& \\
& 1 \\
-1 & \\
&
\end{array}\right)
$$

Replacing f by the composition of f with the inner automorphism of $S L(3, q)$ induced by $\left(\begin{array}{ccc}1 & & \\ & \alpha & \\ & & \alpha^{-1}\end{array}\right)$, we may assume $f\left(\omega_{2}\right)=\tilde{\omega}$. The preceding properties of f are not affected by this change. With f so fixed, we choose η so that $f(\eta)=\tilde{\eta}$.

Suppose

$$
f\left(x_{2}(1)\right)=\left(\begin{array}{ccc}
1 & 0 & \alpha \\
& 1 & 0 \\
& & 1
\end{array}\right), \quad f\left(x_{-2}(1)\right)=\left(\begin{array}{ccc}
1 & & \\
0 & 1 & \\
\beta & 0 & 1
\end{array}\right)
$$

where $\alpha, \beta \in F_{q} . \quad$ Since $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{rl}1 & 0 \\ -1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, we have $\omega_{2}=x_{2}(1) x_{-2}$ $(-1) x_{2}(1)$, and hence

$$
\widetilde{\omega}=f\left(\omega_{2}\right)=\left(\begin{array}{lll}
1 & 0 & \alpha \\
& 1 & 0 \\
& & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & & \\
0 & 1 & \\
-\beta & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & \alpha \\
& 1 & 0 \\
& & 1
\end{array}\right)=\left(\begin{array}{ccc}
1-\alpha \beta & 0 & 2 \alpha-\alpha^{2} \beta \\
0 & 1 & 0 \\
-\beta & 0 & 1-\alpha \beta
\end{array}\right) .
$$

Thus $\alpha=\beta=1$. Since

$$
\left(\begin{array}{ll}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
\alpha^{-1}-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
\alpha-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\alpha^{-1} \\
0 & 1
\end{array}\right)
$$

we also have

$$
f\left(h_{2}(\alpha)\right)=\left(\begin{array}{ccc}
\alpha & & \\
& 1 & \\
& & \alpha^{-1}
\end{array}\right) \text { for } \alpha \in F_{p} .
$$

Identifying $\langle Z(\tilde{P}), \tilde{\omega}\rangle$ with $S L(2, q)$ in the obvious way, we see that f restricted to L_{2} induces an automorphism of $S L(2, q)$ which fixes the elements of the
subgroup $S L(2, p)$. Such an automorphism is necessarily one defined by applying a field automorphism τ of F_{q} to $S L(2, q)$. Replacing f by the composition of f with the automorphism of $S L(3, q)$ obtained by applying τ^{-1} to the matrix coefficients, we may assume

$$
f\left(x_{2}(\alpha)\right)=\left(\begin{array}{ccc}
1 & 0 & \alpha \\
& 1 & 0 \\
& & 1
\end{array}\right), \quad f\left(x_{-2}(\alpha)\right)=\left(\begin{array}{lll}
1 & & \\
0 & 1 & \\
\alpha & 0 & 1
\end{array}\right)
$$

for $\alpha \neq 0$ in F_{q}, so in particular, $f\left(h_{2}(\xi)\right)=a b$. The earlier properties of f are unaffected by this change. We now define the integer t by the condition

$$
f\left(h_{1}(\xi)\right)=\left(a b^{-1}\right)^{t}
$$

where $1 \leqslant t \leqslant q-1$ and $(t, q-1)=1$. Since $h_{0}(\xi)^{2}=h_{1}\left(\xi^{-1}\right) h_{2}(\xi)$, we have that

$$
f\left(h_{0}(\xi)\right)^{2}=\left(a b^{-1}\right)^{-t}(a b)=a^{1-t} b^{1+t}
$$

The integers $1-t, 1+t$ are even since $(t, q-1)=1$ and q is odd. Now $f(j)=(a b)^{(q-1) / 2}$, so replacing $h_{0}(\xi)$ by $h_{0}(\xi) j$ if necessary, we may assume that

$$
f\left(h_{0}(\xi)\right)=a^{(1-t) / 2} b^{(1+t) / 2} c,
$$

where $c=\left(\begin{array}{lll}1 & & \\ & 1 & \\ & & 1\end{array}\right)$ or $\left(\begin{array}{lll}1 & & \\ & -1 & \\ & & -1\end{array}\right)$. But $h_{0}(\xi)$ transforms $x_{2}(\alpha)$ onto $x_{2}\left(\alpha \xi^{-1}\right)$. This implies that $c=1$, which completes the proof.

A similar result holds in case (C). We fix a primitive element θ of order $q^{3}-1$ in $F_{q^{3}}$ such that $\xi=\theta^{q^{2}+q+1}$, and represent elements of \hat{G} / K_{0} and $p G L(3, q)$ by elements in the corresponding cosets in \hat{G} and $G L(3, q)$.
$(2 E)$ Suppose case (C) holds. Define the following elements and subgroups in $P G L(3, q)$.

$$
\begin{aligned}
& a=\left(\begin{array}{llll}
\boldsymbol{\xi} & & \\
& 1 & \\
& & 1
\end{array}\right), \quad b=\left(\begin{array}{lll}
1 & & \\
& \xi & \\
& & \\
& & 1
\end{array}\right), \quad \tilde{\eta}=\left(\begin{array}{rrr}
0 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right) \\
& \tilde{\omega}=\left(\begin{array}{lll}
& 1 & \\
-1 & &
\end{array}\right), \quad \tilde{P}=\left\{\left(\begin{array}{lll}
1 & * & * \\
& 1 & * \\
& & 1
\end{array}\right)\right\}, \quad \tilde{H}=\left\{\left(\begin{array}{lll}
* & & \\
& * & \\
& & *
\end{array}\right)\right\} \text {. }
\end{aligned}
$$

With a suitable choice of η and $h_{0}(\xi)$, there exists an isomorphism f of \hat{G} / K_{0} onto PGL(3,q) such that

$$
\begin{aligned}
& f(\hat{P})=\tilde{P}, \quad f(H)=\tilde{H}, \quad f(\eta)=\tilde{\eta} \\
& f\left(\omega_{2}\right)=\tilde{\omega}, \quad f\left(h_{1}(\theta)\right)=b^{t}, \quad f\left(h^{2}(\xi)\right)=a^{2} b \\
& f\left(h_{0}(\tilde{\xi})\right)=a b^{\left(1-t\left(q^{2}+q+1\right)\right) / 2} .
\end{aligned}
$$

t is an integer such that $1 \leqslant t \leqslant q-1$ and $(t, q-1)=1$.
Proof. As in the proof of (2D) we can find an isomorphism f of \hat{G} / K_{0} onto $\operatorname{PGL}(3, q)$ such that $f(\hat{P})=\tilde{P}, f(H)=\tilde{H}$, and $f(H \eta)=\tilde{H} \tilde{\eta}$. Now $\tilde{H}=\langle a, b\rangle$, and since H_{1} centralizes X_{2}, it follows that $f\left(H_{1}\right)=\langle b\rangle$. Since $\hat{P}^{\omega_{2}} \cap \hat{P}=1$ and $\tilde{P} \tilde{\omega} \cap \tilde{P}=1$, we have $f\left(\omega_{2}\right)=\tilde{h} \tilde{\omega}$ for some \tilde{h} in \tilde{H}. Let $\tilde{h}=\left(\begin{array}{cc}\alpha^{\alpha} & \\ { }^{\beta} & \\ & 1\end{array}\right)$; then

$$
(\tilde{h} \tilde{\omega})^{2}=\left(\begin{array}{lll}
-\alpha & & \\
& \beta^{2} & \\
& & -\alpha
\end{array}\right)
$$

and since $f\left(\omega_{2}\right)$ has order 4, we must have $\beta^{2}=\alpha$. Thus

$$
f\left(\omega_{2}\right)=\left({ }_{-1} \beta^{\beta^{2}}\right) .
$$

Now

$$
\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & \beta
\end{array}\right)\left(\begin{array}{ll}
& \beta^{\beta^{2}}
\end{array}\right)\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & \beta^{-1}
\end{array}\right)=\left(\begin{array}{ll}
& \beta^{\beta} \\
-\beta^{\beta} &
\end{array}\right)
$$

and as in the proof of (2D), we may assume that $f\left(\omega_{2}\right)=\tilde{\omega}$. With f so fixed, we choose an element η of order a power of 3 so that $f(\eta)=\tilde{\eta}$. Moreover, we can assume

$$
f\left(x_{2}(\alpha)\right)=\left(\begin{array}{ccc}
1 & 0 & \alpha \\
& 1 & 0 \\
& & 1
\end{array}\right), \quad f\left(x_{-2}(\alpha)\right)=\left(\begin{array}{lll}
1 & & \\
0 & 1 & \\
\alpha & 0 & 1
\end{array}\right)
$$

so in particular, $f\left(h_{2}(\xi)\right)=a^{2} b$. We define the integer t by the condition

$$
f\left(h_{1}(\theta)\right)=b^{t},
$$

where $1 \leqslant t \leqslant q-1$ and $(t, q-1)=1$. It follows that $f\left(h_{1}(\xi)\right)=b^{t\left(q^{2}+q+1\right)}$. Since $h_{0}(\xi)^{2}=h_{1}\left(\xi^{-1}\right) h_{2}(\xi)$, we have that

$$
f\left(h_{0}(\xi)\right)^{2}=b^{-t\left(q^{2}+q+1\right)}\left(a^{2} b\right)=a^{2} b^{1-t\left(q^{2}+q+1\right.} .
$$

Replacing $h_{0}(\xi)$ by $h_{0}(\xi) j$ if necessary, we may assume that

$$
f\left(h_{0}(\xi)\right)=a b^{\left(1-t\left(q^{2}+q+1\right)\right) / 2} c,
$$

where $c=\left(\begin{array}{ccc}1 & & \\ & 1 & \\ & & 1\end{array}\right)$ or $\left(\begin{array}{ccc}-1 & & \\ & 1 & \\ & & 1\end{array}\right)$. Since $h_{0}(\xi)$ transforms $x_{2}(\alpha)$ onto $x_{2}\left(\xi^{-1} \alpha\right)$, it follows that $c=1$. This completes the proof.

The results obtained so far are unchanged if the isomorphism ϕ_{1} of $S L(2, q)$ onto L_{1} is replaced by the composition of ϕ_{1} with the automorphism of L_{1} induced by conjugation by an element h of H. Indeed, the subgroups X_{1}, X_{-1} are not changed, though their elements are relabeled; the elements of H_{1} remain unchanged since H is abelian. So certainly (2A) and (2B) remain valid. (2C), (2D), and (2E) concern the subgroup $\hat{G}=\left\langle X_{2}, H, \eta, \omega_{2}\right\rangle$; the same isomorphism f, as well as the same choice of elements η and $h_{0}(\xi)$, work for the new ϕ_{1}. We shall refer to this change as a relabeling of L_{1} by $L_{1}{ }^{h}$.
3. In this section we show that the subgroup $N(H)$ has a unique multiplication table. We fix a choice of the elements η and $h_{0}(\xi)$ so that (2D) and (2E) hold.

Suppose first that case (A) or (B) holds. Since $H=H_{1} \times H_{0}$, there are uniquely determined integers r, s, u, v modulo $q-1$ such that

$$
\begin{align*}
& h_{1}(\xi)^{n}=h_{1}\left(\xi^{r}\right) h_{0}\left(\xi^{s}\right) \\
& h_{0}(\xi)^{n}=h_{1}\left(\xi^{u}\right) h_{0}\left(\xi^{v}\right) \tag{3.1}
\end{align*}
$$

We have the following result.
(3A) In cases (A) and (B) the integer t of $(2 D)$ is 1. Moreover, $r \equiv-2$, $s \equiv-3, u \equiv v \equiv 1(\bmod q-1)$.

Proof. By (2D) there exists an isomorphism f of \hat{G} onto $S L(3, q)$ such that $f\left(h_{1}(\xi)\right)=\left(a b^{-1}\right)^{t}, \quad f\left(h_{0}(\xi)\right)=a^{(1-t) / 2} b^{(1+t) / 2}$, and $f(\eta)=\tilde{\eta}$, where $a, b, \tilde{\eta}$ have the meaning given in (2D). Since $\tilde{\eta}: a \longrightarrow(a b)^{-1}$ and $\tilde{\eta}: b \longrightarrow a$, it follows that

$$
f\left(h_{1}\left(\xi^{r}\right) h_{0}\left(\xi^{s}\right)\right)=\tilde{\eta}^{-1} f\left(h_{1}(\xi)\right) \tilde{\eta}=a^{-2 t} b^{-t},
$$

and so
(3. 2)

$$
t r+\frac{1}{2}(1-t) s \equiv-2 t
$$

$$
-t r+\frac{1}{2}(1+t) s \equiv-t
$$

The sum of these two congruences is

$$
\begin{equation*}
s \equiv-3 t(\bmod q-1) . \tag{3.3}
\end{equation*}
$$

If this is substituted back into the first congruence of (3.2) and the common factor t, which is relatively prime to $q-1$, is cancelled, we find that

$$
\begin{equation*}
r \equiv-2+\frac{3}{2}(1-t)(\bmod q-1) \tag{3.4}
\end{equation*}
$$

Suppose case (A) holds. By (2B) the subspaces of \mathscr{V} determined by X_{2}^{2} and X_{1}^{2} modulo X_{2} are the lines \mathscr{L}_{1} and \mathscr{L}_{2}. Moreover, $h_{1}(\xi)$ acts as scalar multiplication on each of these two lines, and (1.1) shows that the scalar multiple on \mathscr{L}_{1} is the inverse cube of that on \mathscr{L}_{2}. On the other hand, using (2.4) and (3.1), we see that

$$
\begin{aligned}
& h_{1}(\xi): x_{2}(\alpha)^{\alpha^{2 r^{2}} \longrightarrow x_{2}\left(\alpha \xi^{\xi}\right)^{\left(\alpha \alpha^{2} 7^{2}\right.}} \\
& h_{1}(\xi): x_{1}(\alpha)^{n^{2}} \longrightarrow x_{1}\left(a^{-2 r+s}\right)^{n^{2}}
\end{aligned}
$$

Thus $3(-2 r+s) \equiv-s(\bmod q-1)$ and so

$$
\begin{equation*}
6 r \equiv 4 s(\bmod q-1) . \tag{3.5}
\end{equation*}
$$

Substituting (3.3) and (3.4) into (3.5) then gives $-12+9(1-t) \equiv-12 t$ $(\bmod q-1)$, and thus $3 t \equiv 3(\bmod q-1)$. Now t is an integer such that $1 \leqslant t \leqslant q-1$ and $(t, q-1)=1$. If $t=1$, then $r \equiv-2, s \equiv-3(\bmod q-1)$ by (3.4) and (3.5). Moreover, $f\left(h_{0}(\xi)\right)=b, f\left(h_{1}(\xi)\right)=a b^{-1}$, so that $f\left(h_{0}(\xi)\right)^{\text {º }}$ $=\tilde{\eta}^{-1} b \tilde{\eta}=a$, and $u \equiv v \equiv 1(\bmod q-1)$.

We may then assume $q \equiv 1(\bmod 3)$, and $t=1+\frac{1}{3}(q-1)$ or $t=1+\frac{2}{3}(q-1)$. Let

$$
U=X_{1} X_{1}^{X_{1}^{2}} X n_{1} X_{-2}^{n_{2}^{2}} X_{2}, \quad U_{0}=X \underline{1}_{1} X_{2}^{n_{2}^{2}} X_{2} .
$$

$X_{n_{2}}^{n}$ normalizes U_{0} and $X{ }_{1}{ }^{2} X_{1} n_{1} X_{2}^{2} X_{2}$ since the subgroup M / X_{2} is abelian. By (2B) the subspaces of \mathscr{V} determined by $X_{2_{2}}^{n}, X_{1}^{2}, X_{1}^{n}, X_{-2}^{n}$ modulo X_{2} are the lines $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{1}$. Thus by (1.1) $X_{2_{2}}$ normalizes U as well. Since U and U_{0} admit ω_{2}^{π}, it follows that L_{2}^{7} has a representation \mathfrak{U} on the factor
group $\mathscr{U}=U / U_{0}$. Since $|\mathscr{U}|=q^{2}$ and j inverts \mathscr{U}, this representation is irreducible over F_{p}. But $\left[L_{2}^{\eta}, H_{1}^{\eta}\right]=1$ and H_{1}^{η} normalizes \mathscr{U}. As in an earlier argument, we see that H_{1}^{η} acts on \mathscr{U} as scalar multiplication by elements of F_{q}. Thus \mathscr{U} can be considered as a vector space over F_{q} which admits L_{2}^{η} as an irreducible group of linear transformations. It now follows that with respect to a suitable basis, \mathfrak{U} has the form Γ^{π}, where τ is a field automorphism of F_{q}. An element a^{η} of L_{2}^{η} is thus represented by the matrix a^{η}. Since $X_{1}^{\eta^{2}} U_{0} / U_{0}$ and $X_{1} U_{0} / U_{0}$ admit $H_{2}^{\eta},\left[X_{1}^{\eta}, X_{-2}^{\eta}\right] \leqslant X_{2}$, and ω_{2}^{η} interchanges $X_{1}^{2} U_{0} / U_{0}$ and $X_{1} U_{0} / U_{0}$, it follows by the remarks of $\S 1$, (I) that the subspace $X_{1} U_{0} / U_{0}$ is the line \mathscr{L}_{2} of $\S 1$, (I). In particular, $h_{2}(\xi)^{n}$ acts on $X_{1} U_{0} / U_{0}$ as multiplication by the scalar $\xi^{-\tau}$.

Suppose $t=1+\frac{1}{3}(q-1)$. By (2D) we have

$$
\begin{align*}
& f\left(h_{1}(\xi)\right)=a^{1+(q-1) / 3} b^{-1-(q-1) / 3} \\
& f\left(h_{0}(\xi)\right)=a^{-(q-1) / 6} b^{1+(q-1) / 6} . \tag{3.6}
\end{align*}
$$

Since t is relatively prime to $q-1$, we may choose an integer w such that $w\left(1+\frac{1}{3}(q-1)\right) \equiv 1(\bmod q-1)$. Now from (3.6) we find that

$$
b^{1+(q-1) / 3}=f\left(h_{1}(\xi)^{(q-1) / 6} h_{0}(\xi)^{1+(q-1) / 3)}\right.
$$

and so

$$
\begin{equation*}
b=f\left(h_{1}(\xi) w(q-1) / 6 h_{0}(\xi)\right) . \tag{3.7}
\end{equation*}
$$

Since $f\left(h_{2}(\xi)^{\eta}\right)=(a b)^{\tilde{\eta}}=b^{-1}$, it follows by (3.7) that

$$
h_{2}(\xi)^{\eta}=h_{1}(\xi)^{-w(q-1) / 6} h_{0}(\xi)^{-1}
$$

and so in particular,

$$
h_{2}(\xi)^{\eta}: x_{1}(a) \longrightarrow x_{1}\left(\alpha \xi^{-1+w(q-1) / 3}\right) .
$$

Thus $\xi^{\tau}=\xi^{1-w(q-1) / 3}$ and τ fixes the $1+\frac{1}{3}(q-1)$ elements of $\left(F_{q}\right)^{3}$. Now any proper subfield of F_{q} has at most \sqrt{q} elements. If τ is non-trivial, then $1+\frac{1}{3}(q-1) \leqslant \sqrt{q}$, which is a contradiction since $q \geqslant 5$ in case (A). On the other hand, if τ is trivial, then $\xi^{-w(q-1) / 3}=1$, which is also impossible. The case $t=1+\frac{2}{3}(q-1)$ can be excluded in a similar fashion.

Suppose case (B) holds. Let \mathscr{L} be the subspace of \mathscr{V} determined by X_{-2}^{n} modulo X_{2}. (2.4) and (3.1) show that $h_{1}(\xi)$ acts on \mathscr{L} as multiplica-
tion by the scalar ξ^{s}. By (2B) \mathscr{L} is a line in $\left\langle\mathscr{L}_{2}, \mathscr{L}_{4}\right\rangle$ different from \mathscr{L}_{1}, and $\mathscr{L}=\mathscr{L}_{2}$ if the automorphism ρ appearing in E is non-trivial. Whichever is the case, we have that the mapping $\alpha \longrightarrow \alpha^{-s}$ is a field automorphism of F_{q}. It then follows by (3.3) that

$$
\begin{equation*}
3 t \equiv p^{i}(\bmod q-1) \tag{3.8}
\end{equation*}
$$

where i is an integer such that $0<i \leqslant n$. In particular, (3.8) shows that $q \not \equiv 1(\bmod 3)$.

Using (2.4) and (3.1) we have as well that

$$
\begin{aligned}
& h_{1}(\xi): x_{1}(\alpha)^{\eta^{2}} \longrightarrow x_{1}\left(\alpha \xi^{-2 r+s}\right)^{\eta^{2}} \\
& h_{1}(\xi): x_{1}(\alpha)^{\omega_{1} \eta} \longrightarrow x_{1}\left(\alpha \xi^{2 r^{2}+2 s u-r s-s v}\right)^{\omega_{1} \eta} \\
& h_{1}(\xi): x_{2}(\alpha)^{\omega_{2} \eta} \longrightarrow x_{2}\left(\alpha \xi^{r s+s v}\right)^{\omega_{2} \eta} .
\end{aligned}
$$

The subspaces of \mathscr{Y} determined by $X_{1}^{\eta_{1}^{2}}, X_{-1}^{n}, X_{-2}^{\eta}$ modulo X_{2} are thus also lines of \mathscr{V} invariant under the action of $h_{1}(\xi)$. Since ω_{1} inverts $h_{1}(\xi)$ and interchanges $X_{-2}^{\eta}, X_{-2}^{\eta}$ as well as $X_{-1}^{\eta}, X_{1}^{\eta_{1}^{2}}$, it follows that

$$
\begin{align*}
& r s+s v \equiv-s \\
& -2 r+s \equiv-2 r^{2}-2 s u+r s+s v \quad(\bmod q-1) .
\end{align*}
$$

s and $q-1$ are relatively prime by (3.3), (3. 8). Cancelling s from the first congruence in (3.9), we have then

$$
\begin{equation*}
r+v \equiv-1(\bmod q-1) \tag{3.10}
\end{equation*}
$$

so that by (3.4)

$$
\begin{equation*}
v \equiv 1-\frac{3}{2}(1-t) \quad(\bmod q-1) \tag{3.11}
\end{equation*}
$$

The second congruence in (3.9) can be simplified by (3.10) to

$$
\begin{equation*}
2 s u \equiv 2 r-2 r^{2}-2 s \quad(\bmod q-1) \tag{3.12}
\end{equation*}
$$

Now (2.4) and (3.1) also give

$$
\begin{aligned}
& h_{2}(\xi): x_{1}(\alpha)^{\eta^{2}} \longrightarrow x_{1}\left(\alpha \xi^{-2 r-4 u+s+2 v}\right)^{\eta^{2}} \\
& h_{2}(\xi): x_{2}(\alpha)^{\omega_{2} \eta^{2}} \longrightarrow x_{2}\left(\alpha \xi^{s+2 v}\right)^{\omega_{2} \eta^{2}}
\end{aligned}
$$

Since $h_{2}(\xi)$ acts on \mathscr{V} as multiplication by a scalar, it follows that

$$
s+2 v \equiv-2 r-4 u+s+2 v(\bmod q-1)
$$

and so

$$
\begin{equation*}
2 r+4 u \equiv 0 \quad(\bmod q-1) . \tag{3.13}
\end{equation*}
$$

Multiplying (3.13) by s and using (3.12) to eliminate the term $4 s u$, we find that

$$
\begin{equation*}
2 r s+4 r-4 r^{2}-4 s \equiv 0 \quad(\bmod q-1) . \tag{3.14}
\end{equation*}
$$

But now (3. 3), (3.4), (3. 8), (3. 14) give

$$
\left(-1-p^{i}\right)\left(-p^{2}\right)-2-2 p^{i}-\left(1+p^{2}\right)^{2}+4 p^{i} \equiv 0(\bmod q-1),
$$

which simplifies to

$$
\begin{equation*}
p^{i} \equiv 3 \quad(\bmod q-1) \tag{3.15}
\end{equation*}
$$

Since $(3, q-1)=1,(3.15)$ and (3.8) show that $t \equiv 1(\bmod q-1)$, and so $t=1$, as $1 \leqslant t \leqslant q-1$. It now follows by (3.3), (3.4), and (3.11) that $r \equiv-2, s \equiv-3, v \equiv 1(\bmod q-1)$. That $u \equiv 1(\bmod q-1)$ can be proved as for case (A). This completes the proof.
(3B) In case (A) the automorphism σ appearing in \mathfrak{B} is trivial. In case (B), $p=3$ and $q=3^{n}$. If $q=3^{n}>3$, then the automorphisms ρ and σ appearing in E and \mathfrak{B} are respectively the mappings $\alpha \longrightarrow \alpha^{3}$ and the identity. If $q=3$, then ρ and σ are the identy. The subspaces of \mathscr{V} determined by $X_{-}^{n}, X_{-2}^{n}, X_{1}^{\eta^{2}}, X_{-1}^{n}$ modulo X_{2} are $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ respectively.

Proof. We use the notation and calculations of the preceding proof. From the congruences for r, s, u, v given in (3A), we have that

$$
h_{1}(\xi):\left\{\begin{array}{l}
x_{2}(\alpha)^{\omega_{2} \eta} \longrightarrow x_{2}\left(\alpha \xi^{3}\right)^{\omega_{2} \eta} \tag{3.16}\\
x_{2}(\alpha)^{\omega_{2} \eta^{2}} \longrightarrow x_{2}\left(\alpha \xi^{-3}\right)^{\omega_{2} \eta^{2}} \\
x_{1}(\alpha)^{\eta^{2}} \longrightarrow x_{1}\left(a \xi \xi^{\eta^{2}}\right. \\
x_{1}(\alpha)^{\omega_{1} \eta} \longrightarrow x_{1}\left(\alpha \xi^{-1}\right)^{\omega_{1} \eta} .
\end{array}\right.
$$

In case (A) the subspace of \mathscr{V} determined by X_{-2}^{η} modulo X_{2} is \mathscr{L}_{1}. Since $\mathfrak{B}=\Gamma^{(3) \sigma}$ in case (A), it follows from (1.1) and (3.16) that σ is trivial.

In case (B) we proceed as follows. Since p is odd and $0<i \leqslant n$, we have $3 \leqslant p^{i} \leqslant q$. On the other hand, $p^{i} \equiv 3(\bmod q-1)$ by (3.15), and so $p^{2}=3$ and $p=3$. Suppose $q>3$. It then follows from (3.16) that the subspaces of \mathscr{V} determined by $X_{-2}^{n}, X_{-2}^{n}, X_{1}^{\eta}, X_{-1}^{n}$ modulo X_{2} are characteristic subspaces for $h_{1}(\xi)$ corresponding to four distinct characteristic values.

These subspaces must then coincide up to order with the lines $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}$, \mathscr{L}_{4}. Since $\mathfrak{F}=E^{\sigma}$, it follows by (1.2) and (3.16) that ρ is non-trivial. By (2B) the subspace of \mathscr{Y} determined by $X_{2}^{n}{ }_{2}^{2}$ is \mathscr{L}_{2}; the subspace determined by X_{-2}^{η} is then $\mathscr{L}_{2}^{\omega_{1}}$, which is \mathscr{L}_{1}. Since $\left[X_{-1}^{\eta_{1}}, X_{1}\right] \leqslant X_{-2}^{{ }_{2}^{2}} X_{2}$ by [5] (7C), the subspace of \mathscr{Y} determined by $X_{{ }_{-1}}$ can only be \mathscr{L}_{4}, and thus the subspace determined by $X_{1}^{n 2}$ is \mathscr{L}_{3}. It now follows from (1.2) and (3.16) that σ is trivial and ρ is the mapping $\alpha \longrightarrow \alpha^{3}$. If $q=3$, then ρ and σ can only be the identity automorphism. By (3.16) the line \mathscr{L}_{4} of \mathscr{Y} must be contained in the subspace of \mathscr{V} determined by $\left\langle X_{1_{2}^{2}}^{2}, X_{1_{1}}^{\eta}\right\rangle$ modulo X_{2}. If \mathscr{L}_{4} is not $X^{\eta}{ }_{-1}$ modulo X_{2}, then a non-zero vector v in \mathscr{L}_{4} can be represented in the form

$$
v \equiv x_{-1}(\alpha)^{\eta} x_{-2}(\beta)^{\eta^{2}}\left(\bmod X_{2}\right),
$$

where α, β are non-zero elements in F_{3}. But \mathscr{L}_{4} admits D, and so the three distinct vectors

$$
v^{j}, v^{j_{1}}, v^{j_{2}}
$$

are also in \mathscr{L}_{4}. This is clearly impossible, and so \mathscr{L}_{4} is $X_{-1}{ }_{1}$ modulo X_{2}. The proof can now be completed as before. This completes the proof of (3B).

Suppose now that case (C) holds. $H=H_{1} \times H_{0}$ and so $h_{1}(\theta)^{n}$ and $h_{0}(\xi)^{n}$ can be expressed as products of powers of $h_{1}(\theta)$ and $h_{0}(\xi)$. Since $h_{0}(\xi)^{\eta}$ has order dividing $q-1$, we see that there are integers r, s modulo $q^{3}-1$, and u, v modulo $q-1$, such that

$$
\begin{align*}
& h_{1}(\theta)^{\eta}=h_{1}\left(\theta^{r}\right) h_{0}\left(\theta^{s}\right) \\
& h_{0}(\xi)^{\eta}=h_{1}\left(\xi^{u}\right) h_{0}\left(\xi^{v}\right) . \tag{3.17}
\end{align*}
$$

The field element θ^{s} is necessarily in F_{q}, and so we may choose s so that $s=s_{0}\left(q^{2}+q+1\right)$ and $\theta^{s}=\xi^{s_{0}}$.
(3C) In case (C) the integer t of (2E) is $q-2$. Moreover, $r \equiv-q^{2}-q$, $s \equiv-q^{2}-q-1\left(\bmod q^{3}-1\right)$, and $u \equiv v \equiv 1(\bmod q-1)$ if $q \neq 1(\bmod 3)$. The same congruences hold if $q \equiv 1(\bmod 3)$ and θ is chosen suitably.

Proof. By (2E) there exists an isomorphism f of \hat{G} / K_{0} onto $\operatorname{PGL}(3, q)$ such that $f\left(h_{1}(\theta)\right)=b^{t}, f\left(h_{0}(\xi)\right)=a b^{\left(1-t\left(q^{2}+q+1\right)\right) / 2}$, and $f(\eta)=\tilde{\eta}$, where $a, b, \tilde{\eta}$ have the meaning given in (2E). We represent elements of \hat{G} / K_{0} and $\operatorname{PGL}(3, q)$ by elements in the corresponding cosets of \hat{G} and $G L(3, q)$. Since
$\tilde{\eta}: a \longrightarrow(a b)^{-1}$ and $\tilde{\eta}: b \longrightarrow a$, it follows that

$$
f\left(h_{1}\left(\theta^{r}\right) h_{0}\left(\theta^{s}\right)\right)=\tilde{\eta}^{-1} f\left(h_{1}(\theta)\right) \tilde{\eta}=a^{t}
$$

and so

$$
\begin{gather*}
s_{0} \equiv t \\
r t+\frac{1}{2}\left(1-t\left(q^{2}+q+1\right)\right) s_{0} \equiv 0
\end{gather*} \quad(\bmod q-1)
$$

Since t and $q-1$ are relatively prime, the second congruence can be expressed as

$$
\begin{equation*}
r \equiv-\frac{1}{2}\left(1-t\left(q^{2}+q+1\right)\right) \quad(\bmod q-1) \tag{3.19}
\end{equation*}
$$

By (2B) the subspaces of \mathscr{Y} determined by $X_{-2}^{n}, X_{-2}^{\eta}$, and X_{1}^{η} modulo X_{2} are the subspaces $\mathscr{L}_{4}, \mathscr{L}_{1}$, and \mathscr{L}_{2} respectively. Using (2. 4) and (3.17) we see that

$$
h_{1}(\theta):\left\{\begin{array}{l}
x_{2}(\alpha)^{\omega_{2} \eta^{2}} \longrightarrow x_{2}\left(\alpha \theta^{s}\right)^{\omega_{2} \eta^{2}} \\
x_{2}(\alpha)^{\omega_{2} \eta} \longrightarrow x_{2}\left(\alpha \theta^{r s+s v}\right)^{\omega_{2} \eta} \\
x_{1}(\alpha)^{\eta^{2}} \longrightarrow x_{1}\left(\alpha \theta^{s-2 r}\right)^{\eta^{2}}
\end{array}\right.
$$

It now follows from (1.3) that $s \equiv-r s-s v\left(\bmod q^{3}-1\right)$, and so

$$
\begin{equation*}
r+v \equiv-1(\bmod q-1) \tag{3.20}
\end{equation*}
$$

Moreover, (1.3) shows that $\theta^{r+8 v}=N\left(\theta^{s-2 r}\right)$, where N is the relative norm of the extension $F_{q^{3}} / F_{q}$, so that

$$
\begin{equation*}
-s_{0} \equiv s-2 r(\bmod q-1) \tag{3.21}
\end{equation*}
$$

Thus by (3.21) and (3.18) we have

$$
2 r \equiv s+s_{0} \equiv s_{0}\left(q^{2}+q+2\right) \equiv 4 t(\bmod q-1)
$$

On the other hand, we have by (3.19) that

$$
2 r \equiv-1+3 t(\bmod q-1)
$$

These last two congruences show that $t \equiv-1(\bmod q-1)$. Since t is an integer with $1 \leqslant t<q-1$, it follows that $t=q-2$ as claimed. Also, $s=s_{0}\left(q^{2}+q+1\right)$ so that $s \equiv-q^{2}-q-1\left(\bmod q^{3}-1\right)$ by (3. 18).

Now (3. 19) and $t=q-2$ imply that

$$
2 r \equiv-1+(q-2)\left(q^{2}+q+1\right)(\bmod 2(q-1))
$$

But $-1+(q-2)\left(q^{2}+q+1\right)=(q-1)\left(q^{2}-1\right)-4 \equiv-4(\bmod 2(q-1))$, and so

$$
\begin{equation*}
r \equiv-2, \quad v \equiv 1(\bmod q-1) \tag{3.22}
\end{equation*}
$$

the last congruence following from (3.20). Again (2.14) and (3.17) give

$$
h_{2}(\xi):\left\{\begin{array}{l}
x_{2}(\alpha)^{\omega_{2} \eta^{2}} \longrightarrow x_{2}\left(\alpha \xi^{s+2 v}\right)^{\omega_{2} \eta^{2}} \\
x_{1}(\alpha)^{\eta^{2}} \longrightarrow x_{1}\left(\alpha \xi^{s+2 v-4 u-2 r}\right)^{\eta^{2}}
\end{array}\right.
$$

Since $h_{2}(\xi)$ acts on \mathscr{V} as multiplication by a scalar, it follows that

$$
s+2 v \equiv s+2 v-2 r-4 u(\bmod q-1)
$$

and so by (3.22)

$$
4 u \equiv 4(\bmod q-1) .
$$

Thus

$$
\begin{equation*}
h_{0}(\xi)^{\eta}=h_{1}(\xi) h_{0}(\xi) c, \tag{3.23}
\end{equation*}
$$

where c is an element in H_{1} of order dividing 4. Using (3.23), (3.17), and the congruences $r \equiv-2, s \equiv-3, v \equiv 1(\bmod q-1)$, we can compute that

$$
\left.h_{1}(\xi)\right)^{n^{3}}=h_{1}(\xi) c^{3}\left(c^{-3}\right)^{\eta} .
$$

But $\eta^{3} \in H$ and so centralizes $h_{1}(\xi)$. Thus $\left(c^{3}\right)^{\eta}=c^{3}$, and η must centralize c. Since η centralizes no involution in H, it follows that $c=1$ and $u \equiv 1$ $(\bmod q-1)$.

The subgroup $K_{0}=\left(H_{1}\right)^{q-1}$ is central in \hat{G}. In particular, we have from (3. 17) that

$$
h_{1}(\theta)^{q-1}=h_{1}(\theta)^{n(q-1)}=h_{1}\left(\theta^{r(q-1)}\right),
$$

and so

$$
r \equiv 1\left(\bmod q^{2}+q+1\right) .
$$

Let $r=1+r_{0}\left(q^{2}+q+1\right)$; using (3.22) we see that $3 r_{0} \equiv-3(\bmod q-1)$. If $q \not \equiv 1(\bmod 3)$, then $r_{0} \equiv-1(\bmod q-1)$, and so $r \equiv-q^{2}-q\left(\bmod q^{3}-1\right)$ as claimed. If $q \equiv 1(\bmod 3)$ and $r_{0} \equiv \equiv-1(\bmod q-1)$, then

$$
r \equiv-q^{2}-q+\frac{1}{3}\left(q^{3}-1\right) \quad \text { or } \quad-q^{2}-q+\frac{2}{3}\left(q^{3}-1\right) \quad\left(\bmod q^{3}-1\right)
$$

Let ζ accordingly be $\theta^{2\left(q^{3}-1\right) / 3}$ or $\theta^{q^{\left(3^{3}-1\right) / 3}}$. Since $q^{2}+q+1 \equiv 0(\bmod 3)$, we have that $N(\theta \zeta)=\xi$, and since $q \equiv 1(\bmod 3)$, we have that $h_{1}(\xi)$ belongs to K_{0} and hence commutes with η. If θ is replaced by $\theta \zeta$, the integer s $\left(\bmod q^{3}-1\right)$ and the integers $u, v(\bmod q-1)$ of (3.17) are unaffected by this change by what we have already proved. On the other hand, r is changed to $-q^{2}-q\left(\bmod q^{3}-1\right)$. This completes the proof.
(3D) In case (C) the automorphism σ appearing in \mathfrak{B} is trivial.
Proof. Using the calculations of the preceding proof and the congruences for s in $(3 C)$, we see that

$$
h_{1}(\theta): x_{-2}(\alpha)^{\eta^{2}} \longrightarrow x_{-2}\left(\alpha \theta^{-q^{2-q-1}}\right)^{\eta^{2}} .
$$

Since the subspace of \mathscr{V} determined by $X_{-2}^{n 2}$ modulo X_{2} is \mathscr{L}_{4}, it follows from (1.3) that σ is trivial.
(3E) There exists an element η_{0} in ηH such that

$$
\eta_{0}{ }^{3}=1, \quad \omega_{1}^{-1} \eta_{0} \omega_{1}=\eta_{0}^{2} j, \quad \omega_{2}^{-1} \eta_{0} \omega_{2}=\eta_{0}{ }^{2} j_{2},
$$

provided a possible relabeling of L_{1} by $L_{1}{ }^{h_{0}(\xi)}$ is made. In particular, $N(H)$ has a unique multiplication table.

Proof. Suppose first that case (A) or (B) holds. Since $\eta: j \longrightarrow j_{1} \longrightarrow j_{2}$ and $j=h_{1}(-1)$, it follows from (2D) and (3A) that

$$
\begin{equation*}
j_{1}=h_{0}(-1), \quad j_{2}=h_{1}(-1) h_{0}(-1) \tag{3.24}
\end{equation*}
$$

Now

$$
\begin{equation*}
\eta^{3}=1, \quad \omega_{2}^{-1} \eta \omega_{2}=\eta^{2} j_{2} \tag{3.25}
\end{equation*}
$$

since the corresponding equations hold in $f(\hat{G})$. Set then

$$
\omega_{1}^{-1} \eta \omega_{1}=\eta^{2} h_{1}(\alpha) h_{0}(\beta) .
$$

The square of the right-hand side can be computed from (3A) and (3.25); we have

$$
\omega_{1}^{-1} \eta^{2} \omega_{1}=\eta h_{1}\left(\alpha^{2} \beta^{-1}\right) h_{0}\left(\alpha^{3} \beta^{-1}\right),
$$

and so

$$
\omega_{1}^{-1} \eta \omega_{1}=\eta^{2} j h_{0}(\beta) .
$$

We may assume β is a square in F_{q} by relabeling L_{1} by $L_{1}{ }^{h_{0}(\xi)}$, since the transform of η by $\omega_{1}{ }^{h_{0}(\xi)}$ is $\eta^{2} j h_{0}\left(\xi^{3} \beta\right)$. If γ is an element in F_{q} such that $\beta \gamma^{2}=1$, and if we set

$$
\eta_{0}=\eta h_{1}(\gamma) h_{0}(\gamma),
$$

then η_{0} satisfies the equations of (3E). The multiplication table of $N(H)$ is then unique by (3 A).

Suppose now that case (C) holds. Since $\eta: j \longrightarrow j_{1} \longrightarrow j_{2}, j=h_{1}(-1)$, and $\frac{1}{2}\left(1-(q-2)\left(q^{2}+q+1\right)\right)$ is even, we have by $(2 \mathrm{E})$ and $(3 \mathrm{C})$ that (3. 24) holds. Moreover,

$$
\eta^{3} \equiv 1, \quad \omega_{2}^{-1} \eta \omega_{2}=\eta^{-1} j_{2}\left(\bmod K_{0}\right),
$$

since the corresponding equations hold in $f(\hat{G})$. Thus $\eta^{3}=\kappa$, $\omega_{2}^{-1} \eta \omega_{2}=\eta^{-1} j_{2} \lambda$, where κ, λ are elements in K_{0}, and κ has order a power of 3. Since $K_{0} \leqslant Z(\hat{G})$, it follows that

$$
\kappa=\eta^{3}=\omega_{2}^{-1} \eta^{3} \omega_{2}=\left(\eta^{-1} j_{2} \lambda\right)^{3}=\eta^{-3} \lambda^{3},
$$

and so $\lambda^{3}=\kappa^{2}$. $\quad \kappa$ has order a power of 3 , so there exists an integer i such that $\lambda^{3 i}=\kappa$. \quad Since

$$
\left(\eta \lambda^{-i}\right)^{3}=\eta^{3} \lambda^{-3 i}=\kappa \kappa^{-1}=1,
$$

we may assume $\eta^{3}=1$ by replacing η by $\eta \lambda^{-i}$. It then follows from (3C) that $(\eta h)^{3}=1$ as well, where h is any element in H of the form $h_{1}(\alpha) h_{0}(\beta)$ with α, β in F_{q}. Let $\omega_{2}^{-1} \eta \omega_{2}=\eta^{-1} j_{2} \mu$, where μ belongs to K_{0}. Since $\eta^{3}=1$, the cube of this last equation gives $\mu^{3}=1$. If $\mu \neq 1$, then $q^{2}+q+1$ and $q-1$ are divisible by 3 , and it then follows that μ is in $H_{1}{ }^{q^{2}+q+1}$. Replacing η by $\eta \mu$, we may henceforth assume that (3.25) holds.

Suppose

$$
\omega_{1}^{-1} \eta \omega_{1}=\eta^{2} h_{1}(\alpha) h_{0}(\beta),
$$

where $\alpha \in F_{q^{3}}$ and $\beta \in F_{q}$. The square of the right-hand side can be computed by (3C); we find

$$
\omega_{1}^{-1} \eta^{2} \omega_{1}=\eta h_{1}\left(\alpha^{2} \beta^{-1}\right) h_{0}\left(\alpha^{q}+q+1 \beta^{-1}\right)
$$

and so

$$
\omega_{1}^{-2} \eta \omega_{1}^{2}=\eta h_{1}(\alpha) h_{0}\left(\alpha^{q^{2}+q+1}\right) .
$$

Since $\omega_{1}{ }^{2}=j$ and $j^{-1} \eta j=\eta j_{2}$, it follows by (3.24) that $\alpha=-1$ so that

$$
\omega_{1}^{-1} \eta \omega_{1}=\eta^{2} j h_{0}(\beta) .
$$

The proof can now be completed exactly as in the cases (A) and (B).
4. In this section we shall show that the subgroup $B=H P$ has a unique multiplication table. We fix a choice of the elements η_{0} and $h_{0}(\xi)$ so that (3E) holds. To simplify notation, we shall write η_{0} as η; η will always have this meaning for the remainder of the paper.
(A) Suppose case (A) holds. If $v_{1}, v_{2}, v_{3}, v_{4}$ are the vectors in \mathscr{Y} determined by $x_{-2}(-1)^{\eta}, x_{1}\left(3^{-1}\right)^{n^{2}}, x_{-1}\left(3^{-1}\right)^{\eta}, x_{-2}(1)^{n^{2}}$ modulo X_{2} respectively, then $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for \mathscr{V} such that the corresponding matrix form of \mathfrak{B} is $\Gamma^{(3)}$.

Proof. The lines generated in \mathscr{V} by $v_{1}, v_{2}, v_{3}, v_{4}$ are by (2B) the lines $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ respectively. Thus there exists a basis \mathscr{B} of \mathscr{V} consisting of suitable scalar multiples of the v_{i} such that the matrix form of \mathfrak{B} with respect to \mathscr{B} is $\Gamma^{(3)}$. Using (3E) we calculate that

$$
\omega_{1}: v_{4} \longrightarrow-v_{1}, \quad v_{3} \longrightarrow v_{2} .
$$

If we compare this with (1.1), we see that we may assume that \mathscr{B} consists of the vectors

$$
\begin{equation*}
v_{1}, \alpha v_{2}, \alpha v_{3}, v_{4}, \tag{4.1}
\end{equation*}
$$

where α is a scalar in F_{q}. Consider the representation \mathfrak{U} of L_{2}^{η} constructed in the proof of $(3 \mathrm{~A})$. There it was proved that if u_{1} is the vector determined by $x_{1}(1)^{n^{2}}$ modulo U_{0}, and if $u_{2}=u_{1}^{\omega_{2}{ }^{\eta}}$, then $\left\{u_{1}, u_{2}\right\}$ is a basis of U / U_{0} such that the corresponding matrix form of \mathfrak{H} is Γ^{π}, where τ is a field automorphism of F_{q}. (The η appearing in (3A) has been changed to η_{0}, but it is clear that the above considerations apply.) Using (3E) we see that $\omega_{2}^{n}: x_{1}(1)^{n^{2}} \longrightarrow x_{1}(1)$, so that u_{2} is the vector determined by $x_{1}(1)$ modulo U_{0}. In particular, it follows that

$$
\left[x_{-2}(\beta)^{\eta}, x_{1}(\gamma)\right] \equiv x_{1}\left(-\beta^{r} \gamma\right)^{\eta^{2}}\left(\bmod U_{0}\right)
$$

On the other hand, (4.1) and (1.1) imply that

$$
\left[x_{-2}(\beta)^{\eta}, x_{1}(\gamma)\right] \equiv x_{1}(-\alpha \beta \gamma)^{\eta^{2}}\left(\bmod U_{0}\right) .
$$

Thus $\beta^{r} \gamma=\alpha \beta \gamma$ for all β, γ in $F_{q} . \quad$ Setting $\beta=\gamma=1$, we get that $\alpha=1$, and so \mathscr{B} is as claimed.
(4B)- Suppose case (B) holds. If $v_{1}, v_{2}, v_{3}, v_{4}$ are the vectors in \mathscr{V} determined by $x_{-2}(-1)^{\eta}, x_{-2}(1)^{\eta^{2}}, x_{1}(-1)^{\eta^{2}}, x_{-1}(1)^{n}$ modulo X_{2} respectively, then $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for \mathscr{Y} such that the corresponding matrix form of \mathfrak{B} is E.

Proof. The lines generated in $\mathscr{\mathscr { V }}$ by $v_{1}, v_{2}, v_{3}, v_{4}$ are by (3B) the lines $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$ respectively. Thus there exists a basis \mathscr{B} of \mathscr{V} consisting of suitable scalar multiples of the v_{i} such that the matrix form of \mathfrak{B} with respect to \mathscr{B} is E. Using (3E) we find that

$$
\omega_{1}: v_{4} \longrightarrow-v_{3}, v_{2} \longrightarrow-v_{1} .
$$

If we compare this with (1.2), we see that we may assume that \mathscr{B} consists of the vectors

$$
\begin{equation*}
v_{1}, v_{2}, \alpha v_{3}, \alpha v_{4}, \tag{4.2}
\end{equation*}
$$

where α is a scalar in F_{q}. Since the matrix form of \mathfrak{B} with respect to $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ has essentially the same properties as E, differing only in the entries $*$ of (1.2), we may change E so that (4B) holds.
(4C) Suppose case (C) holds. If $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}$ are the vectors in \mathscr{V} determined by $x_{-2}(-1)^{n}, x_{1}(-1)^{n^{2}}, x_{1}\left(-\theta^{2}\right)^{n^{2}}, x_{1}(-\theta)^{n^{2}}, x_{-1}(-1)^{n}, x_{-1}(-\theta)^{n}$, $x_{-1}\left(-\theta^{2}\right)^{\eta}, x_{-2}(1)^{n^{2}}$ modulo X_{2} respectively, then the v_{i} form a basis for \mathscr{V} such that the corresponding matrix form of \mathfrak{B} is Γ_{0}.

Proof. The subspaces of \mathscr{Y} spanned over F_{q} by $v_{1} ; v_{2}, v_{3}, v_{4} ; v_{5}, v_{6}, v_{7} ;$ v_{8} respectively are by $(2 \mathrm{~B})$ the subspaces $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$. There thus exists a basis $\mathscr{B}=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}, u_{8}\right\}$ of \mathscr{V} with u_{1} in $\mathscr{L}_{1}, u_{2}, u_{3}$, u_{4} in $\mathscr{L}_{2}, u_{5}, u_{6}, u_{7}$ in \mathscr{L}_{3}, u_{8} in \mathscr{L}_{4} such that the matrix form of \mathfrak{B} with respect to \mathscr{B} is Γ_{0}. We can calculate using (3E) that $\omega_{1}: v_{8} \longrightarrow-v_{1}$. Comparing this with (1.5), we see that we may assume

$$
u_{1}=v_{1}, u_{8}=v_{8}, \quad u_{2}=x_{1}(\alpha)^{\eta^{2}},
$$

where α is a scalar in $F_{q^{3}}$. Now $q^{2}+q-1$ and $q^{3}-1$ are relatively prime, so there exists an integer i such that $\theta^{i\left(q^{2}+q-1\right)}=\theta . \quad$ By (1.3) and (1.6), we then have that $h_{1}\left(\theta^{2}\right): u_{2} \longrightarrow u_{3} \longrightarrow u_{4}$. Using (3C) and (3E) we compute that $h_{1}\left(\theta^{i}\right): x_{1}(\alpha)^{\eta^{2}} \longrightarrow x_{1}(\theta \alpha)^{\eta^{2}}$, and thus

$$
\begin{equation*}
u_{2}=x_{1}(\alpha)^{\eta^{2}}, \quad u_{3}=x_{1}(\theta \alpha)^{\eta^{2}}, \quad u_{4}=x_{1}\left(\theta^{2} \alpha\right)^{\eta^{2}} . \tag{4.2}
\end{equation*}
$$

Since $\omega_{1}: x_{1}(\alpha)^{\eta^{2}} \longrightarrow x_{-1}(-\alpha)^{n}$, it now follows by (1.5), (1.6) that

$$
\begin{equation*}
u_{5}=x_{-1}(a)^{\eta}, \quad u_{6}=x_{-1}(\theta \alpha)^{\eta}, \quad u_{7}=x_{-1}\left(\theta^{2} \alpha\right)^{\eta} . \tag{4.3}
\end{equation*}
$$

To evaluate α, we proceed as in the proof of (4A). Let $U=X_{1} X_{1}^{\gamma}{ }^{2}$ $X_{-1}^{\eta} X_{-2}^{\eta} X_{2}, U_{0}=X_{-1}^{n} X_{-2}^{\eta} X_{2}$. $\quad X_{-2}^{\eta}$ normalizes U_{0} and $X_{1}^{\eta 2} X_{-1}^{\eta} X_{-2}^{n} X_{2}$, since the subgroup M / X_{2} is abelian. The subspaces of \mathscr{Y} determined by $X_{-2}^{\eta}, X_{1}^{\eta}$, $X_{{ }_{1}}, X_{{ }_{-2}}^{n}$ modulo X_{2} are respectively $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}$, and so it follows by (1.4) that X_{-2}^{η} normalizes U as well. Since U and U_{0} admit $\omega_{2}^{\eta}, L_{2}^{\eta}$ then has a representation \mathfrak{H} on the factor group $\mathscr{U}=U / U_{0}$. Now $\left[L_{2}^{\eta}, H_{1}^{\eta}\right]=1$, and using (3C) we can calculate that $h_{1}(\theta)^{n}$ acts on \mathscr{U} as multiplication by the scalar $\theta^{q^{2+q-1}}$. Since $\theta^{q^{2+q-1}}$ is a primitive root of unity of order $q^{3}-1$, we see that \mathscr{U} can be considered as a 2-dimensional vector space over $F_{q^{3}}$ with L_{2}^{n} as an irreducible group of linear transformations. With respect to a suitable basis, \mathfrak{U} then has the form Γ^{τ} for some field automorphism τ of F_{q}, and an element a^{η} of L_{2}^{η} is then represented by the matrix a^{η}. Since $X_{1}^{\eta} U_{0} / U_{0}$ and $X_{1} U_{0} / U_{0}$ admit $H_{2}^{\eta},\left[X_{1}^{\eta}, X_{-2}^{\eta}\right] \leqslant X_{2}$, and $\omega_{2}^{\eta}: x_{1}(1)^{n^{2}} \longrightarrow x_{1}(1)$, it follows that the vectors of U determined by $x_{1}(1)^{n^{2}}, x_{1}(1)$ modulo U_{0} form such a basis. In particular, we have that

$$
\left[x_{-2}(\beta)^{\eta}, x_{1}(\theta)\right] \equiv x_{1}\left(-\beta^{r} \theta\right)^{r^{2}}\left(\bmod U_{0}\right) .
$$

On the other hand, (4.2), (1.4), and (1.6) imply that

$$
\left[x_{-2}(\beta)^{\eta}, x_{1}(\theta)\right] \equiv x_{1}(\alpha \beta \theta)^{\eta^{2}}\left(\bmod U_{0}\right) .
$$

Thus $-\beta^{\tau} \theta=\alpha \beta \theta$ for all β in F_{q}. Setting $\beta=1$ and cancelling θ, we get that $\alpha=-1$, and thus the v_{i} and u_{i} coincide. This completes the proof.
(4D) $\left[x_{-2}(\alpha)^{\eta}, x_{-2}(\beta)^{n^{2}}\right]=x_{2}(-\alpha \beta)$ for all α, β in F_{q}.
Proof. Since $\left[X_{-2}^{\eta}, X_{-2}^{\eta}\right]=X_{2}$ by [5] (7B), it follows that $X_{\underline{-}_{2}}^{\eta}$ normalizes the elementary abelian subgroup $Y=X_{2} X_{-2}^{\eta} . \quad Y$ also admits ω_{2}^{η}, and so L_{2}^{η} has a representation \mathfrak{V} on Y in which j^{η} inverts Y. Now $\left[L_{2}^{\eta}, H_{1}^{\eta}\right]=1$ and H_{1}^{η} is faithful on Y. It follows easily that Y can be considered as a 2 dimensional vector space over F_{q} on which L_{2}^{η} acts as an irreducible group of linear transformations. With respect to a suitable basis, \mathscr{V} then has the form Γ^{ε} for some field automorphism τ of F_{q}. Since X_{2} and $X_{-2}^{\eta_{2}^{2}}$ admit $H_{2}^{\eta},\left[X_{2}, X_{-2}^{\eta}\right]=1$, and $\omega_{2}^{\eta}: x_{2}(1) \longrightarrow x_{-2}(1)^{\eta^{2}}$, it follows that $x_{2}(1), x_{-2}(1)^{\eta^{2}}$ form such a basis. In particular,

$$
\left[x_{-2}(\alpha)^{n}, x_{-2}(\beta)^{n^{2}}\right]=x_{2}\left(-\alpha^{\tau} \beta\right)
$$

for all α, β in F_{q}. Using (3C) or (3E) we can calculate that $h_{2}(\gamma)^{\eta}: x_{2}(\delta)$ $\rightarrow\left(x_{2}(\gamma \delta)\right.$, and so τ is the trivial automorphism.
(4E) $\left[x_{1}(\alpha)^{\eta^{2}}, x_{-1}(\beta)^{\eta}\right]=x_{2}(-3 \alpha \beta)$ for all α, β in F_{q} in cases (A) and (B). $\left[x_{1}(\alpha)^{n^{2}}, x_{-1}(\beta)^{n}\right]=x_{2}(\alpha \beta+\bar{\alpha} \bar{\beta}+\bar{\alpha} \bar{\beta})$ for all α, β in $F_{q^{3}}$ in case (C).

Proof. Suppose first that case (A) holds. We note by [5] (6.3) that $X_{1} X_{1}^{\eta} X_{-2}^{\eta}$ is a subgroup, and so by (4A) and (1.1)

$$
\begin{equation*}
\left[x_{1}(\alpha), x_{-1}(\beta)^{n}\right]=x_{-2}(-3 \alpha \beta)^{\eta^{2}} . \tag{4.4}
\end{equation*}
$$

The result now follows by conjugating this relation by $\omega_{2} \eta^{2}$. Suppose case (B) holds. If $\left[X_{1}^{\eta^{2}}, X_{-1}^{\eta}\right] \neq 1$, then (4D) and [5] (7B) imply that $X_{1}^{\eta^{2}} X_{1_{1}}^{n_{2}} X_{2}$ and $X_{-2}^{\eta} X_{-2}^{n}{ }_{2} X_{2}$ are the centralizers of each other in the subgroup M. Since $X_{1}^{n} X_{{ }_{1}^{1}} X_{2}$ and M admit L_{1}, it would follow that $X_{-2}^{n} X_{-2}^{\eta} X_{2}$ admits L_{1} as well, contradicting the indecomposability of \mathfrak{B}. Thus $\left[X_{1}^{n}, X_{-1}^{n}\right]=1$, which implies (4E) since F_{q} has characteristic 3.

Suppose finally that case (C) holds. As in the case (A), we note that $X_{1} X_{-1}^{n} X_{-2}^{n}$ is a subgroup, so that by (4C), (1.4), (1.6)

$$
\begin{equation*}
\left[x_{1}(\alpha), x_{-1}(\beta)^{\eta}\right]=x_{-2}(\alpha \beta+\bar{\alpha} \bar{\beta}+\bar{\alpha} \bar{\beta})^{\eta^{2}} . \tag{4.5}
\end{equation*}
$$

Conjugating this by $\omega_{2} \eta^{2}$ then gives (4 E).
As a result of $(4 \mathrm{D}),(4 \mathrm{E})$, and [5] (7B), it follows that M has a unique multiplication table in all cases (A), (B), and (C). The next lemmas will show that P has a unique multiplication table as well. Since the action of H on P has been determined in $\S 3$, the subgroup $B=H P$ will then have a unique multiplication table.
(4F) The following commutator relations hold in case (A).
(i) $\left[x_{-1}(\beta)^{\eta}, x_{1}(\alpha)\right]=x_{-2}(3 \alpha \beta)^{n^{2}}$
(ii) $\left[x_{1}(\beta)^{\eta^{2}}, x_{1}(\alpha)\right]=x_{-1}(2 \alpha \beta)^{\eta} x_{-2}\left(3 \alpha^{2} \beta\right)^{\eta^{2}} x_{2}\left(3 \alpha \beta^{2}\right)$
(iii) $\left[x_{-2}(\beta)^{\eta}, x_{1}(\alpha)\right]=x_{1}(-\alpha \beta)^{\eta^{2}} x_{-1}\left(-\alpha^{2} \beta\right)^{\eta} x_{-2}\left(-\alpha^{3} \beta\right)^{\eta^{2}} x_{2}\left(\alpha^{3} \beta^{2}\right)$
(iv) $\left[X_{-2}^{n}, X_{1}\right]=1$

In particular, $P=X_{1} M$ has a unique multiplication table.
Proof. We have already seen in the proof of (4E) that $X_{1} X_{-1}^{n} X_{-2}^{n}$ is a subgroup. Since $\left[X_{1}, X_{-2}^{n}\right] \leqslant X_{2}$ by [5] (7C), it follows that $\left[X_{1}, X_{2}^{n}{ }^{2}\right] \leqslant X_{2} \cap$ $X_{1} X_{-1}^{\eta} X_{-2}^{\eta}=1$, which proves (iv). (i) follows from (4.4). (4A) and (1.1) imply that

$$
\begin{align*}
& {\left[x_{1}(\beta)^{\eta^{2}}, x_{1}(\alpha)\right]=x_{-1}(2 \alpha \beta)^{\eta} x_{-2}\left(3 \alpha^{2} \beta\right)^{\eta^{2}} x_{2}(f(\alpha, \beta))} \\
& {\left[x_{-2}(\beta)^{\eta}, x_{1}(\alpha)\right]=x_{1}(-\alpha \beta)^{\eta^{2}} x_{-1}\left(-\alpha^{2} \beta\right)^{\eta} x_{-2}\left(-\alpha^{3} \beta\right)^{\eta^{2}} x_{2}(g(\alpha, \beta))} \tag{4.6}
\end{align*}
$$

where f, g are functions from $F_{q} \times F_{q}$ into F_{q}. If we conjugate these relations by the element $h_{1}(\lambda) h_{0}(\mu)$ and compare coefficients in x_{2}, we find that

$$
\begin{align*}
& f\left(\alpha \lambda^{-2} \mu, \beta \lambda \mu^{-1}\right)=\mu^{-1} f(\alpha, \beta) \\
& g\left(\alpha \lambda^{-2} \mu, \beta \lambda^{3} \mu^{-2}\right)=\mu^{-1} g(\alpha, \beta) . \tag{4.7}
\end{align*}
$$

Setting $\lambda=\mu, \lambda^{2}=\mu$ successively in the first equation of (4.7) shows that $f(\alpha, \beta)=\alpha \beta^{2} \gamma$ for some γ in F_{q}; setting $\lambda=\nu^{2}, \mu=\nu^{3}$ and then $\mu=\lambda^{2}$ successively in the second equation shows that $g(\alpha, \beta)=\alpha^{3} \beta^{2} \delta$ for some δ in F_{q}. To evaluate γ and δ, we use the commutator identity

$$
\begin{equation*}
[x y, z]=[x, z][x, z, y][y, z] \tag{4.8}
\end{equation*}
$$

Setting $x=x_{1}(\mu)^{\eta^{2}}, y=x_{1}(\nu)^{\gamma^{2}}, z=x_{1}(\alpha)$ in (4.8) and taking into account (4E) and the fact that $X \eta_{1}^{\eta}, X \eta_{2}^{\eta}$, and X_{2} centralize one another, we find by comparing the coefficients in x_{2} that

$$
\alpha \gamma(\mu+\nu)^{2}=\alpha \gamma \mu^{2}+\alpha \gamma \nu^{2}+6 \alpha \mu \nu
$$

Thus $\gamma=3$, which proves (ii). Setting $x=x_{-2}(\mu)^{\eta}, y=x_{-2}(\nu)^{\eta}, z=x_{1}(\alpha)$ in (4.8) and using (4D) and (4E), we find by comparing the coefficients in x_{2} that

$$
\delta \alpha^{3}(\mu+\nu)^{2}=\delta \alpha^{3} \mu^{2}+\delta \alpha^{3} \nu^{2}-\alpha^{3} \mu \nu+3 \alpha^{3} \mu \nu .
$$

Thus $\gamma=1$, which proves (iii).
(4G) The following commutator relations hold in case (B).
(i) $\left[x_{1}(\beta)^{\gamma^{2}}, x_{1}(\alpha)\right]=x_{-1}(-\alpha \beta)^{n}$
(ii) $\left[x_{-2}(\beta)^{\eta}, x_{1}(\alpha)\right]=x_{-2}\left(-\alpha^{3} \beta\right)^{r^{2}} x_{1}(-\alpha \beta)^{\eta^{2}} x_{-1}\left(-\alpha^{2} \beta\right)^{\eta} x_{2}\left(\alpha^{3} \beta^{2}\right)$
(iii) $\left[X_{-1}^{\eta}, X_{1}\right]=\left[X_{2}^{n}, X_{1}\right]=1$.

In particular, $P=X_{1} M$ has a unique multiplication table.
Proof. By [5] (7C) we have that $\left[X_{1}, X_{-2}^{n}\right] \leqslant X_{2}$, and the argument given for (4 F) (iv) now shows that $\left[X_{-2}^{n}, X_{1}\right]=1$. By (4E) we also have $\left[X_{1}^{\eta}, X_{-1}^{\eta}\right]=1$; conjugating this by $\omega_{2} \eta^{2}$ then gives $\left[X_{1}, X_{-1}^{\eta_{1}}\right]=1$, which proves (iii).

Let \mathscr{B} be the basis of \mathscr{V} given in (4B), so that by (3B) the matrix
form of \mathfrak{B} with respect to this basis is E. Taking into account (4G) (iii), we have in particular that

$$
\mathfrak{B}\left(x_{1}(\alpha)\right)=\left(\begin{array}{cccc}
1 & \alpha^{3} & * & * \tag{4.9}\\
& 1 & 0 & 0 \\
& & 1 & \alpha \\
& & & 1
\end{array}\right) .
$$

Thus

$$
\left[x_{1}(\beta)^{\eta^{2}}, x_{1}(\alpha)\right]=x_{-1}(-\alpha \beta)^{\eta} x_{2}(f(\alpha, \beta)),
$$

where f is a function from $F_{q} \times F_{q}$ into F_{q}. As in the proof of (4F), we find that $f(\alpha, \beta)=\alpha \beta^{2} \gamma$ for some γ in F_{q}. Setting $x=x_{1}(\mu)^{\gamma^{2}}, y=x_{1}(\nu)^{\eta^{2}}$, $z=x_{1}(\alpha)$ in (4.8) and comparing the coefficients in x_{2}, we find that

$$
\alpha \gamma(\mu+\nu)^{2}=\alpha \gamma \mu^{2}+\alpha \gamma \nu^{2},
$$

so that $\gamma=0$. This proves (i).
By (4.9) and (4B) we have that

$$
\begin{align*}
{\left[x_{-2}(\beta)^{\eta}, x_{1}(\alpha)\right]=} & x_{-2}\left(-\alpha^{3} \beta\right)^{\eta^{2}} x_{1}(f(\alpha, \beta))^{\eta^{2}} . \tag{4.10}\\
& x_{-1}(g(\alpha, \beta))^{\eta} x_{2}(h(\alpha, \beta)),
\end{align*}
$$

where f, g, h are functions from $F_{q} \times F_{q}$ into F_{q}. If we conjugate this relation by $h_{1}(\lambda) h_{0}(\mu)$ and compare coefficients, we find that

$$
\begin{align*}
f\left(\alpha \lambda^{-2} \mu, \beta \lambda^{3} \mu^{-2}\right) & =\lambda \mu^{-1} f(\alpha, \beta) \\
g\left(\alpha \lambda^{-2} \mu, \beta \lambda^{3} \mu^{-2}\right) & =\lambda^{-1} g(\alpha, \beta) \tag{4.11}\\
h\left(\alpha \lambda^{-2} \mu, \beta \lambda^{3} \mu^{-2}\right) & =\mu^{-1} h(\alpha, \beta) .
\end{align*}
$$

Setting $\lambda=\nu^{2}, \mu=\nu^{3}$ and then $\mu=\lambda^{2}$ successively in each of the equations of (4.11) shows that

$$
f(\alpha, \beta)=\gamma \alpha \beta, \quad g(\alpha, \beta)=\delta \alpha^{2} \beta, \quad h(\alpha, \beta)=\varepsilon \alpha^{3} \beta^{2},
$$

where $\gamma, \delta, \varepsilon$ are elements in F_{q}.
To evaluate ε, we set $x=x_{-2}(\mu)^{\eta}, \quad y=x_{-2}(\nu)^{\eta}, z=x_{1}(\alpha)$ in (4.8), and compare coefficients in x_{2}. This gives

$$
\varepsilon \alpha^{3}(\mu+\nu)^{2}=\varepsilon \alpha^{3} \mu^{2}+\varepsilon \alpha^{3} \nu^{2}-\alpha^{3} \mu \nu,
$$

so that $2 \varepsilon=-1$, and $\varepsilon=1$. Now (4.10) implies that $X_{\eta_{2}}$ normalizes $U=X_{1} X_{1}^{\eta} X_{-1}^{\eta} X_{-2}^{n} X_{2}$, a group which already admits ω_{2}^{η}. Since X_{-2}^{η} and ω_{2}^{η}
normalize $U_{0}=X{ }_{-1}^{n} X_{-}^{n}{ }_{2}^{2} X_{2}$, it follows that L_{2}^{η} is represented on U / U_{0}. As in the proofs of $(3 \mathrm{~A})$ and $(4 \mathrm{~A})$ we have then

$$
\left[x_{-2}(\beta)^{\eta}, x_{1}(\alpha)\right] \equiv x_{1}\left(-\alpha \beta^{\rho}\right)^{\eta^{2}} \quad\left(\bmod U_{0}\right),
$$

where ρ is a field automorphism of F_{q}. Thus $-\alpha \beta^{\rho}=\gamma \alpha \beta$, and so $\gamma=-1$. Finally, to evaluate δ, we set $x=x_{1}(\mu), y=x_{1}(\nu), z=x_{-2}(\beta)^{\eta}$ in (4.8), take into account (4G) (i), and compare coefficients in x_{-1}. This gives.

$$
-\delta \beta(\mu+\nu)^{2}=-\delta \beta \mu^{2}-\delta \beta \nu^{2}-\beta \mu \nu,
$$

so that $2 \delta=1$ and $\delta=-1$. This completes the proof.
$(4 \mathrm{H})$ The following commutator relations hold in case (C).
(i) $\left[x_{-1}(\beta)^{n}, x_{1}(\alpha)\right]=x_{-2}(-\alpha \beta-\bar{\alpha} \bar{\beta}-\bar{\alpha} \bar{\beta})^{\eta^{2}}$
(ii) $\left[x_{1}(\beta)^{\eta^{2}}, x_{1}(\alpha)\right]=x_{-1}(\bar{\alpha} \bar{\beta}+\bar{\alpha} \bar{\beta})^{\eta} x_{-2}(-\bar{\alpha} \bar{\alpha} \beta-\bar{\alpha} \alpha \bar{\beta}-\alpha \bar{\alpha} \bar{\beta})^{\eta}$.

$$
x_{2}(-\alpha \bar{\beta} \bar{\beta}-\bar{\alpha} \bar{\beta} \beta-\bar{\alpha} \beta \bar{\beta})
$$

(iii) $\quad\left[x_{-2}(\beta)^{\eta}, x_{1}(\alpha)\right]=x_{1}(\alpha \beta)^{n^{2}} x_{-1}(\bar{\alpha} \bar{\alpha} \beta)^{n} x_{-2}(-\alpha \bar{\alpha} \bar{\alpha} \beta)^{n^{2}} x_{2}\left(\alpha \bar{\alpha} \bar{\alpha} \beta^{2}\right)$
(iv) $\left[X_{2}^{2}, X_{1}\right]=1$.

In particular, $P=X_{1} M$ has a unique multiplication table.
Proof. [5] (7C) implies that $\left[X_{1}, X_{2}^{2}{ }_{2}^{2}\right] \leqslant X_{2}$, so the argument given for (4F) (iv) is also valid for (4 H) (iv). (i) follows from (4.5). Now (4C), (1. 4), (1.6) imply that modulo X_{2}

$$
\begin{align*}
& {\left[x_{1}(1)^{\eta^{2}}, x_{1}(\alpha)\right] \equiv x_{-1}(\bar{\alpha}+\bar{\alpha})^{\eta} x_{-2}(-\bar{\alpha} \bar{\alpha}-\bar{\alpha} \alpha-\alpha \bar{\alpha})^{\eta^{2}}} \\
& {\left[x_{1}(\theta)^{\eta^{2}}, x_{1}(\alpha)\right] \equiv x_{-1}(\bar{\alpha} \bar{\theta}+\bar{\alpha} \bar{\theta})^{\eta} x_{-2}(-\bar{\alpha} \bar{\alpha} \theta-\bar{\alpha} \alpha \bar{\theta}-\alpha \bar{\alpha} \bar{\theta})^{\eta^{2}}} \tag{4.12}\\
& {\left[x_{1}\left(\theta^{2}\right)^{\eta^{2}}, x_{1}(\alpha)\right] \equiv x_{-1}\left(\bar{\alpha} \bar{\theta}^{2}+\bar{\alpha} \bar{\theta}^{2}\right)^{\eta} x_{-2}\left(-\bar{\alpha} \bar{\alpha} \theta^{2}-\bar{\alpha} \alpha \bar{\theta}^{2}-\alpha \bar{\alpha} \bar{\theta}^{2}\right)^{\eta^{2}} .}
\end{align*}
$$

An element β in $F_{q^{8}}$ can be expressed in the form $\beta=b_{0}+b_{1} \theta+b_{2} \theta^{2}$, where b_{0}, b_{1}, b_{2} are elements in F_{q}. Using (4.12) and (4.8) twice, we find that

$$
\begin{align*}
{\left[x_{1}(\beta) \eta^{2}, x_{1}(\alpha)\right]=} & x_{-1}(\bar{\alpha} \bar{\beta}+\bar{\alpha} \bar{\beta})^{\eta} x_{-2}(-\bar{\alpha} \bar{\alpha} \beta-\bar{\alpha} \alpha \bar{\beta}-\alpha \bar{\alpha} \bar{\beta})^{\eta^{2}} . \tag{4.13}\\
& x_{2}(f(\alpha, \beta)),
\end{align*}
$$

where f is a function from $F_{q^{3}} \times F_{q^{3}}$ into F_{q}. A similar argument shows that

$$
\begin{align*}
{\left[x_{-2}(\beta)^{\eta}, x_{1}(\alpha)\right]=} & x_{1}(\alpha \beta)^{\eta^{2}} x_{-1}(\bar{\alpha} \bar{\alpha} \beta)^{\eta} x_{-2}(-\alpha \bar{\alpha} \bar{\alpha} \beta)^{\eta^{2}} . \tag{4.14}\\
& x_{2}(g(\alpha, \beta)),
\end{align*}
$$

where g is a function from $F_{q^{3}} \times F_{q}$ into F_{q}. Conjugating (4.13) by $\omega_{2} \eta^{2}$ then gives

$$
\begin{aligned}
{\left[x_{1}(-\beta), x_{1}(\alpha)^{\eta^{2}}\right]=} & x_{-1}(\bar{\alpha} \bar{\beta}+\bar{\alpha} \bar{\beta})^{n} x_{2}(-\bar{\alpha} \bar{\alpha} \beta-\bar{\alpha} \alpha \bar{\beta}-\alpha \bar{\alpha} \bar{\beta}) . \\
& x_{-2}(-f(\alpha, \beta))^{\gamma^{2}} .
\end{aligned}
$$

If we interchange α and β in this and compare the result with (4.13), we find that

$$
f(\alpha, \beta)=-\alpha \bar{\beta} \bar{\beta}-\bar{\alpha} \bar{\beta} \beta-\bar{\alpha} \beta \bar{\beta},
$$

which proves (ii). If we conjugate (4.14) by $h_{1}(\lambda) h_{0}(\mu)$, where λ is in $F_{q^{3}}$ and μ is in F_{q}, and compare the coefficients in x_{2}, we find that

$$
\begin{equation*}
g\left(\alpha \lambda^{-2} \mu, \beta \lambda^{q^{2}+q+1} \mu^{-2}\right)=\mu^{-1} g(\alpha, \beta) \tag{4.15}
\end{equation*}
$$

Setting $\lambda=\nu, \mu=\nu^{2}$ in (4.15), where ν is in F_{q}, shows that $g(\alpha, \beta)=g(\alpha, 1) \beta^{2}$. To evaluate $g(\alpha, 1)$, we set $x=x_{-2}(\mu)^{\eta}, \quad y=x_{-2}(\nu)^{\eta}, \quad z=x_{1}(\alpha)$ in (4. 8). Using (4D) and (4E) in comparing the coefficients in x_{2}, we find that

$$
g(\alpha, 1)(\mu+\nu)^{2}=g(\alpha, 1) \mu^{2}+g(\alpha, 1) \nu^{2}+2 \alpha \bar{\alpha} \bar{\alpha} \mu \nu .
$$

Thus $g(\alpha, 1)=\alpha \bar{\alpha} \bar{\alpha}$ and $g(\alpha, \beta)=\alpha \bar{\alpha} \bar{\alpha} \beta^{2}$, which proves (iii).
5. The results of $\S \S 3,4$ and [5] § 6 now imply that \tilde{G} has a unique multiplication table. Now it is not difficult to verify from the presentation of the groups $G_{2}(q)$ and $D_{4}^{2}(q)$ in [2], [8] that these groups satisfy the conditions $(*),(* *),(* * *)$ of $\S 2$. Indeed, for $G_{2}(q)$ the required calculations can be found in [11], and the verification for $D_{4}^{2}(q)$ can be done along similar lines. In the case of $G_{2}(q), q_{1}=q_{2}=q$; in the case of $D_{4}^{2}(q), q_{1}=q^{3}, q_{2}=q$. Since $|\tilde{G}|=\left|G_{2}(q)\right|$ in cases (A) and (B), and $|\tilde{G}|=\left|D_{4}^{2}(q)\right|$ in case (C), we have the following result.
(5A) In cases (A) and (B) the subgroup \tilde{G} is isomorphic to $G_{2}(q)$. In case (C) \widetilde{G} is isomorphic to $D_{4}^{2}(q)$.
(5B) Suppose $G>\tilde{G}$. Then there exists a subgroup V of \widetilde{G} of odd order such that $\tilde{G}=V \cdot C(i)$, where i is any involution in \tilde{G}. In particular,

$$
|V|=|\tilde{G}: C(j)||V \cap C(j)| .
$$

Proof. By [6], Chapter 9, Theorem 2. 1, there exists a subgroup V of odd order such that $\widetilde{G}=V C(j)$. Now \widetilde{G} has only one class of involutions,
so that $\tilde{G}=V C(i)$ for any involution i in \tilde{G}. This is enough to complete the proof. We note that if

$$
c=|V \cap C(i)|
$$

then c does not depend on the choice of i. We have $|V|=q^{4}\left(q^{4}+q^{2}+1\right) c$ in cases (A) and (B), $|V|=q^{8}\left(q^{8}+q^{4}+1\right) c$ in case (C).
(5C) Suppose $G>\tilde{G}$, and set $Y=H L_{1} M, D=V \cap Y^{g}$, where $g \in \tilde{G}$. If π is the set of odd primes dividing $q^{6}-1$, and D_{π} is an S_{π}-subgroup of D, then $D_{\pi} \leqslant\left(H_{2} L_{1}\right)^{k}$ for some k in \tilde{G}.

Proof. We first note that D is solvable, this being a direct consequence of the structure of Y and the oddness of $|D|$. Thus D_{π} exists, and we have

$$
D_{\pi} \simeq D_{\pi} M^{g} / M^{g} \leqslant\left(H_{2} L_{1} M\right)^{g} / M^{g} \simeq\left(H_{2} L_{1}\right)^{g},
$$

the last group being the central product of $L_{1}{ }^{g}$ and the cyclic subgroup $H_{2}{ }^{g}$ of order $q-1$. Let π_{1}, π_{2} be the set of odd primes dividing $q^{3}-1, q^{3}+1$ respectively, so that $\pi=\pi_{1} \cup \pi_{2}$. Since $H_{2} L_{1} \leqslant Y$, it follows that Y contains an abelian $S_{\pi_{1}}$-subgroup and a cyclic $S_{\pi_{2}}$-subgroup. If D_{π} is a π_{1}-group, then $D_{\pi} \leqslant\left(H_{2} L_{1}\right)^{o h}$ for some h in Y^{g} by a theorem of Wielandt [14]. Since g and h are in \tilde{G}, the result follows. If D_{π} is not a π_{1}-group, then $D_{0}=D_{\pi} \cap\left(L_{1} M\right)^{g}$ must be a non-trivial normal $S_{\pi_{2}}$-subgroup of D_{π}. We have $D_{0} \leqslant L_{1}{ }^{\text {gh }}$ for some h in Y^{g} by the theorem of Wielandt. Let $E^{g h}$ be the normalizer of D_{0} in $L_{1}{ }^{g h} ; E^{g h}$ is then a dihedral group of order $2\left(q_{1}+1\right)$. Since $\left(H_{2} L_{1} M\right)^{g}$ and M^{g} are normal subgroups of Y^{g} and $h \in Y^{g}$, it follows that

$$
D_{\pi} \leqslant\left(H_{2} L_{1} M\right)^{g h} \cap N\left(D_{0}\right) \leqslant\left(H_{2} L_{1} M\right)^{g h} \cap N\left(D_{0} M^{g h}\right)=\left(H_{2} E M\right)^{g h} .
$$

But $H_{2} E M$ has an abelian S_{n}-subgroup, so by a third application of the theorem of Wielandt, $D_{\pi} \leqslant\left(H_{2} L_{1}\right)^{g h i}$ for some i in $\left(H_{2} E M\right)^{g h}$. Since g, h, i are in \widetilde{G}, $(5 \mathrm{C})$ follows.

$$
\begin{equation*}
G=\tilde{G} \tag{5D}
\end{equation*}
$$

Proof. Suppose otherwise. We consider first cases (A) and (B). Let $g \in \tilde{G}, D=V \cap Y^{g}$, and $d=|D|$. The number of elements in the complex $V Y^{g}$ is

$$
\begin{equation*}
\frac{|V|\left|Y^{g}\right|}{\left|V \cap Y^{g}\right|}=\frac{q^{4}\left(q^{4}+q^{2}+1\right) c\left(q^{2}-1\right)(q-1) q^{6}}{d}=q^{6}\left(q^{6}-1\right)(q-1) \frac{q^{4} c}{d} \tag{5.1}
\end{equation*}
$$

a number which cannot exceed $|\tilde{G}|=q^{6}\left(q^{6}-1\right)\left(q^{2}-1\right)$. Let $d=d_{\pi} d_{p}$ and
$c=c_{\pi} c_{p}$ be the factorizations of d and c into their π - and p-factors, π being as before the set of odd primes dividing $q^{6}-1$. By (5C) d_{π} divides c_{π}, so that necessarily $d_{p} \geqslant q^{3} c_{p}$.

Suppose $c_{p} \neq 1$, so that $d_{p}>q^{3}$. Since M^{y} is a normal subgroup of Y^{g} of index q in every S_{p}-subgroup of Y^{g}, it follows that $\left|V \cap M^{q}\right|>q^{2}$. But $\left(X_{-2}^{\eta} X_{-2}^{n} X_{2}\right)^{g}$ has index q^{2} in M^{g}, and so $V \cap\left(X_{-2}^{\eta} X_{-2}^{\eta} X_{2}\right)^{g} \neq 1$. In particular, by taking $g=1$ and $g=\omega_{2} \eta^{2}$, we find that

$$
V \cap X_{-2}^{\eta} X_{-2}^{\eta} X_{2} \neq 1, \quad V \cap X_{2}^{\eta} X_{-2}^{\eta_{2}^{2}} X_{2} \neq 1,
$$

and since the subgroup $X_{-2}^{n} X_{2}$ admits $\left\langle X_{2}, X_{-2}\right\rangle^{\eta}=L_{2}^{\eta}$, it follows by a theorem of Dickson, [6], Chapter 2, Theorem 8.4, and the oddness of $|V|$ that

$$
\begin{equation*}
V \cap X_{-2}^{n_{2}^{2}} X_{2} \neq 1 \tag{5.2}
\end{equation*}
$$

By taking $g=\omega_{2} \eta$ and $g=1$, we find that

$$
V \cap X_{2}^{n_{2}^{2}} X_{-2}^{n} X_{2} \neq 1, \quad V \cap X_{-2}^{n 2} X_{-2}^{n} X_{2} \neq 1,
$$

and since the subgroup $X_{-2}^{\eta_{2}} X_{2}$ admits $\left\langle X_{2}, X_{-2}\right\rangle^{\eta^{2}}=L_{2}^{\eta^{2}}$, it follows as before that

$$
\begin{equation*}
V \cap X_{-2}^{n_{2}} X_{2} \neq 1 \tag{5.3}
\end{equation*}
$$

(5.2), (5.3), and (4D) then imply that $V \cap X_{2} \neq 1$. The entire argument repeated with Y replaced by $Y^{\omega_{2}}$ yields $V \cap X_{-2} \neq 1$. This is a contradiction by the theorem of Dickson and the oddness of $|V|$, and thus $c_{p}=1$.

An S_{p}-subgroup of V then has order q^{4}, and no non-trivial p-element in V centralizes an involution of \widetilde{G}. Thus $P=X_{1} M$ contains a subgroup S of order q^{4} such that no non-trivial element in S centralizes an involution in \widetilde{G}. If $|S \cap M|>q^{3}$, then $S \cap\left(X_{-1} X_{-2}\right)^{\eta} \neq 1$ since $\left(X_{-1} X_{-2}\right)^{\eta}$ has index q^{3} in M, and this is impossible. Thus $|S \cap M|=q^{3}$. Suppose case (A) holds. Using (4A), (1.1), the existence of elements in $S-M$, and the relation $S \cap M \neq X_{-1}^{\eta} X_{-2}^{\eta} X_{2}$, we can find elements s, t in $S \cap\left(X_{-2}^{\eta} X_{2}-X_{2}\right), S \cap\left(X_{-1}^{\eta} X_{-2}^{\eta} X_{2}\right.$ $-X_{-2}^{n} X_{2}$) respectively. Then (4D), (4F) (iv), and the existence of s imply that no element of S, when expressed as a product of elements from each of the root subgroups of P, can involve a factor $x_{-2}^{n}(\alpha)$ with $\alpha \neq 0$. But then $(4 \mathrm{E})$ and the existence of t imply that $S \cap M \leqslant X_{-1}^{n} X_{-2}^{n} X_{2}$, which is impossible. Suppose case (B) holds. Using (4B), (4.9), the existence of elements in $S-M$, and the relation $S \cap M \neq X_{1}^{\eta^{2}} X_{-1}^{\eta} X_{2}$, we can find an element s in $S \cap\left(X_{-2}^{n} X_{1}^{\eta_{1}^{2}} X_{1}^{n} X_{2}-X_{1}^{n} X_{1}^{n} X_{2}\right)$. (4D), (4E) then imply thet $S \cap M$
$\leqslant X_{2}^{\eta} X_{1}^{\eta} X_{-1}^{\eta} X_{2}$, so that $S \cap\left(X_{1} X_{-2}\right)^{\eta^{2}} \neq 1$, which is impossible. Thus (5D) follows in cases (A) and (B).

Consider now the case (C). Let $g \in \tilde{G}, D=V \cap Y^{g}$, and $d=|D|$. The number of elements in the complex $V Y^{g}$ is

$$
\begin{align*}
\frac{|V|\left|Y^{g}\right|}{\left|V \cap Y^{9}\right|} & =\frac{q^{8}\left(q^{8}+q^{4}+1\right) c\left(q^{6}-1\right)(q-1) q^{12}}{d} \\
& =q^{12}\left(q^{8}+q^{4}+1\right)\left(q^{6}-1\right)(q-1) \frac{q^{8} c}{d} \tag{5.4}
\end{align*}
$$

a number which cannot exceed $|\tilde{G}|=q^{12}\left(q^{8}+q^{4}+1\right)\left(q^{6}-1\right)\left(q^{2}-1\right)$. Again, if π is the set of odd primes dividing $q^{6}-1$ and $d=d_{\pi} d_{p}, c=c_{\pi} c_{p}$, then $d_{p} \geqslant q^{7} c_{p}$ by (5C). Suppose first that $c_{p} \neq 1$, so that $d_{p}>q^{7}$. Since M^{g} is a normal subgroup of Y^{g} of index q^{3} in every S_{p}-subgroup of Y^{g}, it follows that $\left|V \cap M^{g}\right|>q^{4}$. If $V \cap X_{2}{ }^{g}=1$, then $V \cap M^{g}$ is necessarily abelian by (4 D), (4E). But (4D), (4E) also show that $\mathscr{V}^{g}=M^{g} / X_{2}{ }^{g}$ is a symplectic space of dimension 8 over F_{q}, the inner product being the commutator. Since $V \cap X_{2}{ }^{g}=1$, the image of $V \cap M^{g}$ in \mathscr{V}^{g} is a subgroup of order greater than q^{4}, such that any two vectors in $\left(V \cap M^{j}\right) X_{2}{ }^{g} / X_{2}{ }^{g}$ are orthogonal. This is impossible, and thus $V \cap X_{2}{ }^{g} \neq 1$. Taking $g=1$ and $g=\omega_{2}$, we find that $V \cap X_{2} \neq 1, V \cap X_{-2} \neq 1$, which is impossible. Hence $c_{p}=1$, and P then contains a subgroup S of order q^{8} such that no non-trivial element in S centralizes an involution in \widetilde{G}. If $|S \cap M|>q^{5}$, then $S \cap\left(X_{-1} X_{-2}\right)^{\eta} \neq 1$ since $\left(X_{-1} X_{-2}\right)^{n}$ has index q^{5} in M, which is impossible. Thus $|S \cap M|=q^{5}$. Since $S \cap X_{2}=1$, it follows that $S \cap M$ is abelian, but as before, this leads to a contradiction. Thus $G=\tilde{G}$ in all cases.
6. As a consequence of the work in the preceding sections, it now follows that the theorem stated in the introduction holds if

$$
(* * *) \quad|G| \text { is divisible by }\left(q_{1} q_{2}\right)^{3} .
$$

As remarked in §2, (***) can only fail to hold in case $q_{1}=q_{2} \leqslant 11$. Thus we shall assume that $q_{1}=q_{2}=q$ throughout this section, and indicate how (***) can be seen to hold even if $q \leqslant 11$. We may moreover assume that $q \geqslant 5$ since the case $q=3$ has been done by Janko [7].

Let $\{\alpha, \beta\}=\{1,2\}$, and set $K_{\beta}=O\left(C\left(X_{\beta}\right)\right)$. Since K_{β} / X_{β} is inverted by j and so is abelian, K_{β} has a unique S_{p}-subgroup M_{β}. If q^{6} does not divide $|G|$, then one and only one of the following cases occurs by [5] (4E).
(I) $\quad M_{\beta}=X_{\beta}$
(II) $\quad\left|M_{\beta}\right| X_{\beta} \mid=q^{2}$
(6A) Suppose q^{6} does not divide $|G|$. If (I) holds for the index β, then $X_{1} X_{2}$ is an S_{p}-subgroup of $C(u)$ for every $u \neq 1$ in X_{β}.

Proof. Let $N=O(C(u))$, so that by [5] (3C), we have $C(u)=L_{\alpha} N$, $L_{\alpha} \cap N=1$, and $X_{\beta} \leqslant N$. Let S be an S_{p}-subgroup of $C(u)$ containing $X_{1} X_{2}$. $S \cap N$ is then an S_{p}-subgroup of N containing X_{β}. If $S \cap N>X_{\beta}$, then there exists a subgroup R such that $X_{\beta} \triangleleft R \leqslant S \cap N$. Since $\left\langle X_{a}, R\right\rangle \leqslant S$, it follows that $\left\langle X_{\alpha}, R\right\rangle$ is a p-group of order exceeding q^{2} which normalizes X_{β}. But $N\left(X_{\beta}\right)=H L_{\alpha} K_{\beta}$ by [5] (3B), so that $X_{1} X_{2}$ is an S_{p}-subgroup of $N\left(X_{\beta}\right)$. This is a contradiction and so $S \cap N=X_{\beta}$, which then proves (6 A).
(6B) Suppose q^{6} does not divide $|G|$. If (I) holds for both indices α and β, then $X_{1} X_{2}$ is an S_{p}-subgroup of G.

Proof. Suppose not, and let S be a p-subgroup of G with $X_{1} X_{2} \triangleleft S$. Under the action of $H,\left(X_{1} X_{2}\right)^{*}=X_{1} X_{2}-\{1\}$ is partitioned into four orbits:

$$
X_{1}{ }^{\ddagger}, X_{2}^{\ddagger}, O_{1}, O_{2} .
$$

Let $z \neq 1$ be chosen in $Z(S) \cap X_{1} X_{2}$; by (6A) we may assume that $z \in O_{1}$. Since $X_{1} X_{2}$ is an S_{p}-subgroup of $N\left(X_{1}\right)$ and $N\left(X_{2}\right)$, no element in $S-X_{1} X_{2}$ normalizes X_{1} or X_{2}. By (6A) no element in $X_{1}^{\#} \cup X_{2}^{\#}$ is fused in G to an element of O_{1}. Thus it follows that some element in $X_{1}^{\#}$ is fused to an element in $X_{2}{ }^{\#}$. In particular, we have by [5] (3C) that the S_{2}-subgroups of L_{1} and L_{2} are conjugate in G. But then these S_{2}-subgroups would be conjugate in $C(j)$, which is a contradiction.
(6C) Suppose q^{6} does not divide $|G|$. If (II) holds for the index β, then $R_{\beta}=X_{\alpha} M_{\beta}$ is an S_{p}-subgroup of G and $Z\left(R_{\beta}\right)=X_{\beta}$. Moreover, (I) holds for the index α.

Proof. The 4-subgroup D normalizes R_{β}, and ω_{α} interchanges $M_{\beta} \cap C\left(j_{1}\right)$ and $M_{\beta} \cap C\left(j_{2}\right)$. Thus by the Brauer-Wielandt Theorem, we have that

$$
M_{\hat{\beta}} \cap C(j)=X_{\hat{\beta}}, \quad\left|M_{\hat{\beta}} \cap C\left(j_{1}\right)\right|=\left|M_{\hat{\beta}} \cap C\left(j_{2}\right)\right|=q .
$$

Moreover, [5] (4B) implies that

$$
M_{\beta} \cap C\left(j_{1}\right) \leqslant\left(X_{a} X_{b}\right)^{\eta}, \quad M_{\hat{\beta}} \cap C\left(j_{2}\right) \leqslant\left(X_{c} X_{d}\right)^{\eta^{2}},
$$

where $a, c \in\{1,-1\}$, and $b, d \in\{2,-2\}$. Since $M_{\beta} \cap C\left(j_{1}\right)$ and $M_{\beta} \cap C\left(j_{2}\right)$ admit H, and $q>3$, it follows by [5] (4C) that

$$
M_{\beta} \cap C\left(j_{1}\right)=X_{a}^{\eta} \text { or } X_{o}^{\eta}, M_{\beta} \cap C\left(j_{2}\right)=X_{c}^{\eta} 2 \text { or } X_{d}^{\eta_{d}} .
$$

Taking into account that ω_{α} interchanges $M_{\beta} \cap C\left(j_{1}\right)$ and $M_{\beta} \cap C\left(j_{2}\right)$, we see that one of the following cases must occur:
(1) $\quad M_{\beta}=X_{\beta} X_{-\alpha} X_{\alpha}^{\eta}{ }^{2}$
(2) $\quad M_{\beta}=X_{\beta} X_{\alpha}^{\eta} X_{-\alpha}^{\eta}$
(3) $\quad M_{\beta}=X_{\beta} X_{\beta}^{\eta} X_{\beta}^{\eta 2}$
(4) $M_{\beta}=X_{\beta} X_{D_{\beta}} X_{-\beta}^{n^{2}}$

Suppose (1) holds. For any ω in $N(H)$, we note that $R_{\beta} \cap R_{\beta}^{\omega}$ admits D. Applying the Brauer-Wielandt Theorem with $\omega=\omega_{\alpha} \omega_{\beta} \eta$, we find that

$$
\begin{equation*}
R_{\beta} \cap R_{\beta}^{\omega}=X_{-\alpha}^{\eta} X_{\alpha}^{\eta^{2}} \text { for } \omega=\omega_{\alpha} \omega_{\beta} \eta \tag{6.1}
\end{equation*}
$$

Since M_{β} / X_{β} is abelian, (6.1) implies that

$$
\begin{equation*}
\left[X_{-\alpha}^{\eta}, X_{\alpha}^{\eta^{2}}\right] \leqslant X_{\beta} \cap X_{-\alpha}^{\eta} X_{\alpha}^{\eta_{\alpha}^{2}}=1, \tag{6.2}
\end{equation*}
$$

so that M_{β} is abelian. Conjugating (6.2) by $\omega_{\beta} \eta^{2}$ gives $\left[X_{a_{\alpha}}, X_{\alpha}\right]=1$, which implies that $X_{-\alpha}^{\eta} \leqslant Z\left(R_{\beta}\right)$. In particular, $R_{\beta}^{\omega}{ }^{\alpha}{ }^{\eta}=X_{-\alpha}^{\eta} X_{\beta}^{\eta} X_{\alpha} X_{-\alpha}^{\eta}$ is contained as an S_{p}-subgroup in $C\left(X_{\alpha}\right)=L_{\beta} K_{\alpha}$, and so $R_{\beta}^{\omega_{\alpha} \eta} \geqslant M_{\alpha}$. Since $X_{\beta}^{\eta} \leqslant Z\left(R_{\beta}^{\omega_{\alpha} \eta}\right)$, it follows that X_{β}^{η} induces trivial automorphisms on M_{α} / X_{α}, so that $X_{\beta}^{\eta} \leqslant M_{\alpha}$. Conjugating this last relation by ω_{β} yields $X_{-}^{\eta_{\beta}^{2}} \leqslant M_{\alpha}$, so in particular, $X_{\eta_{\beta}^{2}}^{2} \leqslant R_{\beta}^{\omega \alpha \eta}$, and $X_{-\beta}^{\eta} \leqslant R_{\beta}$, which is a contradiction. Thus case (1) cannot occur, and a similar argument excludes case (2) as well.

Suppose (3) holds. $X_{\beta}, X_{\beta}^{\eta}, X_{\beta}^{\eta^{2}}$ are permuted transitively by η, so that η normalizes M_{β}. Since $X_{\beta} \leqslant Z\left(M_{\beta}\right)$, it follows that M_{β} is abelian. Now M_{β} can be considered as a representation space for L_{α} over F_{p}. Since [$\left.L_{\alpha}, X_{\beta}\right]=1$ and j inverts $X_{\beta}^{\eta} X_{\beta}^{\eta 2}$, the representations of L_{α} on X_{β} and M_{β} / X_{β} are in different p-blocks. Thus M_{β} is a completely reducible L_{α}-module. In particular, $T=C\left(X_{\alpha}\right) \cap M_{\beta}$ has order q^{2}. Now T admits H, and $T \cap C(j)=X_{\beta}$. Applying the Brauer-Wielandt Theorem and [5] (4B), (4C), we can deduce that

$$
T=X_{\beta} X_{\beta}^{\eta^{t}}, \quad i=1 \text { or } 2
$$

Thus $X_{\beta}^{\eta^{i}} \leqslant C\left(X_{\alpha}\right)=L_{\beta} K_{\alpha}$. If $X_{\beta}^{\eta^{t}} \leqslant M_{\alpha}$, then case (1) or (2) would hold for M_{a}, which we have just seen to be impossible. Thus $X_{\beta}^{\eta^{t}} \ddagger K_{a}$, and since $X_{\beta}^{\eta t}$ and K_{α} both admit H, this implies that $X_{\beta}^{\eta i} \cap K_{\alpha}=1$. But now $X_{\beta}^{\eta t}$ centralizes X_{β}, and $L_{\beta} K_{\alpha} / K_{\alpha}$ is isomorphic to $S L(2, q)$. Thus $X_{\beta}^{n^{i}} K_{\alpha}=X_{\beta} K_{\alpha}$, which is impossible since $X_{\beta} K_{\alpha} \cap C(j)=X_{\beta} X_{\alpha}$, while $X_{\beta}^{\eta^{i}} K_{\alpha} \cap C(j)=X_{\alpha}$. Case (3) then does not occur.

Suppose finally that (4) holds. If $\left[X_{-\beta}^{n}, X_{-\beta}^{n}\right]=1$, then conjugating this relation by $\omega_{\beta} \eta$ gives $\left[X_{\beta}, X_{\beta}^{\eta}\right]=1$. Thus $L_{\beta}^{\eta^{2}}=\left\langle X_{\beta}, X_{-\beta}\right\rangle^{\eta^{2}} \leqslant C\left(X_{\beta}\right)$, which is impossible since j_{2} inverts X_{β}. Hence $\left[X_{-_{\beta}}, X_{n_{\beta}}^{n^{2}}\right] \neq 1$, and since $X_{\eta_{\beta}}$ and $X_{n_{\beta}^{2}}^{n_{\beta}}$ admit H, we find that $\left[X_{\eta_{\beta}}, X_{n_{\beta}^{2}}^{2}\right]=X_{\beta}$. A similar type of argument shows that $Z\left(M_{\beta}\right)=X_{\beta}$. Thus $Z\left(R_{\beta}\right)=X_{\beta}$, so in particular, $N\left(R_{\beta}\right) \leqslant N\left(X_{\beta}\right)$, which is enough to show that R_{β} is an S_{p}-subgroup of G. If (II) holds for the index α, then X_{α} and X_{β} would necessarily be conjugate in G, which we showed to be impossible in the proof of (6 B). This completes the proof.
(6D) If $|G|$ is not divisible by q^{6} then $X_{1} X_{2}$ is an S_{p}-subgroup of G.
Proof. $\langle j\rangle$ is an S_{2}-subgroup of $C\left(X_{1} X_{2}, j\right)$, so by [5] (2B) $\langle j\rangle$ is also an S_{2}-subgroup of $C\left(X_{1} X_{2}\right)$. In particular, $C\left(X_{1} X_{2}\right)$ has a normal 2-complement T, and the Frattini argument gives

$$
N\left(X_{1} X_{2}\right)=\left(N\left(X_{1} X_{2}\right) \cap C(j)\right) \cdot C\left(X_{1} X_{2}\right) .
$$

Since $N\left(X_{1} X_{2}\right) \cap C(j)=X_{1} X_{2} H$, it follows that $N\left(X_{1} X_{2}\right)=T H$. If $X_{1} X_{2}$ is not an S_{p}-subgroup of G, then $X_{1} X_{2}$ is not an S_{p}-subgroup of T. Since $T \leqslant C\left(X_{1} X_{2}\right)$, this is impossible by (6 A) and (6 C).
(6E) If $q=5$ or 7 , then q^{6} divides $|G|$.
Proof. We use the notation of [5], §5. Since $q=5$ or 7, it follows that $q+\varepsilon=6$, so that $|V|=9$. If ζ centralizes V_{α}, where $\alpha=1$ or 2 , then $X=C\left(V_{\alpha}\right) / V_{\alpha}$ satisfies the conditions of [5] (3E). In particular, q^{3} divides $|G|$, and so q^{6} divides $|G|$ by (6D). We may assume then that ζ does not centralize V_{1} or V_{2}. $\quad \zeta$ must then fix exactly 3 elements in V, none of which belong to $V_{1} \ddagger \cup V_{2}{ }^{\sharp}$. The remaining 6 elements of V thus lie in orbits of length 3 under the action of ζ, and a generator v_{1} of V_{1} is necessarily fused to a generator v_{2} of V_{2}. Since $\left\langle a_{1}, b_{1}, n\right\rangle$ and $\left\langle a_{2}, b_{2}, n\right\rangle$ are S_{2}-subgroups of $C\left(V_{2}\right)$ and $C\left(V_{1}\right)$ respectively, these 2 -groups are then conjugate in G. But
then they would be conjugate in $C(j)$, which is impossible. This completes the proof of (6E).
(6F) If $q=9$ or 11 , then q^{6} divides $|G|$.
Proof. We shall only outline the proof, since the calculations involved are lengthy. Suppose (6 F) fails to hold for $q=9$. If \mathscr{D} is the set of all elements of $C(j)$ which are roots of j, 3 -singular elements, or 5 -elements in L_{1} or L_{2}, then it is not difficult to show using (6D) and [5] (3E) that \mathscr{D} is a union of classes of $C(j)$ which are special in the sense of [9]. Moreover, $C(j) \geqslant C^{*}(g)$ for every g in \mathscr{D}, where $C^{*}(g)$ is the extended centralizer of g in G. $C(j)$ has an irreducible character θ of degree 81 such that $1-\theta$ vanishes on the elements of $C(j)-L_{1} L_{2}$ not in \mathscr{D}. $C(j)$ also has 8 irreducible characters $\Xi_{i}, 1 \leqslant i \leqslant 8$, of degree 80 such that $1-\theta+\Xi_{i}$ vanishes on the elements of $C(j)$ not in \mathscr{D}. Decomposing the induced characters $\left(1-\theta+\Xi_{i}\right)^{*}$ and applying the Suzuki order formula [9], we find

$$
|G|=2^{14} \cdot 3^{8} \cdot 5^{3} \cdot 41^{2} \frac{x(x+\delta)}{(x-\chi(j))^{2}}
$$

where $\delta= \pm 1, \chi$ is an irreducible character of $G, x=\chi(1)$, and $x, x+\delta$ are divisors of $|G|$. In particular, $x-\chi(j)$ divides $2^{7} \cdot 3^{4} \cdot 5 \cdot 41$. Since $|C(j)|=(720)^{2}$, it follows that only a limited number of possibilities arise for $|G|$, all of which turn out to be impossible.

If $q=11$, then $q \equiv 3(\bmod 8)$. Now whenever $q \equiv \pm 3(\bmod 8)$, an S_{2}-subgroup S of G has order 64. The fusion of 2 -elements in G then is that designated as case I in [1]. By methods similar to those in [1], and indead, using [1] (4.1), (4.2), we can write down all possible decomposition numbers for the principal 2-block of G. Up to this point, only the structure of S need be assumed known. If in addition we use the fact that $C(j)$ is known, we can obtain the order formula

$$
|G|=q^{4}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2} \frac{x(x+1)}{\left(x+q^{2}\right)^{2}}
$$

where $|x|$ is the degree of an irreducible character of G. Moreover, $x+q^{2}$ divides $q^{2}\left(q^{2}-1\right)\left(q^{2}+1\right), x \equiv 27 q^{2} \pm 20 q-16(\bmod 64)$, and $\left(x+q^{2}\right)^{2}-4 x\left(q^{2}+1\right)^{2}$ is a square. In particular, for $q=11$, the limited number of possibilities which arise for $|G|$ turn out to be impossible except for the one case where q^{6} divides $|G|$.

References

[1] R. Brauer and P. Fong, A characterization of the Mathieu group M_{12}, Transactions of the Amer. Math. Soc. 122 (1966), 18-47.
[2] C. Chevalley, Sur certains groupes simples, Tohoku Math. Journal (2), 7 (1955), 14-66.
[3] L.E. Dickson, Linear groups in an arbitrary field, Transactions of the Amer. Math. Soc. 2 (1901), 363-394.
[4] ———_A new system of simple groups, Math. Annalen, 60 (1905), 137-150.
[5] P. Fong and W.J. Wong, A characterization of the finite simple groups $\operatorname{PSp}(4, q)$, $G_{2}(q), D_{4}^{2}(q), I$, Nagoya Math. Journal 36 (1969), 143-184.
[6] D. Gorenstein, Finite groups. Harper and Row, New York, 1968.
[7] Z. Janko, A characterization of the simple group $G_{2}(3)$, Journal of Algebra 12 (1969), 360-371.
[8] R. Steinberg, Variations on a theme of Chevalley, Pac. Jour. Math. 9 (1959), 875-891.
[9] M. Suzuki, Applications of group characters, Proc. Symposium Pure Math., Amer. Math. Soc. 1 (1959) 88-99.
[10] G. Thomas, A characterization of the groups $G_{2}\left(2^{n}\right)$, Journal of Algebra 13 (1969), 87118.
[11] J.G. Thompson, Non-solvable finite groups all of whose local subgroups are solvable, to appear.
[12] J. Tits, Théorème de Bruhat et sous-groupes paraboliques, C.R. Acad. Sci. Paris, 254 (1962), 2910-2912.
[13] Sur la trialité et certains groupes qui s'en déduisent, Institut des Hautes Études Scientifiques, 2 (1959).
[14] H. Wielandt, Zum Satz von Sylow, Math. Zeitschrift, 60 (1954), 407-409.
[15] W.J. Wong, A characterization of the finite projective symplectic groups $P S p_{4}(q)$, Transactions of the Amer. Math. Soc. 139 (1969), 1-135.

University of Illinois
Chicago, Illinois

[^0]: Received January 16, 1969.

 1) This research was partially supported by the National Science Foundation grant GP6539.
