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ANALYZING THE SPATIAL DISTRIBUTION OF DRUMLINS: A TWO-PHASE
MOSAIC APPROACH

By B. N. Boots and R. K. Burns

(Department of Geography, Wilfred Laurier University, Waterloo, Ontario N2I. 3C5, Canada)

ApsTrRACT. Researchers have analyzed various properties of drumlins
within individual drumlin fields in order to provide evidence to help in
identifying the processes involved in drumlin formation. One property
which has been examined is the spatial distribution of drumlins within a
field. T'raditionally, in such endeavours the individual drumlins have been
represented as points and their distribution examined using techniques of
point-pattern analysis. We suggest that not only is such a representation
inappropriate at this scale, it also introduces statistical bias which makes the
results of such analyses questionable. Consequently, we propose an alterna-
tive approach which invelves representing individual drumlins as areal
phenomena and considering their pattern as a two-phase mosaic. The
advantages of such an approach are discussed and it is illustrated by
applying it to two different drumlin fields.

Rissumic. Analyse de la vépartition spatiale des drumlins: une approche mosaique a
deux étapes. Des chercheurs ont analysé différentes propriétes des drumlins
pour des champs particuliers de fagon a degager des caractéristiques utiles
al'identification des processus mis en ocuvre lors de leur formation. Une des
propriétés traitée concerne leur répartiion dans un champ. Habitu-
ellement, lors de tels essais les drumling sont représentés comme des points
et leur distribution est examinée a l'aide de lanalyse des caractéristiques des
points. Nous proposons que non seulement une telle représentation est
inadéquate a cette échelle, mais que de plus elle introduit un biais statistique

INTRODUCTION

By virtue of their smooth, distinctive shape,
drumlins are amongst the most visible legacies of
the Pleistocene glaciers. Consequently, they have
been the subject of considerable research. However,
despite this attention, much remains unknown about
drumlins, in particular the conditions responsible
for their formation. A comprehensive survey of the
theories of formation proposed so far, together with
a review of most other facets of drumlin research,
has been given by Menzies (1979). In common with other
areas of geomorphology, one aspect of drumlin research
has been concerned with the spatial distribution and
morphological characteristics of individual drumlins,
since such evidence is useful both in the verification
and modification of existing theories and in the prop-
agation of new theories. With this goal in mind, it
is important that we should be able to describe such
features as succinctly as possible. In this paper we
focus on the quantitative description of the spatial
distribution of individual drumlins within a drumlin
field. We begin with a critical review of existing
methods and then propose and illustrate the use of an
alternative approach.

PREVIOUS APPROACHES

Amongst the earliest studies of the within-field
distribution of drumlins were those of Reed and others
(1962), Vernon (1966), and Baranowski (1969), which
involved measuring the spacing between individual
drumlins (or more precisely between the length axes
of individual drumlins). Although these techniques
permitted the inclusion of a directional component in
the analysis with measurements being made both
parallel and perpendicular to the assumed direction
of ice flow, they suffered from several shortcomings.
First, as Smalley and Unwin (1968, p. 383) pointed
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qui rend contestables les résultats de cette analyse, Clest pourquoi nous
proposons une approche différente qui fait intervenir la représentation d’un
drumlin individuel comme un phénoméne de surface en considérant leurs
caractéristiques comme une mosaique a deux étapes. Les avantages d'une
telle approche sont discutés et elle est mise en application pour deux
différents sites de drumlins,

ZUSAMMENFASSUNG. Analyse der riaumlichen Verteilung von Drumlins: ein zwei-
phasiges Mosatk-Verfahren. Forscher haben verschiedene Eigenschaften von
Drumlins untersucht, mit dem Ziel, Aussagen zur Klarung der Prozesse bei
der Drumlinbildung zu gewinnen. Eine dieser Eigenschaften ist die
raumliche  Verteilung von  Drumlins  innerhalb eines Feldes.
Traditionsgemiiss werden bei diesen Bemuhungen die einzelnen Drumlins
als Punkte dargestellt, deren Verteilung mit Verfahren der Punktmuster-
Analyse untersucht wird. Wir vermuten, dass eine solche Darstellung in
diesem Massstab nicht nur unangemessen ist, sondern dass sie auch statisti-
sche Unwagbarkeiten mit sich bringt, die das Ergebnis der Analysen frag-
wiirdig erscheien lassen. Wir schlagen daher ein anderes Vorgehen vor, bei
dem einzelne Drumlins als flachenhafte Erscheinungen dargestellt werden,
deren Muster als zweiphasiges Mosaik betrachtet wird. Die Vorteile eines
solchen Verfahrens werden diskutiert; durch Anwendung auf zwei ver-
schiedenen Drumlinfelder wird es erldutert.

out, the identification of the appropriate measure-
ments is not always unambiguous. Further, since the
result of such an analysis is a frequency distribu-
tion, no single summary measure is obtained for the
spatial distribution. Although it is possible to com-
pare such empirical frequency distributions with
theoretical ones, this was not attempted, perhaps be-
cause an appropriate model distribution was not readily
identifiable. In turn, this often resulted in subse-
quent qualitative interpretations of the empirical
frequencies.

Dissatisfaction with these earlier approaches led
to the adoption of the prevailing approach. This in-
volves categorizing individual drumlins as points and
analyzing the resulting patterns using techniques of
point-pattern analysis. In drumlin research, the most
frequently used procedures are quadrat analysis and
nearest-neighbour analysis. Examples of the former
range from standard applications in the work of
Trenhaile (1971) to more sophisticated use in the
block-size analyses of variance undertaken by Hill
(1973), while the use of nearestineighbour analysis
is illustrated by Smalley and Unwin (1968) and
Jauhiainen (1975). While each of these procedures has
inherent general limitations which are present in
most contexts (for a review of these for quadrat analy-
sis in general see Rogers (1974), for block-size analy-
sis of variance in particular see Pielou (1974, p. 98),
and for nearest-neighbour analysis see Pinder and
Witherick (1972) and De Vos (1973)), there are addition-
al problems which arise in the analysis of the spatial
distribution of drumlins, Most of these are inherent
in the representation of a set of drumlins as a point
pattern. First, the representation of objects as
points when they themselves are not points requires
that their physical sizes relative to the distances
between them and the extent of the study area are so
small that they can be conveniently ignored (Cliff
and Ord, 1981, p. 86; Ripley, 1981, p. 3). It is dif-
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ficult to justify such a representation in the case
of individual drumlins in a single field. Secondly,
by representing the drumlins which are three-dimen-
sional by points which are considered dimensionless,
there is a considerable loss of information (Menzies,
1979, p. 338-39). In addition, drumlin orientation

is lost, thus precluding the inclusion of an explicit
directional component in the analysis. Further, there
is the problem of deciding at which location in the
drumlin the point representing it should be placed.
There is no agreement on this matter. Reed and others
(1962) used a location midway along the length axis,
while Smalley and Unwin (1968) took the stoss end of
this axis, and Hi11 (1973) the point of intersection
of the length and width axes; Trenhaile (1971, 1975)
and Jauhiainen (1975), on the other hand, used the
drumlin summit. Further exacerbation of this problem
is the occurrence of coalesced drumlins. Should they
be represented as two points or one? The answer ob-
viously involves a somewhat arbitrary decision by the
researcher (see Hill, 1973, p. 231). Finally, the
reduction of a drumlin to a point produces an in-
hibition effect around each point thus truncating the
lower Timit on the inter-point distances, since on
average the distance between any two points cannot be
less than the width of a drumlin. This effect has not
been acknowledged in existing analyses, which have
compared empirical patterns with model ones having no
such Tower Timit on inter-point distances and which,
on occasion, seem to have been chosen more for their
availability than for their applicability. When the
model pattern is a random one (i.e. the realization
of an homogeneous planar Poisson point process),

such a comparison will be bjased in favour of indica-
ting a more "dispersed than random" empirical pattern.
Smalley and Unwin (1968, p. 387) implicitly recognized
this problem when they noted that their random place-
ment model produced results which would normally be
interpreted as lying between uniformly spaced and
random.

THE TWO-PHASE MOSAIC APPROACH

A two-phase {or binary) mosaic represents a planar
region in which sub-regions (patches) occupied by a
particular phenomenon alternate with unoccupied areas
{gaps). The concept can be extended to n phases and,
consequently, mosaics can be used to represent a num-
ber of empirical circumstances (see Pielou, 1974,

p. 166-93, [1975], p. 72-84). It is interesting to note
that Hill (1973) used an n-phase mosaic approach, al-
though he did not identify it as such, in which the
phases were patches of different drumlin densities.
Here we 1imit our attention to a two-phase mosaic, in
which each drumlin is considered as a patch. We sugg-
est that there are certain advantages in representing
spatial distributions of drumlins as mosaics rather
than as point patterns. First, the representations of
individual drumlins as two-dimensional objects is much
more appropriate for analysis at the within-field
scale, Such representations retain more information,
although drumlin volume is still ignored. Anongst the
information retained is drumlin orientation, which
permits analysis of directional components in the
spatial distribution. Also the problems of point 1o0-
cation and coalesced drumlins are avoided.

As with empirical point patterns, empirical mo-
saics can be evaluated using theoretical structures.
Following the precedents established so far, the most
likely standard is a "random" (pure chance) two-phase
mosaic. Intuitively, we might consider a "random"
mosaic as the outcome of a "random" process which 1o-
cates the patches in the plane. Unfortunately, it has
long been recognized that there is no unique random
process of this kind (Kendall and Moran, 1963, p. 9-
11). However, Pielou (1964) has suggested that a two-
phase mosaic could be regarded as random if the se-
quence of phases observed at equal intervals along a
traverse through the pattern conforms to a simple,
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two-state Markov chain. This implies that the phase
observed at any point depends only on the phase at
the preceding point on the traverse. As Switzer (1965)
pointed out, this condition is met only in mosaics
formed by drawing a set of "random" 1ines in the plane
(using the method described by Miles (1964)) and then
independently assigning to each of the convex poly-
gons so created a colour (black or white, say) with
fixed probabilities b and w, respectively, with

b +w= 1. Such a mosaic (with b = 0.1) is shown in
Figure 1. Although it would be absurd to suggest that

Fig. 1. A part of a random mosaic.

the conditions involved in the creation of this random
mosaic occur in the real world, Pielou ([€1977], chap-
ter 12) argued that this does not preclude the model's
use as a standard by which to compare empirical pat-
terns, especially if we suspect that such patterns
may possess properties (e.g. the means and variances
of the sizes of the phases) which are indistinguish-
able from those of the random mosaic. Such an assump-
tion appears reasonable in the case of drumlins, if
we assume that there is no overlapping of individual
drumlins and that each drumlin is independent of all
other drumlins. It is possible that an empirical pat-
tern may be random in other than an isotropic way.
Pielou (1965) recagnized two possibilities. Unidirec-
tional randomness occurs if the sequence of phases
gives a two-state Markov chain in only one direction.
If sampling in any direction gives a two-state Markov
chain but the transition probabilities vary with dir-
ection, the pattern is said to be anisotropically
random (Moore, 1974). We might well expect such pat-
terns for drumlins with respect to the assumed direc-
tion of ice flow.

The test for randomness in a mosaic has been given
in detail by Pielou (1965, p. 911-14) and will only be
summarized here. First, a direction, which is held con-
stant for all traverses, is selected. In the illustra-
tions below we use directions both parallel and per-
pendicular to the assumed ice-flow direction. Since we
are testing for Markov properties, the traverse need
only consist of two points. Pielou suggested that, in
order to get the best representative coverage of the
mosaic, a large number of short traverses, each of a
pair of points, is preferable to a few long traverses.
This is especially so when the mosaic is fine-grained
(i.e. when the total length of inter-phase boundary
in the mosaic is high), which is the case for drum-
lins. The results obtained from the traverses are
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tabulated as a matrix, [mjx] = [M]. The test for ran-
domness consists of deciding whether the mjy can be
regarded as the same as those of successive pairs of
a simple Markov chain with a transition probability
matrix of the form [P] where

P1 p2
LB = .
P1 P2
Pielou showed that the maximum likelihood estimate,
Py, of P may be obtained from

rnllPl'1 - ,(mjk)(l - Pl)'1 +
k#]

+ (mpay)LPray) + (ap - a)T! = 0

where aj, ap are the elements of the limiting vector
(i.e. aj = probability that the first of a pair of
sampling points is inthe jth phase and is equal to the
proportion of the study area covered by the jth phase),
and that an estimate, ﬁl, of p; may be obtained from

By = a1 - Bplap”!
Further, the elements dl'k’ of the matrix of expected

transition frequencies, T}Dl] are given by

d Ma ; j # k) and
Liy ik (3% k)
dljk = Maij (i = k)

where M =) } mjy.
Jk
Because of sampling errors, the row totals of [D1] may

not be equal to those of [M]. Thus, a second matrix,
[Dp], can be constructed in which

d M j# k) and
25, ik )

dz

ik Mj PJ‘

(J = k)
where Mj =}j mike

It is [Dg] which is used in testing the goodness of
fit to the matrix of observed frequencies, [M]. A chi-
squared test is used which has one degree of freedom
for a two-phase mosaic.

ILLUSTRATIONS

The technique is applied to two drumlin fields.
One is the Vale of Eden field previously examined by
Smalley and Unwin (1968) using nearest-neighbour
analysis, The other is a field in the Dundalk area of
southern Ontario.

Figure 2 reproduced from Smalley and Unwin (1968)
shows the Vale of Eden field they examined, The drum-
lins in this pattern were identified from 1:25 000
topographic maps by means of contour patterns (Smalley
and Unwin, 1968, p. 387). Approximately 7% of the
study area is covered by drumlins. This value was ob-
tained by direct measurement but, if the researcher
prefers to avoid this tedious task, made especially
more so by large fields, the proportions can be estim-
ated (Pielou, [1975], p. 200). The pattern was sampled
both parallel and perpendicular to the assumed ice
flow, which was defined as the average azimuth of the
orientation of the drumlins' long axes (154°).

Pielou (1965, p. 912) suggested that the length of
such a traverse should be short enough for there to
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Fig. 2. Vale of Eden drumlin field analyzed by Smalley
and Unwin (1968).

be pronounced dependence between the points forming
the pair and long enough for most of the mjk(j # k) to
form an appreciable fraction of the total. Our choice
of traverse lengths was guided by this observation
and the lengths used are such that there is a non-
zero chance that the points in a pair may fall within
a single drumlin. This was achieved by setting the
length of a traverse equal to one-half of the average
length of the drumlins' long axes (327 m) in the dir-
ection parallel to the assumed ice flow and at half
that distance (163.5 m) perpendicular to the ice flow,
Two sets of 150 points, each located at random in the
study area, were then created. Each of these points
was taken as the southernmost or westernmost point of
a pair of points lying the specified distance apart
in a direction of 154° or 244°, The states (i.e. drum-
Tin or non-drumlin) at each end of these traverses
were recorded and are given in Table I. Subsequent
analysis, summarized in Table I, shows that both in
directions parallel and perpendicular to assumed ice
flow the sampled frequencies are not significantly
different from those expected for a random mosaic with
the same proportion of drumlinized area.

The other drumlin field examined is located in
the Dundalk area of southern Ontario (see Fig. 3).
This field has not been described previously in the
literature. Drumlins were identified by stereoscopic
interpretation of air photographs at a scale of 1:

15 840 followed by selective field checking. Initially,
all features exhibiting some degree of elongation

and positive local elevations were classified as drum-
ling, Subsequently, eskers and moraines were elimin-
ated from the group. Approximately 6% of the study
area is covered by drumlins., A part of this field is
shown in Figure 4.

As in the previous analysis, the pattern was ana-
lyzed both parallel and perpendicular to the assumed
direction of ice flow. However, since the drumlins in
this field show greater variation in their orient-
ation than those in the first area, it was decided to
perform two sets of analyses. In the first of these
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TABLE
(a1, ap)

Parallel to ice flow
(azimuth 154°)

Phase at N point
N

D
Phase at D 4 6
S point N 7 133
[Pl = 0.382 0.618
0.047 0.953
0] = 4.04  6.53
6.54 132.89
[Dp] = 3.82  6.18
6.57 133.43
x% = 0.043

D Drumlinized.
N Not drumlinized.

Boots and Burms:

I. VALE OF EDEN

(0.071, 0.929)

Perpendicular to ice flow
(azimuth 244°)

Phase at E point
D N

Phase at D 0 6

W point N ? 137

[P] = 0.000 1.000
0.076 0.924

[01] = 0.00 10.57
10.57 128.86

[Dp] = 0.00 6.00
10.92 133.08

x2 = 1,159

Spatial distribution of drumlins

M

[3 Till Moraine

Lake Erie

fZ] Kame Moraine
FA Study Area
& Singhampton Moraine

AN

8 Orangeville Moraine

Fig. 3. Location of the Dundalk drumlin field (Canada.

Dept. of Energy, Mines and Resources, 1972).

sets, the sampled directions were the mean drumlin
azimuthal orientation (157°) and a direction orthogo-
nal to this (247°), while in the second they were the
modal orientation (135°) and 225°. In each case, the
pattern was sampled using 150 short traverses. As in
the previous illustration, the southern and western
ends of the traverses were located at random in the
study area and their lengths were equal to one-half
of the average drumlin length (230 m) in the direc-
tion parallel to the assumed ice flow and one-quarter
of the average drumlin length (115 m) in the direc-
tion perpendicular to the assumed ice flow. The re-
sulting samples are shown in Tables II and III. For
both directions, for both sets of analyses, the re-
sults again indicate that the pattern is not sig-
nificantly different from a random mosaic.,

CONCLUDING COMMENTS

We have presented a method of analyzing the
within-field spatial distribution of drumlins which
we think is both more appropriate and useful than ex-
isting methods. However, this does not mean that the
new method could not be refined. In particular, some
might question the choice of the random-line mosaic
as an appropriate general random mosaic model for
drumlins. This model was chosen, in part, because of
its availability and analytical tractability. Of
course, the technique does not preclude the use of
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Fig. 4. A part of the Dundalk drumlin field.

other models, such as the random placement model of
Smalley and Unwin (1968), as the random mosaic model.
However, it is unlikely that such alternative models
will possess properties which are as easily identi-
fied and described as the Markovian ones of the ran-
dom-line mosaic. In such circumstances, we will have
to resort to the use of a simulation approach as, for
example, Diggle (1981) did in his study of patterns
of heather as two-phase mosaics. In general, such an
approach involves simulating the process believed to
have been responsible for generating the empirical
pattern and then using a Monte Carlo testing proced-
ure. In summary, this would involve measuring one or
more properties of the empirical pattern (P, would
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TABLE II. DUNDALK AREA, MEAN ORIENTATION

(a1, ap)

Parallel to ice flow
(azimuth 157°)

Phase at N point
D N

Phase at D 1 8
S point N8 133
(] = 0.117 0.883
0.060  0.940
[0;] = T 8.40
8.40 132.09
[Dp] = 1.05 7.95
8.43 132.57
x2 = 0.025

D Drumlinized.
N Not drumlinized.

(0.063, 0.937)

Perpendicular to ice flow
(azimuth 247°)

Phase at E point
D N

Phase at D 1 12
W point N 8 129
[P] = 0.080 0.920
0.062 0.938
[01] = 0.76 8.74
8.74 18
[Dz] = 105 11.95
8.52 128.48
x% = 0.036

TABLE III. DUNDALK AREA, MODAL ORIENTATION

(a7, ap)

Parallel to ice flow
(azimuth 135°)

Phase at N point
D N

Phase at D 1 6
S point N 7 136
(r1 = 0.170  0.830
0.056  0.944
(0] = 1.61 7.90
7.90 132.59
(D] = 1.19 5.81
8.04 134.96
x2 = 0.179

D Drumlinized.
N Not drumlinized.

seem a likely choice) and considering this pattern
as the outcome of the hypothesized process. This pro-
cess is then simulated in order to obtain a number of
patterns (usually 99 to correspond with conventional
significance levels). The same property is then ob-
tained for each of the simulated patterns. We can
then examine where the value for the empirical pat-
tern falls within the entire set of 100 values (99
from simulated patterns and one from the empirical),
thus giving an indication of the likelihood of the
empirical pattern occurring under the conditions of
the hypothesized process. A more detailed discussion
c()f thi)s testing procedure has been given by Diggle
1979).

Finally, of course, the value of the method will
be determined by its ability to enable us to ask and
answer more pertinent questions about within-field
drumlin distribution (Menzies, 1979). To this end, we
suggest that it would be valuable to use this method
in future comparative studies of drumlins.
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(0.063, 0.937)

Perpendicular to ice flow
(azimuth 225°)

Phase at E point
N

D
Phase at D 1 18
W point N 10 121
[P] = 0.048 0.952

0.064 0.936
0] = 0.46 9,05

9.05 131.44
[Dp] = 0.92 18.08

8.44 122.56

x2 = 0,315

of this paper. We are also grateful to P. Schaus, who
drafted the figures.
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