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Rational Integer Invariants
of Regular Cyclic Actions

Robert D. Little

Abstract. Letg: M?" — M?" be a smooth map of period m > 2 which preserves orientation. Suppose
that the cyclic action defined by g is regular and that the normal bundle of the fixed point set F has a
g-equivariant complex structure. Let F M F be the transverse self-intersection of F with itself. If the
g-signature Sign (g, M) is a rational integer and n < ¢(m), then there exists a choice of orientations
such that Sign(g, M) = Sign F = Sign(F rh F).

1 Introduction

Let M?" be a smooth, closed, oriented 2n-manifold. Let G,, denote the cyclic group
of order m. Let g: M*" — M?*" be a diffeomorphism of period m which preserves
the preferred orientation of M?". Suppose that the smooth G,, action defined by g
has fixed point set F and that v is the normal bundle of F in M*". We will assume
throughout this paper that v admits a complex structure compatible with the g-action.
This assumption is automatically fulfilled for m odd. We will also assume that the
orientation of v is the one determined by its complex structure. This orientation, together
with the preferred orientation of M*", determines an orientation of F.

Let Sign(g, M) be the g-signature of the action [2]. The g-signature is an algebraic
integer, that is Sign(g, M) € Z[\] where A = exp(27i/m). If Sign(g, M) is a ratio-
nal integer, that is Sign(g, M) € Z, then it is related to the signatures of F and the
transverse self-intersection of F with itself, F r F, if the action is regular. The action
is regular if there is a fixed irreducible representation of G,, which determines every
normal slice type (Definition 2.4). Let Feyen(Fodqa) be the union of all components
of F where the restriction of v has even (odd) complex dimension. Let ¢(m) be the
number of integers smaller than m and relatively prime to m.

Theorem 1 Suppose that g: M*" — M?>" is an orientation preserving diffeomorphism
of period m > 2. If the G, action defined by g is regular and Sign(g, M) € Z and
n < ¢(m), then

Sign(g, M) = Sign Feyen = Sign(F th F)

and Sign Foqqa = 0. In particular Sign(g, M) = Sign F.

Theorem 1 strengthens an earlier result that if m = p an odd prime, Sign(g, M) €
Zand n < p — 1, then Sign(g, M) = Sign F [11, Theorem A]. The assertion in The-
orem 1 about Sign(F rh F) is new even in the odd primary case. If M*" admits an
orientation preserving involution T: M?" — M?", then Sign(T, M) = Sign(F h F)

Received by the editors April 4, 2002.
AMS subject classification: 57S17.
(©Canadian Mathematical Society 2004.

60

https://doi.org/10.4153/CMB-2004-008-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2004-008-2

Rational Integer Invariants 61

[7], [2, Proposition 6.15], [8, p. 27]. Theorem 1 shows that for regular actions with
Sign(g,M) € Zand n < ¢(m), Sign(g, M) behaves like the signature of an involu-
tion.

If the intersection form underlying the g-signature is definite, then Sign(g, M) €
7 [3, Lemma 3.1]. If g* is the identity on H*(M;Q), then Sign(g, M) = Sign M
[1, p. 329], [3, Section 1] and so our next result is an immediate consequence of
Theorem 1.

Theorem 2 Suppose that g: M*" — M?>" is an orientation preserving diffeomorphism
of period m > 2. If the G, action defined by g is regular and g* is the identity on
H"(M;Q) and n < ¢(m), then

Sign M = Sign Feyen = Sign(F th F)

and Sign Fogq = 0. In particular Sign M = Sign F.

Theorem 2 is related to results in the literature. If m is odd and M*" admits any
G,, action such that g* is the identity on H"(M; Q)), then Sign M = Sign F (mod 4)
and if the action is regular, then Sign M = Sign F (mod 2¢"™) [1, Theorems 1 and
4]. If p is an odd prime and M*" admits a regular G, action and n < p — 1, then
Sign M = Sign F (mod p) [9, Theorem 2.2]. It follows from these last two results
that if M*" admits a regular G, action with g* the identity on H"(M;(Q) and n <
p — 1, then Sign M = Sign F (mod 27~ 'p). Theorem 2 shows that this congruence is
an equality.

Our next theorem is a consequence of Theorems 1 and 2 and properties of the
transverse self-intersection.

Theorem 3 Suppose that g: M*" — M?*" is an orientation preserving diffeomorphism
of period m > 2 and that the G, action defined by g is regular. If Sign(g, M) € Z and
Sign(g, M) # 0 andn < ¢(m), then n is even and F contains a nonempty component of
dimension at least n. If g* is the identity on H*(M; Q)) and Sign M # 0 and n < ¢(m),
then n is even and F contains a nonempty component of dimension at least .

If p is an odd prime and M*" admits a regular G, action Sign M # 0 (mod p)
and n < p — 1, then F contains a nonempty component of dimension at least n [9,
Corollary 2.7]. Theorem 3 shows that if g* is the identity on H"(M; Q)), then Sign M #
0 is enough to imply that F contains a nonempty component of dimension at least n if
n < p—1. IfL,,(p) is the subgroup of £2,,, consisting of classes all of whose Pontrjagin
numbers are divisible by p and [M] # 0 in Q,,/L,(p), then F contains a nonempty
component of dimension at least # [12, Theorem 1.3].

We offer a congruence for Sign(g, M) and Sign F for regular G,, actions, m > 2,
and a congruence for Sign(g, M) and Sign(F M F) for some values of m. The former
congruence contains the congruence for m odd described above [1, Theorem 4]. Let
p(m) = ¢(m) — 1if m = 2° and p(m) = ¢(m) if m £ 2°.

Theorem 4 Suppose that g: M*" — M?>" is an orientation preserving diffeomorphism
of period m > 2. If the G,, action defined by g is regular and Sign(g, M) € 7, then
Sign(g, M) = Sign Feyen (mod 2°) and Sign Foqqa = 0 (mod 2°"™) and so

Sign(g, M) = Sign F (mod 2°™),
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If p is an odd prime and m = 2p°®, then Sign(g, M) = Sign(F M F) (mod p).

We will apply our results to cohomology complex projective n-space. We say that
M?*" is a cohomology complex projective n-space if there is a class x € H?(M;7Z) such
that H*(M;7) = 7[x]/(x™"). These manifolds are good candidates for applications
since, for m odd, g* is the identity on H"(M;(Q)) and so Sign(g, M) = Sign M. We
say that a submanifold i: K*"~2" C M?" has degree d if i..[K] € Hy,_»(M;7) is dual
to dx’.

Theorem 5 Suppose that M*1 is a cohomology complex projective 2q-space and that p
is an odd prime. If M* admits a regular G,, action and 2q < p — 1, then F contains
a nonempty connected 2r-manifold such that r > q and Sign(F* th F*) = 1. Ifd is
the degree of F*" and r = 2q — 1, then d* is an odd divisor of (2q)! and if r = q, then
d*=1.

Theorem 6 Suppose that M*1 is a cohomology complex projective 2q-space, ¢ = 1
or 2, and that p > 5 is a prime. If M* admits a regular G,, action, then F has two
components. If ¢ = 1, then F is the union of a point and a 2-sphere of degree £1. If
q = 2, then F is either the union of a point and a 6-manifold of degree 1 or the union
of a 4-manifold of degree £1 and a 2-sphere.

This paper is organized as follows. Section 2 contains a discussion of the Atiyah-
Singer g-Signature Formula (ASgSF) as formulated by Berend and Katz [3, Theo-
rem 2.2]. This version of the ASgSF expresses Sign(g, M) explicitly as an element
inZlay, o, ... 0], 0 = (A" + 1)(\ — 1)L, The ASgSF for regular actions is
also discussed. Section 3 describes the minimal polynomial of ; over Q. We prove
Theorems 1, 2, 3, and 4 in Section 4 (Theorems 4.3, 4.12 and 4.19) and Theorems 5
and 6 in Section 5 (Theorem 5.1, Corollary 5.4 and Theorem 5.10).

2 The Atiyah-Singer g-Signature Formula

Suppose that M?" admits an arbitrary G, action generated by an orientation pre-
serving diffeomorphism g: M?" — M?". We are not assuming regularity at this
point and m > 2. Let v be the normal bundle of F in M>". Over each connected
component of F, v splits into a sum of A/-eigen bundles v; where G,, acts on v; as
multiplication by M, A = exp(27i/m). Each component of F has a normal slice
type o = (p1, 2, - - bm—1)> pbj = dimcv;. Let F, be the union of all compo-
nents of F with slice type 41 and v, the normal bundle of F, in M*". Note that
dimc v, = Z;’;l L.

Let 7, be the set of nonnegative integers. If g is a positive integer, let S(q) be the
symmetric group on ¢ letters and put S(u) = HT;II S(pj). Let Q(p) = Q) /S()
where Q(p) = H;";ll 7. Ifw € Q(u), let ||wl|; be the sum of the entries in w from

7} and |w|; the number of these entries which are not zero. Put ||w|| = Z?Z]l llw|l ;-
Letaj =M+ 1N —1)71,1 < j<m—1land A = exp(27i/m).

Theorem 2.1 (Berend-Katz ASgSF, [3, Theorem 2.2]) Let M*" be a smooth, closed,
oriented 2n-manifold and g: M*" — M*" an orientation preserving diffeomorphism of
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period m > 2. There exist rational integers S.,(v,,) € L for each normal slice type (1 and
w € Q(u) such that (2.2)

sign(e. M) = > > (=DII(TLaf 02 - ) 5,0,

o we(p) j

The rational integers S,,(v,,) can be described as follows. Let x; , € H 2(F,L; 7),1<
£ < pj, 1 < j <m—1,beclasses such that the Chern classes of v/; are the elementary
symmetric polynomials in the variables x;¢, 1 < £ < pjandletY;, C F be the

Poincaré dual of x; 4. If & = (wj,) € Q(p), put Y@ =, Y. w”), where Y ” is the

transverse self-intersection of w; ¢ copies of Y; ;, with 1tself If w € Qu) is covered by
@, then

(2.3) S.(v,) = Z | St | 7! Sign Y79,
aeS(u)

where | St | is the order of the stabilizer of & [3, Section 3].

Definition 2.4 A G,, action on M*" is regular if there exists a jo, 1 < jo < m—1, such
that jo is relatively prime to m and for every normal slice type pt = (f41, o2, - - - 5 fhm—1)>
i = 0if j # jo.

If p = (1, 2, - -y pim—1) and p; = 0if j # jo, then p; = dimcv,. The case
fj, = 0 corresponds to an action which is trivial on at least one component of M*". If
a regular action has s slice types, each can be identified with a complex codimension
¢, F = Ui, F*"~%%, where F*"~* is the union of all components of F of dimension
2n— 2c. Let v, be the normal bundle of F>"~% in M?" and note that if a slice type of a
regular action 4 is such that ¢ = dim¢ v, and ¢ # 0, then Q(p) = 75 /S(c) equipped
with the norms || - ||and | - |.

Definition 2.5 If F = |JI_, F*"~%% is the fixed point set of a regular G,, action,
then for each nonzero ¢ € {c|,¢,,...,¢} and integers j, k with 1 < j < cand
j<k<n-—clets(c,j k) ={w e 7 /S(c) lw| = j, |lw|| = k} and

(2.6) S, )W) = > Suwe).

wes(c,j k)

Definition 2.7 If F = | J;_, F*"~%9 is the fixed point set of a regular G,, action and
¢ € {c1,6,...,¢}, then the polynomial p.(x) € Z[x] is defined by the conditions
po(x) = 0and if ¢ # 0, then

c

(2.8) Pl = 37 ST (- — 11, R

j=1 k=1

The polynomials p.(x) play a role in the ASgSF for regular G,, actions. Our next
proposition determines an upper bound on the degree of p.(x) and p.(0).
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Proposition 2.9 Ifc € {c|,cs,...,¢} and ¢ # 0, then the degree of p.(x) is at most
n—2and

(2.10) pc(o) — _ Sign(an_zc M an—zc).

Proof The remark about the degree of p.(x) follows immediately from (2.8). For-
mula (2.10) follows by observing that (2.8) implies that

(211) pc(o) = _Sc(cv C)(Vc)v
and then noting that (2.6) implies that

(212) Se(e, ) (We) = Sy ... (o),

where [(1,1,...,1)] € Z5/S(c) is the equivalence class of (1,1,...,1) € Z5. For-
mula (2.10) now follows from (2.11), (2.12) and Lemma 2.4 in [3]. |

Definition 2.13 IfF = |J!_, F*"~ % is the fixed point set of a regular G,, action, then
the polynomial p(x) € Z[x] is defined by

(2.14) pix) = pe(x).
o1

Definition 2.15 If F = |Ji_, F*"~% is the fixed point set of a G, action, then the
polynomial s(x) € Z[x] is defined by

(2.16) s(x) = Z Sign F2"~ % x5,
i=1

Theorem 2.17 (Berend-Katz ASgSF for Regular G, Actions) Suppose thatg: M*" —
M?" is an orientation preserving diffeomorphism of period m > 2. If the G,, action de-
fined by g is regular and F = | Ji_, F*"~%4, then there exists an v € {aj : 1 < j <
m —1,(j,m) = 1} such that

(2.18) Sign(g, M) = s(a) + (a? — Dp(a).
Proof There exists a jo such that (jo,m) = 1and pu; = 0, j # jo, for every slice type
po= (g1, oy - -, pom—1). It follows that if ¢ € {c,¢c2,..., ¢}, then pj, = c and if

c#0,Qu) = 75/S(c) withnorms || - ||and | - |. If @ = «j,, then it follows from
(2.2) that

(2.19) Sign(g,M) =Sign F"+ Y~ > (=Dlelastlel=2llq? — 1)lls, ).
c#0 weZs /S(c)
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Formula (2.18) follows by putting |w| = j, ||w| = k, and using (2.8), (2.14) and
(2.16) together with S(g.._0))(v.) = Sign F>"~% [3, Lemma 2.4]. [ |

Corollary 2.20 (Hirzebruch ASgSF for Involutions [7]) Suppose that T: M*" —
M?" is an orientation preserving smooth involution. If F is the fixed point set of T, then

(2.21) Sign(T, M) = Sign(F M F).

Proof The G, action defined by T is automatically regular and so it follows from
(2.18) with @ = oy = 0 and (2.10) that

(2.22) Sign(T, M) = s(0) + Y _ Sign(F*"~*  F*"~%).
c#0
The right hand side of (2.22) is Sign(F M F) and so (2.21) follows. [ |

Next we offer p.(x) for a few values of c. To make our results easier to state, we
define the symbol S.(j, k), j and k arbitrary nonnegative integers, to be S.(j, k)(v,) if
1 <j<candj<k<n—candtobezeroif jand k are outside of this range.

Lemma 2.23 Ifn > 3, then

(2.24) (=D 'pix) = 12y Si(1,2k = D2, even,
' ! SIS (1, 2K)x2k 1 1 odd.
(2.25)
[n/2]
(S2(1,2k — 2) + $5(2,2k — 2) — $,(2,2k)) x**2, 1 even,
n ) k=1
(=1)"pa(x) = /2]
(S2(1,2k — 1) + $5(2,2k — 1) — $,(2,2k+ 1)) x*~1, nodd.
k=1
(2.26) Pr1(x) = =S,—1(1, Dx" 2.
(2.27) pn(x) = 0.

Proof Formulas (2.24) and (2.25) follow from (2.8), the definition of S.(j, k), and
the fact that S, (v,) in (2.6) is zero unless n — ¢ — ||w|| = n — ¢ — k is even and
0 <k<n-—c([11],Section 2). Formulas (2.26) and (2.27) follow from (2.8). [ |

3 The Algebraic Numbers «;

This section contains some well known facts about the numbers o; = M +1) x
N =175 X = exp(2mi/m).
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Definition 3.1 If m > 2 and ¢(m) = |{j : j < m,(j,m) = 1}| and ®,,(x) is the
m-th cyclotomic polynomial, then the polynomial M,,(x) € Z[x] is defined by

(3.2) My(x) = (x — D, ((x+ D(x — 1))

Proposition 3.3 If m > 2 and (j, m) = 1, then M,,(x) is the minimal polynomial of
aj over Q. The polynomials M, (x) satisfy the equations below where p is an odd prime.

0, m=2,

2, m=2°e>1,
(3.4) M,(0) = e
p. m=2pe>1,

1, otherwise.

(3.5) M,y (1) = (£1)2m 200",

Proof It follows from the identity \/ = (o + 1)(aj — 1)~ ! that M,,(aj) = 0. The
fact that ®,,(x) is irreducible over Q) of degree ¢(m) together with (3.2) implies that
M,,(x) is irreducible over Q) of degree ¢(m). Formula (3.4) follows from the values
of @,,(—1) [3, Lemma 4.1] and (3.5) follows from the facts that the degree of ®,,(x)
is ¢(m) and ©,,(0) = 1. [ |

It follows immediately from (3.4) that M,,(x) is primitive if m # 2° and m # 2p°.
We will investigate the cases m = 2¢ and m = 2p° after a definition and an elementary
proposition stated without proof.

Definition 3.6 Ift is a nonnegative integer, then
+ 1 t t
(3.7) f; (x)zi[(x+1) £ x—-1)1

Proposition 3.8 Ift is a nonnegative integer, then f*(x) is primitive. If t is odd, then
£ (x) is primitive. The polynomials f*(x) satisfy the equations below.

[t/2] ¢
(3.9) e =>" (2k>xf—2k.

k=0
[t/2]

—() — ¢ t—2k—1
(3.10) r=>" (2k+ 1>x .
k=0
Proposition 3.11 If p is an odd prime and e > 1, then
fr @ f @, m=pr,
(3.12) Min(x) = € 2f5i e (%), m = 2°,
fE@ffa @ m=2p,
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Proof The first formula in (3.12) follows from (3.2), (3.7) and the fact that ® ,.(x) =

(=D — })*1. The second formula follows from (3.2), (3.7) and the fact that
Doe(x) = 2 +1. "lfhe last formula follows from (3.2), (3.7) and the fact that
Pope(x) = (xF + D" +1)7L [

Proposition 3.13 If m is not a power of 2, then M,,(x) is primitive. If e > 1, then
27 My (x) is primitive.

Proof If m # 2¢and m # 2p°, p an odd prime, then the proposition follows from
(3.4). If m = 2° or m = 2p°¢, then the proposition follows from Proposition 3.8 and
(3.12). |

4 Regular Actions with Rational Integer g-Signature

The purpose of this section is to prove Theorems 1, 2, 3 and 4. Throughout this
section, we will assume that M*” admits an orientation preserving diffeomorphism
g: M?" — M?*" of period m > 2. We begin with (2.18) when Sign(g, M) € Z.

Proposition 4.1 If the G,, action defined by g is regular and Sign(g, M) € Z, then there
exists a polynomial with rational integer coefficients a(x) € Z[x] such that the degree of
a(x) is at most n and a(o) = 0 for some o € {aj: 1 < j < m—1,(j,m) =1}.

Proof If p(x) and s(x) are as in (2.14) and (2.16), put
(4.2) a(x) = s(x) + (2 — 1)p(x) — Sign(g, M).

If Sign(g, M) € Z, then a(x) € Z[x] since p(x) and s(x) are in Z[x]. The degree of
s(x) is clearly at most 7 (2.16) and the degree of p(x) is at most n — 2 (Proposition 2.9
and (2.14)) and so the degree of a(x) is at most n. The fact that there exists & € {a;
1<j<m-—1,(j,m) =1} suchthata(x) = 0is (2.18). [ |

Proposition 4.1 and Section 3 will provide the tools to prove Theorems 1, 2, 3
and 4. We begin with Theorem 4. Recall that p(m) = ¢(m) — 1 if m = 2° and

plm) = ¢(m) if m # 2.

Theorem 4.3 Suppose that m > 2 and that the Gy, action defined by g is regular.
If Sign(g, M) € 7, then Sign(g, M) = Sign Feyen (mod 20 gnd Sign Foga = 0
(mod 27" and so

(4.4) Sign(g, M) = Sign F (mod 2°™).

Ifg* is the identity on H"(M; Q)), then Sign M = Sign Feyen (mod 2°™) and Sign F,q4
=0 (mod 2°") and so

(4.5) Sign M = Sign F (mod 200y,
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IfSign(g, M) € Z and m = 2p*, p an odd prime, then
(4.6) Sign(g, M) = Sign(F M F) (mod p).
If g* is the identity on H"(M; Q) and m = 2p¢, p an odd prime, then
(4.7) Sign M = Sign(F h F) (mod p).

Proof Note that if m > 2, then M,,(x) € Z[x*]. This follows from the fact that
the set {aj : 1 < j < m —1,(j,m) = 1} is a complete set of roots of M,,(x)
and o = —ay,—j. If a(x) is a polynomial in x, let a(x)eyen and a(x)oqa be the parts
of a(x) with even and odd powers of x, respectively. To prove (4.4), note that if
a(x) € Z[x] is the polynomial in (4.2), then it follows from Proposition 3.3 that there
exists b(x) € Q) [x] such that

(48) a(x)even = Mm(x)b(x)even; a(x)odd = Mm(x)b(x)odd .

If m # 2¢, then M,,(x) is primitive by Proposition 3.13, so b(x) € Z[x] since a(x) €
Z[x] and therefore (3.5) and (4.8) imply that

(4.9) a(Deven = 0 (mod 29, a(1)oga =0 (mod 29™).

If m # 2¢ formula (4.9) implies that Sign(g, M) = Sign Feyen (mod 2°™) and
Sign Foqa = 0 (mod 2¢™). If m = 2¢, then 27'M,,(x) is primitive by Proposi-
tion 3.13 and so 2b(x) € Z[x] since a(x) € Z[x] and therefore (3.5) and (4.8) imply
that

(4.10) a(Deven = 0 (mod 2771, a(1)oga =0 (mod 2771,

Formula (4.10) implies that Sign(g, M) = Sign Feyen (mod 20m—=1y and Sign Foqd
= 0 (mod 2°"~1) if m = 2° and so the proof of the first two assertions in Theo-
rem 4.3 is complete.

The next two assertions in Theorem 4.3 follow since Sign(g, M) = Sign M if g* is
the identity on H"(M; Q).

To prove (4.6), note that if Sign(g, M) € Z and m = 2p°, p an odd prime, then
M, (x) is primitive by Proposition 3.13 and so b(x) € Z[x], and so (3.4) and (4.8)
imply that

(4.11) a(0) =0 (mod p).

Formula (4.11) is (4.6) in view of (2.10). Formula (4.7) follows immediately from
(4.6) since Sign(g, M) = Sign M if g* is the identity on H"(M; Q). |

Theorem 4.1 contains Theorem 4 in the introduction. We now turn to Theorems 1
and 2. We will observe that (4.9) and (4.11) are equalities if n < ¢(m).

Theorem 4.12 Suppose that m > 2 and that the G, action defined by g is regular. If
Sign(g, M) € Z and n < ¢(m), then Sign Foqq = 0 and

(4.13) Sign(g, M) = Sign Feyen = Sign(F i F).
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If g is the identity on H"(M; Q) and n < ¢(m), then Sign Foqq = 0 and
(4.14) Sign M = Sign Feyen, = Sign(F h F).

Proof Note that (3.2) implies that the degree of M,,,(x) is ¢(m) and so if Sign (g, M) €
7 and a(x) € Z[x] is as in (4.2), then Proposition 3.3 implies that if n < ¢(m), then
because the degree of a(x) is at most n, a(x) is identically zero,

(4.15) a(x) = 0.

It follows that Sign Foaq = a(1)oaa = 0 and that the first equality in (4.13) holds
since a(1)even = 0. The second equality in (4.13) follows by putting x = 0 in (4.15)
and (2.10), (2.14), (2.16) and (4.2). Formula (4.14) follows immediately from (4.13)
because Sign(g, M) = Sign M if ¢* is the identity on H"(M; Q). ]

Theorem 4.12 contains Theorems 1 and 2. Theorem 2 was stated separately to
highlight its relationship to the literature [1, Theorem 4], [9, Theorem 2.2]. Our next
task is to note that (4.15) implies that p(x) (2.14) has a special form if the hypotheses
of Theorem 4.12 are enforced.

Proposition 4.16 Suppose that m > 2 and that the G, action defined by g is regular. If
Sign(g, M) € 7, n < ¢(m), and py is the coefficient of x* in p(x) (2.14), 0 < k < n—2,
then

(4.17) Pr= {Zio Sign P4 — Sign(g, M), k=2¢,

Zi:o Sign F?—4i=2, k=20+1.

Proof The hypotheses guarantee the identity (4.15) and so (4.2) implies that for 0 <
k < n — 2, the derivatives of s(x) and p(x) satisfy

(4.18) sO(x) + k(k — 1) p* 2 (x) + 2kxp® D (x) + (2 — 1)p®(x) = 0.

The derivatives of s(x) are easily determined (2.16) and (4.17) then follows easily
from (4.18). [ |

We now prove Theorem 3. Let dim F denote the largest dimension of the compo-
nents of F.

Theorem 4.19 Suppose that m > 2 and that the G,, action defined by g is regular.
If Sign(g,M) € Z, n < ¢(m), and dimF < n, then Sign(g,M) = SignF =
Sign(F h F) = 0. If Sign(g,M) € Z — {0} and n < ¢(m), then n is even and
dimF > n. If g* is the identity on H"(M;Q)), n < ¢(m), and dimF < n, then
Sign M = Sign F = Sign(F M F) = 0. If g* is the identity on H"(M; Q)), Sign M # 0,
and n < ¢(m), then n is even and dim F > n.

Proof If dimF < n, then Sign(F h F) = 0, and so the first assertion in the theorem
follows from (4.13). The second assertion follows from the first and the observation
that n must be even because Sign(g, M) = Sign Feyen # 0. The third and fourth
statements follow because Sign(g, M) = Sign M if g* is the identity on H"(M; Q).

|
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5 Regular G, Actions on Cohomology Complex Projective Space

In this section, we apply our results to G, action on cohomology complex projective
n-space.

Theorem 5.1 Suppose that M*1 is a cohomology complex projective 2q-space admitting
a diffeomorphism g: M* — M* of odd prime period p. If the G,, action defined by g is
regular and 2q < p—1, then F contains a nonempty connected 2r-manifold F*" such that
r > q. All other components of F have dimension less than 2q and Sign(F*" th F?") = 1.
If d is the degree of F*" and r = 2q — 1, then d* is an odd divisor of (2q)! and if r = gq,
then d* = 1.

Proof We choose as preferred orientation of M*7 the one such that Sign M = 1. It
follows from (4.14) that

(5.2) Sign(FM F) =1

and so Theorem 4.19 implies that dim F > 2q and so F contains a connected man-
ifold F*" with r > g. Since M* is a cohomology complex projective 2q-space, all
other components of F have dimension strictly less than 2g [4, p. 378] and so (5.2)
becomes

(5.3) Sign(F* h F*) = 1.

If d is the degree of F>" and r = 2q — 1, then (5.3) implies that d* is an odd divisor of
(29)! [10, Theorem 1.1] and if r = g, then F?1 M F?4 is the union of d” points with a
common orientation and so (5.3) implies that d* = 1. [ |

Corollary 5.4 Suppose that M* is a cohomology complex projective 2-space and that
p > 3isa prime. If M* admits a regular G, action, then F is the union of a 2-sphere of
degree £1 and a point.

Proof It follows from Theorem 5.1 that F contains a 2-sphere of degree £1, S2 and
so F is the union of S? and a point [4, p. 378]. ]

Theorem 5.1 is Theorem 5 and Corollary 5.4 is the assertion in Theorem 6 about
cohomology complex projective 2-space. Theorem 6 will be proved when we estab-
lish the assertions about cohomology complex projective 4-space.

Lemma 5.5 Suppose that M*1 is a cohomology projective 2q-space and that p is an odd
prime. If M* admits a regular G, action and 2q < p — 1, then F has at most q + 1
components.

Proof We know that F = [ J._, F*", F*" connected,s < pand ) _._,(n;+1) = 2q+1
[4, p. 378]. By Theorem 5.1 there is an iy such that n;, > gandsos < g+ 1. ]

Lemma 5.6 Suppose that M® is a cohomology complex projective 4-space and that
p > 5isa prime. If M® admits a regular G, action, then F has two components.
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Proof By Lemma 5.5, it is enough to show that F can not have three components. If
F has three components, then F is the union of a 4-manifold F* and two points [4,
p. 378]. It follows from (2.14), (2.25), and (2.27) together with the fact that p > 5
and (4.17), that

(5.8) S5(1,2) + 85(2,2) = Sign F* — 1.

Since F* is a cohomology complex projective 2-space mod p [4, p. 378], Sign F* =
£1, and so (5.7) and (5.8) imply that S,(1,2) = —1, —3. If v is the normal bundle of
F*in M8, that is, v = v, in the notation of Section 2, then (2.3) and (2.6) imply that

(5.9) $:(1,2) = (q(v) - 26()) [F].

If d is the degree of F*, then d*> = 1 by Theorem 5.1 and so ¢, (v)[F*] = 1. If follows
from (5.9) that ¢}(v)[F*] = £1. This leads to a contradiction.

If H*(M;7) = Z[x]/(x°), x € HX(M;Z), let £ = x|F*. If x; € H*(F%7),i = 1,2,
are classes such that ¢; (v) = x; +x; and ¢, (V) = x1%,, then x; = a;£ (mod torsion),
a; € 7,i = 1,2 [5, Lemma 3.1]. Since c;(¥)[F*] = 1,4, = +1,i = 1,2, and
so 2(v)[F*] = 0 (mod 2). This contradicts ¢}(v)[F*] = =41 and so F has two
components. |

Theorem 5.10 Suppose that M® is a cohomology complex projective 4-space and that
p > 5isa prime. If M® admits a regular G,, action, then F has two components and
either F is the union of a 6-manifold of degree =1 and a point or F is the union of a
4-manifold of degree +1 and a 2-sphere.

Proof Lemma 5.6 says that F has two components and so either F = F® U {point}
or F = F* U S? [4, p. 378]. In either case, if d is the degree of F*', r = 2 or 3, then
Theorem 5.1 implies that d* = 1. [

Theorem 6 is the sum of Corollary 5.4 and Theorem 5.10. Strengthened versions
of parts of Theorem 6 can be found in the literature. Any G, action on M® such that
F = F® U {point} must be regular and, if d is the degree of F®, then d* = 1 [5,
Theorem 4(ii), p > 5], [6, Theorem E, p = 3]. Theorems 5.1 and 5.10 show that
if it is assumed that the action is regular and p > 5, then the ASgSF can be used to
retrieve the fact that a fixed F® has degree one and establish the two results that F has
two components and that a fixed F* has degree one.

References

[1]  J. P. Alexander, G. C. Hamrick and J. W. Vick, The signature of the fixed set of odd period. Proc.
Amer. Math. Soc. 57(1976), 327-331.

[2] M. E Atiyah and I. M. Singer, The index of elliptic operators III. Ann. of Math. 87(1968), 546-604.

[3]  D.Berend and G. Katz, Separating number theory and topology in the Atiyah-Singer g-signature
formula. Duke J. Math. 61(1990), 939-971.

[4]  G.E.Bredon, Introduction to Compact Transformation Groups. Academic Press, London, 1972.

https://doi.org/10.4153/CMB-2004-008-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2004-008-2

72

(5]
(6]
(7]

(8]
(9]

(10]

(11]
(12]

Robert D. Little

K. H. Dovermann, Rigid cyclic group actions on cohomology complex projective space. Math. Proc.
Cambridge Philos. Soc. 101(1987), 487-507.

K. H. Dovermann and R. D. Little, Involutions of cohomology complex projective space with
codimension-two fixed points. Indiana J. Math. 41(1992), 197-211.

F. Hirzebruch, Involutionen auf Mannigfaltigkeiten. Proc. Conf. on Trans. Groups, New Orleans,
Springer Verlag, 1967, 148-167.

K. Janich and E. Ossa, On the signature of an involution. Topology 8(1969), 27-30.

K. Kawakubo, The index and generalized Todd genus of Z,, actions. Amer. J. Math. 97(1975),
182-204.

R. D. Little, Self-intersection of fixed manifolds and relations for the multisignature. Math. Scand.
69(1991), 167—178.

, The stable signature of a regular cyclic action. Proc. Amer. Math. Soc. 130(2002), 259-266.
D. C. Royster, An analogue of the stabilization map for regular Z, actions. Rocky Mountain J. Math.
24(1994), 689-708.

Department of Mathematics
University of Hawaii at Manoa
2565 The Mall

Honolulu, HI 96822

USA

e-mail: little@math.hawaii.edu

https://doi.org/10.4153/CMB-2004-008-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2004-008-2

