Rational Integer Invariants of Regular Cyclic Actions

Robert D. Little

Abstract. Let $g \colon M^{2n} \to M^{2n}$ be a smooth map of period m > 2 which preserves orientation. Suppose that the cyclic action defined by g is regular and that the normal bundle of the fixed point set F has a g-equivariant complex structure. Let $F \pitchfork F$ be the transverse self-intersection of F with itself. If the g-signature $\mathrm{Sign}(g,M)$ is a rational integer and $n < \phi(m)$, then there exists a choice of orientations such that $\mathrm{Sign}(g,M) = \mathrm{Sign}\,F = \mathrm{Sign}(F \pitchfork F)$.

1 Introduction

Let M^{2n} be a smooth, closed, oriented 2n-manifold. Let G_m denote the cyclic group of order m. Let $g \colon M^{2n} \to M^{2n}$ be a diffeomorphism of period m which preserves the preferred orientation of M^{2n} . Suppose that the smooth G_m action defined by g has fixed point set F and that ν is the normal bundle of F in M^{2n} . We will assume throughout this paper that ν admits a complex structure compatible with the g-action. This assumption is automatically fulfilled for m odd. We will also assume that the orientation of ν is the one determined by its complex structure. This orientation, together with the preferred orientation of M^{2n} , determines an orientation of F.

Let $\mathrm{Sign}(g,M)$ be the g-signature of the action [2]. The g-signature is an algebraic integer, that is $\mathrm{Sign}(g,M) \in \mathbb{Z}[\lambda]$ where $\lambda = \exp(2\pi i/m)$. If $\mathrm{Sign}(g,M)$ is a rational integer, that is $\mathrm{Sign}(g,M) \in \mathbb{Z}$, then it is related to the signatures of F and the transverse self-intersection of F with itself, $F \cap F$, if the action is regular. The action is regular if there is a fixed irreducible representation of G_m which determines every normal slice type (Definition 2.4). Let $F_{\mathrm{even}}(F_{\mathrm{odd}})$ be the union of all components of F where the restriction of ν has even (odd) complex dimension. Let $\phi(m)$ be the number of integers smaller than m and relatively prime to m.

Theorem 1 Suppose that $g: M^{2n} \to M^{2n}$ is an orientation preserving diffeomorphism of period m > 2. If the G_m action defined by g is regular and $\operatorname{Sign}(g, M) \in \mathbb{Z}$ and $n < \phi(m)$, then

$$Sign(g, M) = Sign F_{even} = Sign(F \cap F)$$

and Sign $F_{\text{odd}} = 0$. In particular Sign(g, M) = Sign F.

Theorem 1 strengthens an earlier result that if m = p an odd prime, $Sign(g, M) \in \mathbb{Z}$ and n , then <math>Sign(g, M) = Sign F [11, Theorem A]. The assertion in Theorem 1 about $Sign(F \cap F)$ is new even in the odd primary case. If M^{2n} admits an orientation preserving involution $T: M^{2n} \to M^{2n}$, then $Sign(T, M) = Sign(F \cap F)$

Received by the editors April 4, 2002. AMS subject classification: 57817. ©Canadian Mathematical Society 2004. [7], [2, Proposition 6.15], [8, p. 27]. Theorem 1 shows that for regular actions with $\operatorname{Sign}(g, M) \in \mathbb{Z}$ and $n < \phi(m)$, $\operatorname{Sign}(g, M)$ behaves like the signature of an involution.

If the intersection form underlying the *g*-signature is definite, then $Sign(g, M) \in \mathbb{Z}$ [3, Lemma 3.1]. If g^* is the identity on $H^*(M; \mathbb{Q})$, then Sign(g, M) = Sign M [1, p. 329], [3, Section 1] and so our next result is an immediate consequence of Theorem 1.

Theorem 2 Suppose that $g: M^{2n} \to M^{2n}$ is an orientation preserving diffeomorphism of period m > 2. If the G_m action defined by g is regular and g^* is the identity on $H^n(M; \mathbb{Q})$ and $n < \phi(m)$, then

$$Sign M = Sign F_{even} = Sign(F \cap F)$$

and Sign $F_{\text{odd}} = 0$. In particular Sign M = Sign F.

Theorem 2 is related to results in the literature. If m is odd and M^{2n} admits any G_m action such that g^* is the identity on $H^n(M;\mathbb{Q})$, then $\operatorname{Sign} M \equiv \operatorname{Sign} F \pmod 4$ and if the action is regular, then $\operatorname{Sign} M \equiv \operatorname{Sign} F \pmod {2^{\phi(m)}}$ [1, Theorems 1 and 4]. If p is an odd prime and M^{2n} admits a regular G_p action and $n , then <math>\operatorname{Sign} M \equiv \operatorname{Sign} F \pmod p$ [9, Theorem 2.2]. It follows from these last two results that if M^{2n} admits a regular G_p action with g^* the identity on $H^n(M;\mathbb{Q})$ and $n , then <math>\operatorname{Sign} M \equiv \operatorname{Sign} F \pmod {2^{p-1}p}$. Theorem 2 shows that this congruence is an equality.

Our next theorem is a consequence of Theorems 1 and 2 and properties of the transverse self-intersection.

Theorem 3 Suppose that $g: M^{2n} \to M^{2n}$ is an orientation preserving diffeomorphism of period m > 2 and that the G_m action defined by g is regular. If $\operatorname{Sign}(g, M) \in \mathbb{Z}$ and $\operatorname{Sign}(g, M) \neq 0$ and $n < \phi(m)$, then n is even and F contains a nonempty component of dimension at least n. If g^* is the identity on $H^*(M; \mathbb{Q})$ and $\operatorname{Sign} M \neq 0$ and $n < \phi(m)$, then n is even and F contains a nonempty component of dimension at least n.

If p is an odd prime and M^{2n} admits a regular G_p action Sign $M \not\equiv 0 \pmod{p}$ and n , then <math>F contains a nonempty component of dimension at least n [9, Corollary 2.7]. Theorem 3 shows that if g^* is the identity on $H^n(M; \mathbb{Q})$, then Sign $M \not\equiv 0$ is enough to imply that F contains a nonempty component of dimension at least n if $n . If <math>I_{2n}(p)$ is the subgroup of Ω_{2n} consisting of classes all of whose Pontrjagin numbers are divisible by p and $[M] \not\equiv 0$ in $\Omega_{2n}/I_{2n}(p)$, then F contains a nonempty component of dimension at least n [12, Theorem 1.3].

We offer a congruence for Sign(g, M) and Sign F for regular G_m actions, m > 2, and a congruence for Sign(g, M) and Sign($F \cap F$) for some values of m. The former congruence contains the congruence for m odd described above [1, Theorem 4]. Let $\rho(m) = \phi(m) - 1$ if $m = 2^e$ and $\rho(m) = \phi(m)$ if $m \neq 2^e$.

Theorem 4 Suppose that $g: M^{2n} \to M^{2n}$ is an orientation preserving diffeomorphism of period m > 2. If the G_m action defined by g is regular and $\operatorname{Sign}(g, M) \in \mathbb{Z}$, then $\operatorname{Sign}(g, M) \equiv \operatorname{Sign} F_{\text{even}} \pmod{2^{\rho(m)}}$ and $\operatorname{Sign} F_{\text{odd}} \equiv 0 \pmod{2^{\rho(m)}}$ and so

$$\operatorname{Sign}(g, M) \equiv \operatorname{Sign} F \pmod{2^{\rho(m)}}.$$

If p is an odd prime and $m = 2p^e$, then $\operatorname{Sign}(g, M) \equiv \operatorname{Sign}(F \cap F) \pmod{p}$.

We will apply our results to cohomology complex projective n-space. We say that M^{2n} is a cohomology complex projective n-space if there is a class $x \in H^2(M; \mathbb{Z})$ such that $H^*(M; \mathbb{Z}) = \mathbb{Z}[x]/(x^{n+1})$. These manifolds are good candidates for applications since, for m odd, g^* is the identity on $H^n(M; \mathbb{Q})$ and so $\mathrm{Sign}(g, M) = \mathrm{Sign}\,M$. We say that a submanifold $i \colon K^{2n-2t} \subset M^{2n}$ has degree d if $i_*[K] \in H_{2n-2t}(M; \mathbb{Z})$ is dual to dx^t .

Theorem 5 Suppose that M^{4q} is a cohomology complex projective 2q-space and that p is an odd prime. If M^{4q} admits a regular G_p action and 2q , then <math>F contains a nonempty connected 2r-manifold such that $r \ge q$ and $\operatorname{Sign}(F^{2r} \pitchfork F^{2r}) = 1$. If d is the degree of F^{2r} and r = 2q - 1, then d^2 is an odd divisor of (2q)! and if r = q, then $d^2 = 1$.

Theorem 6 Suppose that M^{4q} is a cohomology complex projective 2q-space, q=1 or 2, and that p>5 is a prime. If M^{4q} admits a regular G_p action, then F has two components. If q=1, then F is the union of a point and a 2-sphere of degree ± 1 . If q=2, then F is either the union of a point and a 6-manifold of degree ± 1 or the union of a 4-manifold of degree ± 1 and a 2-sphere.

This paper is organized as follows. Section 2 contains a discussion of the Atiyah-Singer g-Signature Formula (ASgSF) as formulated by Berend and Katz [3, Theorem 2.2]. This version of the ASgSF expresses $\operatorname{Sign}(g, M)$ explicitly as an element in $\mathbb{Z}[\alpha_1, \alpha_2, \dots, \alpha_{m-1}], \alpha_j = (\lambda^i + 1)(\lambda^j - 1)^{-1}$. The ASgSF for regular actions is also discussed. Section 3 describes the minimal polynomial of α_j over \mathbb{Q} . We prove Theorems 1, 2, 3, and 4 in Section 4 (Theorems 4.3, 4.12 and 4.19) and Theorems 5 and 6 in Section 5 (Theorem 5.1, Corollary 5.4 and Theorem 5.10).

2 The Atiyah-Singer *g*-Signature Formula

Suppose that M^{2n} admits an arbitrary G_m action generated by an orientation preserving diffeomorphism $g \colon M^{2n} \to M^{2n}$. We are not assuming regularity at this point and $m \geq 2$. Let ν be the normal bundle of F in M^{2n} . Over each connected component of F, ν splits into a sum of λ^j -eigen bundles ν_j where G_m acts on ν_j as multiplication by λ^j , $\lambda = \exp(2\pi i/m)$. Each component of F has a *normal slice* $type \ \mu = (\mu_1, \mu_2, \dots, \mu_{m-1}), \ \mu_j = \dim_{\mathbb{C}} \nu_j$. Let F_μ be the union of all components of F with slice type μ and ν_μ the normal bundle of F_μ in M^{2n} . Note that $\dim_{\mathbb{C}} \nu_\mu = \sum_{i=1}^{m-1} \mu_i$.

 $\dim_{\mathbb{C}} \nu_{\mu} = \sum_{j=1}^{m-1} \mu_{j}.$ Let \mathbb{Z}_{+} be the set of nonnegative integers. If q is a positive integer, let S(q) be the symmetric group on q letters and put $S(\mu) = \prod_{j=1}^{m-1} S(\mu_{j})$. Let $\Omega(\mu) = \tilde{\Omega}(\mu)/S(\mu)$ where $\tilde{\Omega}(\mu) = \prod_{j=1}^{m-1} \mathbb{Z}_{+}^{\mu_{j}}$. If $\omega \in \Omega(\mu)$, let $\|\omega\|_{j}$ be the sum of the entries in ω from $\mathbb{Z}_{+}^{\mu_{j}}$ and $|\omega|_{j}$ the number of these entries which are not zero. Put $\|\omega\| = \sum_{j=1}^{m-1} \|\omega\|_{j}$. Let $\alpha_{j} = (\lambda^{j} + 1)(\lambda^{j} - 1)^{-1}, 1 \leq j \leq m-1$ and $\lambda = \exp(2\pi i/m)$.

Theorem 2.1 (Berend-Katz ASgSF, [3, Theorem 2.2]) Let M^{2n} be a smooth, closed, oriented 2n-manifold and $g: M^{2n} \to M^{2n}$ an orientation preserving diffeomorphism of

period $m \geq 2$. There exist rational integers $S_{\omega}(\nu_{\mu}) \in \mathbb{Z}$ for each normal slice type μ and $\omega \in \Omega(\mu)$ such that (2.2)

$$\operatorname{Sign}(g, M) = \sum_{\mu} \sum_{\omega \in \Omega(\mu)} (-1)^{\|\omega\|} \left(\prod_{j} \alpha_{j}^{\mu_{j} + \|\omega\|_{j} - 2|\omega|_{j}} (\alpha_{j}^{2} - 1)^{|\omega|_{j}} \right) S_{\omega}(\nu_{\mu}).$$

The rational integers $S_{\omega}(\nu_{\mu})$ can be described as follows. Let $x_{j,\ell} \in H^2(F_{\mu}; \mathbb{Z}), 1 \le \ell \le \mu_j, 1 \le j \le m-1$, be classes such that the Chern classes of ν_j are the elementary symmetric polynomials in the variables $x_{j,\ell}, 1 \le \ell \le \mu_j$ and let $Y_{j,\ell} \subset F_{\mu}$ be the Poincaré dual of $x_{j,\ell}$. If $\tilde{\omega} = (\omega_{j,\ell}) \in \tilde{\Omega}(\mu)$, put $Y^{(\tilde{\omega})} = \pitchfork_{j,\ell} Y^{(\omega_{j,\ell})}_{j,\ell}$, where $Y^{(\omega_{j,\ell})}_{j,\ell}$ is the transverse self-intersection of $\omega_{j,\ell}$ copies of $Y_{j,\ell}$ with itself. If $\omega \in \Omega(\mu)$ is covered by $\tilde{\omega}$, then

(2.3)
$$S_{\omega}(\nu_{\mu}) = \sum_{\sigma \in S(\mu)} |\operatorname{St}_{\bar{\omega}}|^{-1} \operatorname{Sign} Y^{(\sigma \bar{\omega})},$$

where $|\operatorname{St}_{\tilde{\omega}}|$ is the order of the stabilizer of $\tilde{\omega}$ [3, Section 3].

Definition 2.4 A G_m action on M^{2n} is *regular* if there exists a $j_0, 1 \le j_0 \le m-1$, such that j_0 is relatively prime to m and for *every* normal slice type $\mu = (\mu_1, \mu_2, \dots, \mu_{m-1})$, $\mu_j = 0$ if $j \ne j_0$.

If $\mu=(\mu_1,\mu_2,\ldots,\mu_{m-1})$ and $\mu_j=0$ if $j\neq j_0$, then $\mu_{j_0}=\dim_{\mathbb{C}}\nu_{\mu}$. The case $\mu_{j_0}=0$ corresponds to an action which is trivial on at least one component of M^{2n} . If a regular action has s slice types, each can be identified with a complex codimension $c_i, F=\bigcup_{i=1}^s F^{2n-2c_i}$, where F^{2n-2c} is the union of all components of F of dimension 2n-2c. Let ν_c be the normal bundle of F^{2n-2c} in M^{2n} and note that if a slice type of a regular action μ is such that $c=\dim_{\mathbb{C}}\nu_{\mu}$ and $c\neq 0$, then $\Omega(\mu)=\mathbb{Z}_+^c/S(c)$ equipped with the norms $\|\cdot\|$ and $\|\cdot\|$.

Definition 2.5 If $F = \bigcup_{i=1}^{s} F^{2n-2c_i}$ is the fixed point set of a regular G_m action, then for each nonzero $c \in \{c_1, c_2, \dots, c_s\}$ and integers j, k with $1 \leq j \leq c$ and $j \leq k \leq n-c$, let $s(c, j, k) = \{\omega \in \mathbb{Z}_+^c / S(c) : |\omega| = j, ||\omega|| = k\}$ and

(2.6)
$$S_c(j,k)(\nu_c) = \sum_{\omega \in s(c,j,k)} S_{\omega}(\nu_c).$$

Definition 2.7 If $F = \bigcup_{i=1}^{s} F^{2n-2c_i}$ is the fixed point set of a regular G_m action and $c \in \{c_1, c_2, \dots, c_s\}$, then the polynomial $p_c(x) \in \mathbb{Z}[x]$ is defined by the conditions $p_0(x) = 0$ and if $c \neq 0$, then

(2.8)
$$p_c(x) = \sum_{j=1}^c \sum_{k=1}^{n-c} (-1)^k x^{c+k-2j} (x^2 - 1)^{j-1} S_c(j,k) (\nu_c).$$

The polynomials $p_c(x)$ play a role in the ASgSF for regular G_m actions. Our next proposition determines an upper bound on the degree of $p_c(x)$ and $p_c(0)$.

Proposition 2.9 If $c \in \{c_1, c_2, \dots, c_s\}$ and $c \neq 0$, then the degree of $p_c(x)$ is at most n-2 and

(2.10)
$$p_c(0) = -\operatorname{Sign}(F^{2n-2c} \cap F^{2n-2c}).$$

Proof The remark about the degree of $p_c(x)$ follows immediately from (2.8). Formula (2.10) follows by observing that (2.8) implies that

$$(2.11) p_c(0) = -S_c(c,c)(\nu_c),$$

and then noting that (2.6) implies that

(2.12)
$$S_c(c,c)(\nu_c) = S_{[(1,1,\ldots,1)]}(\nu_c),$$

where $[(1,1,\ldots,1)] \in \mathbb{Z}^c_+/S(c)$ is the equivalence class of $(1,1,\ldots,1) \in \mathbb{Z}^c_+$. Formula (2.10) now follows from (2.11), (2.12) and Lemma 2.4 in [3].

Definition 2.13 If $F = \bigcup_{i=1}^{s} F^{2n-2c_i}$ is the fixed point set of a regular G_m action, then the polynomial $p(x) \in \mathbb{Z}[x]$ is defined by

(2.14)
$$p(x) = \sum_{i=1}^{s} p_{c_i}(x).$$

Definition 2.15 If $F = \bigcup_{i=1}^{s} F^{2n-2c_i}$ is the fixed point set of a G_m action, then the polynomial $s(x) \in \mathbb{Z}[x]$ is defined by

(2.16)
$$s(x) = \sum_{i=1}^{s} \operatorname{Sign} F^{2n-2c_i} x^{c_i}.$$

Theorem 2.17 (Berend-Katz ASgSF for Regular G_m Actions) Suppose that $g: M^{2n} \to M^{2n}$ is an orientation preserving diffeomorphism of period $m \ge 2$. If the G_m action defined by g is regular and $F = \bigcup_{i=1}^s F^{2n-2c_i}$, then there exists an $\alpha \in \{\alpha_j : 1 \le j \le m-1, (j,m)=1\}$ such that

(2.18)
$$\operatorname{Sign}(g, M) = s(\alpha) + (\alpha^2 - 1)p(\alpha).$$

Proof There exists a j_0 such that $(j_0, m) = 1$ and $\mu_j = 0$, $j \neq j_0$, for every slice type $\mu = (\mu_1, \mu_2, \dots, \mu_{m-1})$. It follows that if $c \in \{c_1, c_2, \dots, c_s\}$, then $\mu_{j_0} = c$ and if $c \neq 0$, $\Omega(\mu) = \mathbb{Z}_+^c / S(c)$ with norms $\|\cdot\|$ and $|\cdot|$. If $\alpha = \alpha_{j_0}$, then it follows from (2.2) that

$$(2.19) \operatorname{Sign}(g, M) = \operatorname{Sign} F^{2n} + \sum_{c \neq 0} \sum_{\omega \in \mathbb{Z}_+^c / S(c)} (-1)^{\|\omega\|} \alpha^{c + \|\omega\| - 2|\omega|} (\alpha^2 - 1)^{|\omega|} S_{\omega}(\nu_c).$$

Formula (2.18) follows by putting $|\omega| = j$, $||\omega|| = k$, and using (2.8), (2.14) and (2.16) together with $S_{[(0,0,...,0)]}(\nu_c) = \text{Sign } F^{2n-2c}$ [3, Lemma 2.4].

Corollary 2.20 (Hirzebruch ASgSF for Involutions [7]) Suppose that $T: M^{2n} \rightarrow M^{2n}$ is an orientation preserving smooth involution. If F is the fixed point set of T, then

(2.21)
$$\operatorname{Sign}(T, M) = \operatorname{Sign}(F \cap F).$$

Proof The G_2 action defined by T is automatically regular and so it follows from (2.18) with $\alpha = \alpha_1 = 0$ and (2.10) that

(2.22)
$$\operatorname{Sign}(T, M) = s(0) + \sum_{c \neq 0} \operatorname{Sign}(F^{2n-2c} \cap F^{2n-2c}).$$

The right hand side of (2.22) is $Sign(F \cap F)$ and so (2.21) follows.

Next we offer $p_c(x)$ for a few values of c. To make our results easier to state, we define the symbol $S_c(j, k)$, j and k arbitrary nonnegative integers, to be $S_c(j, k)(\nu_c)$ if $1 \le j \le c$ and $j \le k \le n - c$ and to be zero if j and k are outside of this range.

Lemma 2.23 If $n \geq 3$, then

(2.24)
$$(-1)^{n-1}p_1(x) = \begin{cases} \sum_{k=1}^{\lfloor n/2 \rfloor} S_1(1, 2k-1)x^{2k-2}, & n \text{ even,} \\ \sum_{k=1}^{\lfloor n/2 \rfloor} S_1(1, 2k)x^{2k-1}, & n \text{ odd.} \end{cases}$$

$$(-1)^{n} p_{2}(x) = \begin{cases} \sum_{k=1}^{\lfloor n/2 \rfloor} \left(S_{2}(1, 2k-2) + S_{2}(2, 2k-2) - S_{2}(2, 2k) \right) x^{2k-2}, & n \text{ even,} \\ \sum_{k=1}^{\lfloor n/2 \rfloor} \left(S_{2}(1, 2k-1) + S_{2}(2, 2k-1) - S_{2}(2, 2k+1) \right) x^{2k-1}, & n \text{ odd.} \end{cases}$$

$$(2.26) p_{n-1}(x) = -S_{n-1}(1,1)x^{n-2}.$$

$$(2.27) p_n(x) = 0.$$

Proof Formulas (2.24) and (2.25) follow from (2.8), the definition of $S_c(j, k)$, and the fact that $S_{\omega}(\nu_c)$ in (2.6) is zero unless $n - c - \|\omega\| = n - c - k$ is even and $0 \le k \le n - c$ ([11], Section 2). Formulas (2.26) and (2.27) follow from (2.8).

3 The Algebraic Numbers α_i

This section contains some well known facts about the numbers $\alpha_j = (\lambda^j + 1) \times (\lambda^j - 1)^{-1}$, $\lambda = \exp(2\pi i/m)$.

Definition 3.1 If $m \ge 2$ and $\phi(m) = |\{j : j < m, (j, m) = 1\}|$ and $\Phi_m(x)$ is the m-th cyclotomic polynomial, then the polynomial $M_m(x) \in \mathbb{Z}[x]$ is defined by

(3.2)
$$M_m(x) = (x-1)^{\phi(m)} \Phi_m((x+1)(x-1)^{-1}).$$

Proposition 3.3 If $m \ge 2$ and (j, m) = 1, then $M_m(x)$ is the minimal polynomial of α_j over \mathbb{Q} . The polynomials $M_m(x)$ satisfy the equations below where p is an odd prime.

(3.4)
$$M_m(0) = \begin{cases} 0, & m = 2, \\ 2, & m = 2^e, e > 1, \\ p, & m = 2p^e, e \ge 1, \\ 1, & otherwise. \end{cases}$$

(3.5)
$$M_m(\pm 1) = (\pm 1)^{\phi(m)} 2^{\phi(m)}.$$

Proof It follows from the identity $\lambda^j = (\alpha_j + 1)(\alpha_j - 1)^{-1}$ that $M_m(\alpha_j) = 0$. The fact that $\Phi_m(x)$ is irreducible over $\mathbb Q$ of degree $\phi(m)$ together with (3.2) implies that $M_m(x)$ is irreducible over $\mathbb Q$ of degree $\phi(m)$. Formula (3.4) follows from the values of $\Phi_m(-1)$ [3, Lemma 4.1] and (3.5) follows from the facts that the degree of $\Phi_m(x)$ is $\phi(m)$ and $\Phi_m(0) = 1$.

It follows immediately from (3.4) that $M_m(x)$ is primitive if $m \neq 2^e$ and $m \neq 2p^e$. We will investigate the cases $m = 2^e$ and $m = 2p^e$ after a definition and an elementary proposition stated without proof.

Definition 3.6 If t is a nonnegative integer, then

(3.7)
$$f_t^{\pm}(x) = \frac{1}{2}[(x+1)^t \pm (x-1)^t].$$

Proposition 3.8 If t is a nonnegative integer, then $f_t^+(x)$ is primitive. If t is odd, then $f_t^-(x)$ is primitive. The polynomials $f_t^\pm(x)$ satisfy the equations below.

(3.9)
$$f_t^+(x) = \sum_{k=0}^{[t/2]} {t \choose 2k} x^{t-2k}.$$

(3.10)
$$f_t^-(x) = \sum_{k=0}^{\lfloor t/2 \rfloor} {t \choose 2k+1} x^{t-2k-1}.$$

Proposition 3.11 If p is an odd prime and $e \ge 1$, then

(3.12)
$$M_m(x) = \begin{cases} f_{p^e}^-(x) f_{p^{e-1}}^-(x)^{-1}, & m = p^e, \\ 2f_{2^e-2^{e-1}}^+(x), & m = 2^e, \\ f_{p^e}^+(x) f_{p^{e-1}}^+(x)^{-1}, & m = 2p^e, \end{cases}$$

Proof The first formula in (3.12) follows from (3.2), (3.7) and the fact that $\Phi_{p^e}(x) = (x^{p^e} - 1)(x^{p^{e-1}} - 1)^{-1}$. The second formula follows from (3.2), (3.7) and the fact that $\Phi_{2^e}(x) = x^{2^e - 2^{e-1}} + 1$. The last formula follows from (3.2), (3.7) and the fact that $\Phi_{2p^e}(x) = (x^{p^e} + 1)(x^{p^{e-1}} + 1)^{-1}$.

Proposition 3.13 If m is not a power of 2, then $M_m(x)$ is primitive. If $e \ge 1$, then $2^{-1}M_{2^e}(x)$ is primitive.

Proof If $m \neq 2^e$ and $m \neq 2p^e$, p an odd prime, then the proposition follows from (3.4). If $m = 2^e$ or $m = 2p^e$, then the proposition follows from Proposition 3.8 and (3.12).

4 Regular Actions with Rational Integer g-Signature

The purpose of this section is to prove Theorems 1, 2, 3 and 4. Throughout this section, we will assume that M^{2n} admits an orientation preserving diffeomorphism $g: M^{2n} \to M^{2n}$ of period $m \ge 2$. We begin with (2.18) when $\operatorname{Sign}(g, M) \in \mathbb{Z}$.

Proposition 4.1 If the G_m action defined by g is regular and $\operatorname{Sign}(g, M) \in \mathbb{Z}$, then there exists a polynomial with rational integer coefficients $a(x) \in \mathbb{Z}[x]$ such that the degree of a(x) is at most n and $a(\alpha) = 0$ for some $\alpha \in \{\alpha_j : 1 \le j \le m-1, (j, m) = 1\}$.

Proof If p(x) and s(x) are as in (2.14) and (2.16), put

(4.2)
$$a(x) = s(x) + (x^2 - 1)p(x) - \text{Sign}(g, M).$$

If Sign $(g, M) \in \mathbb{Z}$, then $a(x) \in \mathbb{Z}[x]$ since p(x) and s(x) are in $\mathbb{Z}[x]$. The degree of s(x) is clearly at most n (2.16) and the degree of p(x) is at most n-2 (Proposition 2.9 and (2.14)) and so the degree of a(x) is at most n. The fact that there exists $\alpha \in \{\alpha_j : 1 \le j \le m-1, (j,m)=1\}$ such that a(x)=0 is (2.18).

Proposition 4.1 and Section 3 will provide the tools to prove Theorems 1, 2, 3 and 4. We begin with Theorem 4. Recall that $\rho(m) = \phi(m) - 1$ if $m = 2^e$ and $\rho(m) = \phi(m)$ if $m \neq 2^e$.

Theorem 4.3 Suppose that m > 2 and that the G_m action defined by g is regular. If $\operatorname{Sign}(g, M) \in \mathbb{Z}$, then $\operatorname{Sign}(g, M) \equiv \operatorname{Sign} F_{\operatorname{even}} \pmod{2^{\rho(m)}}$ and $\operatorname{Sign} F_{\operatorname{odd}} \equiv 0 \pmod{2^{\rho(m)}}$ and so

(4.4)
$$\operatorname{Sign}(g, M) \equiv \operatorname{Sign} F \pmod{2^{\rho(m)}}.$$

If g^* is the identity on $H^n(M; \mathbb{Q})$, then Sign $M \equiv \text{Sign } F_{\text{even}} \pmod{2^{\rho(m)}}$ and Sign $F_{\text{odd}} \equiv 0 \pmod{2^{\rho(m)}}$ and so

(4.5)
$$\operatorname{Sign} M \equiv \operatorname{Sign} F \pmod{2^{\rho(m)}}.$$

If $Sign(g, M) \in \mathbb{Z}$ and $m = 2p^e$, p an odd prime, then

(4.6)
$$\operatorname{Sign}(g, M) \equiv \operatorname{Sign}(F \cap F) \pmod{p}.$$

If g^* is the identity on $H^n(M; \mathbb{Q})$ and $m = 2p^e$, p an odd prime, then

(4.7)
$$\operatorname{Sign} M \equiv \operatorname{Sign}(F \cap F) \pmod{p}.$$

Proof Note that if m > 2, then $M_m(x) \in \mathbb{Z}[x^2]$. This follows from the fact that the set $\{\alpha_j : 1 \le j \le m-1, (j,m)=1\}$ is a complete set of roots of $M_m(x)$ and $\alpha_j = -\alpha_{m-j}$. If a(x) is a polynomial in x, let $a(x)_{\text{even}}$ and $a(x)_{\text{odd}}$ be the parts of a(x) with even and odd powers of x, respectively. To prove (4.4), note that if $a(x) \in \mathbb{Z}[x]$ is the polynomial in (4.2), then it follows from Proposition 3.3 that there exists $b(x) \in \mathbb{Q}[x]$ such that

$$(4.8) a(x)_{\text{even}} = M_m(x)b(x)_{\text{even}}, a(x)_{\text{odd}} = M_m(x)b(x)_{\text{odd}}.$$

If $m \neq 2^e$, then $M_m(x)$ is primitive by Proposition 3.13, so $b(x) \in \mathbb{Z}[x]$ since $a(x) \in \mathbb{Z}[x]$ and therefore (3.5) and (4.8) imply that

(4.9)
$$a(1)_{\text{even}} \equiv 0 \pmod{2^{\phi(m)}}, \quad a(1)_{\text{odd}} \equiv 0 \pmod{2^{\phi(m)}}.$$

If $m \neq 2^e$, formula (4.9) implies that $\operatorname{Sign}(g, M) \equiv \operatorname{Sign} F_{\text{even}} \pmod{2^{\phi(m)}}$ and $\operatorname{Sign} F_{\text{odd}} \equiv 0 \pmod{2^{\phi(m)}}$. If $m = 2^e$, then $2^{-1}M_m(x)$ is primitive by Proposition 3.13 and so $2b(x) \in \mathbb{Z}[x]$ since $a(x) \in \mathbb{Z}[x]$ and therefore (3.5) and (4.8) imply that

$$(4.10) a(1)_{\text{even}} \equiv 0 \pmod{2^{\phi(m)-1}}, \quad a(1)_{\text{odd}} \equiv 0 \pmod{2^{\phi(m)-1}}.$$

Formula (4.10) implies that $\operatorname{Sign}(g, M) \equiv \operatorname{Sign} F_{\text{even}} \pmod{2^{\phi(m)-1}}$ and $\operatorname{Sign} F_{\text{odd}} \equiv 0 \pmod{2^{\phi(m)-1}}$ if $m = 2^e$ and so the proof of the first two assertions in Theorem 4.3 is complete.

The next two assertions in Theorem 4.3 follow since $\operatorname{Sign}(g, M) = \operatorname{Sign} M$ if g^* is the identity on $H^n(M; \mathbb{Q})$.

To prove (4.6), note that if $\operatorname{Sign}(g, M) \in \mathbb{Z}$ and $m = 2p^e$, p an odd prime, then $M_m(x)$ is primitive by Proposition 3.13 and so $b(x) \in \mathbb{Z}[x]$, and so (3.4) and (4.8) imply that

$$(4.11) a(0) \equiv 0 \pmod{p}.$$

Formula (4.11) is (4.6) in view of (2.10). Formula (4.7) follows immediately from (4.6) since $\operatorname{Sign}(g, M) = \operatorname{Sign} M$ if g^* is the identity on $H^n(M; \mathbb{Q})$.

Theorem 4.1 contains Theorem 4 in the introduction. We now turn to Theorems 1 and 2. We will observe that (4.9) and (4.11) are equalities if $n < \phi(m)$.

Theorem 4.12 Suppose that m > 2 and that the G_m action defined by g is regular. If $\operatorname{Sign}(g, M) \in \mathbb{Z}$ and $n < \phi(m)$, then $\operatorname{Sign} F_{\operatorname{odd}} = 0$ and

(4.13)
$$\operatorname{Sign}(g, M) = \operatorname{Sign} F_{\text{even}} = \operatorname{Sign}(F \cap F).$$

If g^* is the identity on $H^n(M; \mathbb{Q})$ and $n < \phi(m)$, then Sign $F_{\text{odd}} = 0$ and

(4.14)
$$\operatorname{Sign} M = \operatorname{Sign} F_{\text{even}} = \operatorname{Sign}(F \cap F).$$

Proof Note that (3.2) implies that the degree of $M_m(x)$ is $\phi(m)$ and so if Sign $(g, M) \in \mathbb{Z}$ and $a(x) \in \mathbb{Z}[x]$ is as in (4.2), then Proposition 3.3 implies that if $n < \phi(m)$, then because the degree of a(x) is at most n, a(x) is identically zero,

$$(4.15) a(x) \equiv 0.$$

It follows that Sign $F_{\text{odd}} = a(1)_{\text{odd}} = 0$ and that the first equality in (4.13) holds since $a(1)_{\text{even}} = 0$. The second equality in (4.13) follows by putting x = 0 in (4.15) and (2.10), (2.14), (2.16) and (4.2). Formula (4.14) follows immediately from (4.13) because Sign(g, M) = Sign M if g^* is the identity on $H^n(M; \mathbb{Q})$.

Theorem 4.12 contains Theorems 1 and 2. Theorem 2 was stated separately to highlight its relationship to the literature [1, Theorem 4], [9, Theorem 2.2]. Our next task is to note that (4.15) implies that p(x) (2.14) has a special form if the hypotheses of Theorem 4.12 are enforced.

Proposition 4.16 Suppose that m > 2 and that the G_m action defined by g is regular. If $\operatorname{Sign}(g, M) \in \mathbb{Z}$, $n < \phi(m)$, and p_k is the coefficient of x^k in p(x) (2.14), $0 \le k \le n-2$, then

(4.17)
$$p_k = \begin{cases} \sum_{j=0}^{\ell} \operatorname{Sign} F^{2n-4j} - \operatorname{Sign}(g, M), & k = 2\ell, \\ \sum_{j=0}^{\ell} \operatorname{Sign} F^{2n-4j-2}, & k = 2\ell + 1. \end{cases}$$

Proof The hypotheses guarantee the identity (4.15) and so (4.2) implies that for $0 \le k \le n-2$, the derivatives of s(x) and p(x) satisfy

$$(4.18) s^{(k)}(x) + k(k-1)p^{(k-2)}(x) + 2kxp^{(k-1)}(x) + (x^2 - 1)p^{(k)}(x) = 0.$$

The derivatives of s(x) are easily determined (2.16) and (4.17) then follows easily from (4.18).

We now prove Theorem 3. Let $\dim F$ denote the largest dimension of the components of F.

Theorem 4.19 Suppose that m > 2 and that the G_m action defined by g is regular. If $\operatorname{Sign}(g,M) \in \mathbb{Z}$, $n < \phi(m)$, and $\dim F < n$, then $\operatorname{Sign}(g,M) = \operatorname{Sign} F = \operatorname{Sign}(F \cap F) = 0$. If $\operatorname{Sign}(g,M) \in \mathbb{Z} - \{0\}$ and $n < \phi(m)$, then n is even and $\dim F \geq n$. If g^* is the identity on $H^n(M;\mathbb{Q})$, $n < \phi(m)$, and $\dim F < n$, then $\operatorname{Sign} M = \operatorname{Sign} F = \operatorname{Sign}(F \cap F) = 0$. If g^* is the identity on $H^n(M;\mathbb{Q})$, $\operatorname{Sign} M \neq 0$, and $n < \phi(m)$, then n is even and $\dim F \geq n$.

Proof If dim F < n, then Sign $(F \cap F) = 0$, and so the first assertion in the theorem follows from (4.13). The second assertion follows from the first and the observation that n must be even because Sign $(g, M) = \text{Sign } F_{\text{even}} \neq 0$. The third and fourth statements follow because Sign(g, M) = Sign M if g^* is the identity on $H^n(M; \mathbb{Q})$.

5 Regular G_p Actions on Cohomology Complex Projective Space

In this section, we apply our results to G_p action on cohomology complex projective n-space.

Theorem 5.1 Suppose that M^{4q} is a cohomology complex projective 2q-space admitting a diffeomorphism $g\colon M^{4q}\to M^{4q}$ of odd prime period p. If the G_p action defined by g is regular and 2q< p-1, then F contains a nonempty connected 2r-manifold F^{2r} such that $r\geq q$. All other components of F have dimension less than 2q and $Sign(F^{2r}\pitchfork F^{2r})=1$. If d is the degree of F^{2r} and r=2q-1, then d^2 is an odd divisor of (2q)! and if r=q, then $d^2=1$.

Proof We choose as preferred orientation of M^{4q} the one such that Sign M=1. It follows from (4.14) that

$$(5.2) Sign(F \cap F) = 1$$

and so Theorem 4.19 implies that $\dim F \ge 2q$ and so F contains a connected manifold F^{2r} with $r \ge q$. Since M^{4q} is a cohomology complex projective 2q-space, all other components of F have dimension strictly less than 2q [4, p. 378] and so (5.2) becomes

$$(5.3) Sign(F^{2r} \pitchfork F^{2r}) = 1.$$

If *d* is the degree of F^{2r} and r = 2q - 1, then (5.3) implies that d^2 is an odd divisor of (2*q*)! [10, Theorem 1.1] and if r = q, then $F^{2q} \cap F^{2q}$ is the union of d^2 points with a common orientation and so (5.3) implies that $d^2 = 1$.

Corollary 5.4 Suppose that M^4 is a cohomology complex projective 2-space and that p > 3 is a prime. If M^4 admits a regular G_p action, then F is the union of a 2-sphere of degree ± 1 and a point.

Proof It follows from Theorem 5.1 that F contains a 2-sphere of degree ± 1 , S^2 and so F is the union of S^2 and a point [4, p. 378].

Theorem 5.1 is Theorem 5 and Corollary 5.4 is the assertion in Theorem 6 about cohomology complex projective 2-space. Theorem 6 will be proved when we establish the assertions about cohomology complex projective 4-space.

Lemma 5.5 Suppose that M^{4q} is a cohomology projective 2q-space and that p is an odd prime. If M^{4q} admits a regular G_p action and 2q , then <math>F has at most q + 1 components.

Proof We know that $F = \bigcup_{i=1}^{s} F^{2n_i}$, F^{2n_i} connected, $s \le p$ and $\sum_{i=1}^{s} (n_i + 1) = 2q + 1$ [4, p. 378]. By Theorem 5.1 there is an i_0 such that $n_{i_0} \ge q$ and so $s \le q + 1$.

Lemma 5.6 Suppose that M^8 is a cohomology complex projective 4-space and that p > 5 is a prime. If M^8 admits a regular G_p action, then F has two components.

Proof By Lemma 5.5, it is enough to show that F can not have three components. If F has three components, then F is the union of a 4-manifold F^4 and two points [4, p. 378]. It follows from (2.14), (2.25), and (2.27) together with the fact that p > 5 and (4.17), that

$$(5.7) S_2(2,2) = 1,$$

(5.8)
$$S_2(1,2) + S_2(2,2) = \operatorname{Sign} F^4 - 1.$$

Since F^4 is a cohomology complex projective 2-space mod p [4, p. 378], Sign $F^4 = \pm 1$, and so (5.7) and (5.8) imply that $S_2(1,2) = -1$, -3. If ν is the normal bundle of F^4 in M^8 , that is, $\nu = \nu_2$ in the notation of Section 2, then (2.3) and (2.6) imply that

(5.9)
$$S_2(1,2) = \left(c_1^2(\nu) - 2c_2(\nu)\right)[F^4].$$

If *d* is the degree of F^4 , then $d^2 = 1$ by Theorem 5.1 and so $c_2(\nu)[F^4] = 1$. If follows from (5.9) that $c_1^2(\nu)[F^4] = \pm 1$. This leads to a contradiction.

If $H^*(M; \mathbb{Z}) = \mathbb{Z}[x]/(x^5)$, $x \in H^2(M; \mathbb{Z})$, let $\hat{x} = x|F^4$. If $x_i \in H^2(F^4; \mathbb{Z})$, i = 1, 2, are classes such that $c_1(\nu) = x_1 + x_2$ and $c_2(\nu) = x_1x_2$, then $x_i = a_i\hat{x}$ (mod torsion), $a_i \in \mathbb{Z}$, i = 1, 2 [5, Lemma 3.1]. Since $c_2(\nu)[F^4] = 1$, $a_i = \pm 1$, i = 1, 2, and so $c_1^2(\nu)[F^4] \equiv 0 \pmod{2}$. This contradicts $c_1^2(\nu)[F^4] = \pm 1$ and so F has two components.

Theorem 5.10 Suppose that M^8 is a cohomology complex projective 4-space and that p > 5 is a prime. If M^8 admits a regular G_p action, then F has two components and either F is the union of a 6-manifold of degree ± 1 and a point or F is the union of a 4-manifold of degree ± 1 and a 2-sphere.

Proof Lemma 5.6 says that F has two components and so either $F = F^6 \cup \{\text{point}\}\$ or $F = F^4 \cup S^2$ [4, p. 378]. In either case, if d is the degree of F^{2r} , r = 2 or 3, then Theorem 5.1 implies that $d^2 = 1$.

Theorem 6 is the sum of Corollary 5.4 and Theorem 5.10. Strengthened versions of parts of Theorem 6 can be found in the literature. Any G_p action on M^8 such that $F = F^6 \cup \{\text{point}\}$ must be regular and, if d is the degree of F^6 , then $d^2 = 1$ [5, Theorem 4(ii), $p \geq 5$], [6, Theorem E, p = 3]. Theorems 5.1 and 5.10 show that if it is assumed that the action is regular and p > 5, then the ASgSF can be used to retrieve the fact that a fixed F^6 has degree one and establish the two results that F has two components and that a fixed F^4 has degree one.

References

- [1] J. P. Alexander, G. C. Hamrick and J. W. Vick, *The signature of the fixed set of odd period*. Proc. Amer. Math. Soc. **57**(1976), 327–331.
- [2] M. F. Atiyah and I. M. Singer, The index of elliptic operators III. Ann. of Math. 87(1968), 546–604.
- [3] D. Berend and G. Katz, Separating number theory and topology in the Atiyah-Singer g-signature formula. Duke J. Math. 61(1990), 939–971.
- [4] G. E. Bredon, Introduction to Compact Transformation Groups. Academic Press, London, 1972.

[5] K. H. Dovermann, Rigid cyclic group actions on cohomology complex projective space. Math. Proc. Cambridge Philos. Soc. 101(1987), 487–507.

- [6] K. H. Dovermann and R. D. Little, *Involutions of cohomology complex projective space with codimension-two fixed points*. Indiana J. Math. **41**(1992), 197–211.
- [7] F. Hirzebruch, *Involutionen auf Mannigfaltigkeiten*. Proc. Conf. on Trans. Groups, New Orleans, Springer Verlag, 1967, 148–167.
- [8] K. Jänich and E. Ossa, On the signature of an involution. Topology 8(1969), 27–30.
- [9] K. Kawakubo, *The index and generalized Todd genus of* \mathbb{Z}_p *actions.* Amer. J. Math. **97**(1975), 182–204
- [10] R. D. Little, Self-intersection of fixed manifolds and relations for the multisignature. Math. Scand. **69**(1991), 167–178.
- [11] ______, The stable signature of a regular cyclic action. Proc. Amer. Math. Soc. 130(2002), 259–266.
- [12] D. C. Royster, An analogue of the stabilization map for regular \mathbb{Z}_p actions. Rocky Mountain J. Math. **24**(1994), 689–708.

Department of Mathematics University of Hawaii at Manoa 2565 The Mall Honolulu, HI 96822 USA e-mail: little@math.hawaii.edu