ON CONVERGENCE OF PROJECTIONS IN LOCALLY CONVEX SPACES

J.E. Simpson¹

(received August 10, 1965)

This note is concerned with the extension to locally convex spaces of a theorem of J.Y. Barry [1]. The basic assumptions are as follows. E is a separated locally convex topological vector space, henceforth assumed to be barreled. E' is its strong dual. For any subset A of E, we denote by w(A) the closure of A in the σ -(E, E')-topology. See [2] for further information about locally convex spaces. By a projection we shall mean a continuous linear mapping of E into itself which is idempotent. A net $\{P: \alpha \in \Gamma\}$ of projections will be said to be increasing if $\alpha \ge \alpha'$ always implies $P_{\alpha} P_{\alpha'} = P_{\alpha'} P_{\alpha} = P_{\alpha'}$. The symbol $\bigvee_{\alpha \alpha} P$ is used to denote that projection, if it exists, with the properties i) $(\bigvee_{\alpha \alpha} P_{\alpha})$ (E) = cIm $\{P_{\alpha}(E)\}$, the smallest closed linear subspace of E which contains $\bigcup_{\alpha \alpha} P_{\alpha'}(E)$, and ii) $(I - \bigvee_{\alpha \alpha} P_{\alpha'})(E) = \bigcap_{\alpha} [(I - P_{\alpha})(E)]$.

Following Barry we now give the following definition.

Definition. Given an increasing net $\{P_{\alpha}\}$ of projections on E, we say that a point $y_{\mathbf{x}}$ of E is a weak x-cluster point of $\{P_{\alpha}\}$ if $y_{\mathbf{x}} \in \bigcap_{\alpha} w (\{P_{\beta}\mathbf{x} : \beta \geq \alpha\})$.

THEOREM. Let $\{P_{\alpha}\}$ be a bounded increasing net of projections on E. Then there is a projection P on E such

1

This note is excerpted from the author's doctoral dissertation, Yale University.

that $P = \bigvee_{\alpha} P_{\alpha}$ and $Px = \lim_{\alpha} P_{\alpha}$ for all x in E if and only if $\{P_{\alpha}\}$ has a weak x-cluster point for every x in E.

Proof:

I) When P exists, it is apparent that $Px = \lim_{\alpha} P_{\alpha} x$ is a weak x-cluster point of $\{P_{\alpha}\}$ for every x.

II) Conversely, letting y be a weak x-cluster point of $\{P_{\alpha}\}$, we first show that

(1)
$$P_{\alpha} = P_{\alpha} y$$
 for every α .

To this end, let α be fixed. Then for every x' in E' and every $\varepsilon > 0$, let $N = N(y_x, {}^tP_{\alpha}x', \varepsilon) = \{z \in E' : |\langle z - y_x, {}^tP_{\alpha}x' \rangle | \langle \varepsilon \}\}$. From the definition of an x-cluster point, it follows that there must be some $\beta \ge \alpha$ such that $P_x \in N$. Hence $\varepsilon > |P_\beta x - y_x, {}^tP_{\alpha}x' \rangle| = |\langle P_\alpha P_\beta x - P_{\alpha}y_{x'}, x' \rangle| = |\langle P_\alpha (x - y_x), x' \rangle|$. Since ε and x'are arbitrary, (1) follows.

Now since $y_x \in w(\{P_\beta x : \beta \ge \alpha\})$ for every α , it follows from a classic theorem of Banach, (see [3], p. 422, Theorem V. 3. 13 for a convenient formulation) that y_x is in the closure, in the original topology on E, of the convex hull of $\{P_\beta x : \beta \ge \alpha\}$ for every α . Thus for every neighborhood S of zero in E there are finite sets of scalars $\{b_{k,S} : k = 1, 2, ..., n_S\}$ and of indices $\{\alpha_{k,S} : k = 1, 2, ..., n_S\}$ such that

(2)
$$y_x - T_x \in S$$
,

where $T_{s} = \sum_{k=1}^{n} b_{k,s} P_{k,s}$. It is easily verified that if

 $\alpha > \alpha_{k,S}$ for each $k = 1, 2, \dots, n_{S}$, then

$$P_{\alpha}T_{S} = T_{S}.$$

Now let W be any neighborhood of zero in E, and find a neighborhood U of zero in E such that $U + U \subseteq W$. Since $\{P_{\alpha}\}$ is bounded and E is barreled, $\{P_{\alpha}\}$ is equicontinuous and there is a neighborhood V of zero such that $P_{\alpha}(V) \subseteq U$ for every α . Let $\alpha \geq \alpha k$, U \cap V for every $k = 1, 2, ..., n_{U \cap V}$. Then, for all $\alpha \geq \alpha_{\alpha}$,

(5)
$$T_{U \cap V} x - P_{\alpha} T_{U \cap V} x = 0$$
 from (3),

(6)
$$P_{\alpha}^{T}U \cap V^{x} - P_{\alpha}^{y} = P_{\alpha}^{T}[T_{U} \cap V^{x} - y_{x}] \in U$$
 from (4), and

(7)
$$P_{\alpha}y - P_{\alpha}x = 0$$
 from (1).

From these statements it follows that $y_x - P_x \in U + U \subset W$. Hence $\lim_{\alpha} P_{\alpha} x = y_x$. Let $Px = \lim_{\alpha} P_{\alpha} x$. Since $\{P_{\alpha}\}$ is equicontinuous, P is in E'. Also, from 1), $P^2 x = Py_x =$ $\lim_{\alpha} P_{\alpha} y_x = \lim_{\alpha} P_{\alpha} x = Px$. Hence P is a projection. Also, $PP_{\alpha} = P_{\alpha} P = P_{\alpha}$ for all α .

Finally, if $\mathbf{x} \in \bigcap_{\alpha} (\mathbf{I} - \mathbf{P}_{\alpha})(\mathbf{E})$ then $(\mathbf{I} - \mathbf{P}_{\alpha})\mathbf{x} = \mathbf{x}$ for all α . Hence $(\mathbf{I} - \mathbf{P})\mathbf{x} = \mathbf{x} - \lim_{\alpha} \mathbf{P}_{\alpha} \mathbf{x} = \lim_{\alpha} (\mathbf{x} - \mathbf{P}_{\alpha}) = \mathbf{x}$. Therefore, $\bigcap_{\alpha} (\mathbf{I} - \mathbf{P}_{\alpha})(\mathbf{E}) \subseteq (\mathbf{I} - \mathbf{P})$ (E). At the same time, for each α , $(\mathbf{I} - \mathbf{P}_{\alpha})(\mathbf{I} - \mathbf{P}) = \mathbf{I} - \mathbf{P} - \mathbf{P}_{\alpha} + \mathbf{P}_{\alpha}\mathbf{P} = \mathbf{I} - \mathbf{P}$. Consequently, $(\mathbf{I} - \mathbf{P}) (\mathbf{E}) \subseteq (\mathbf{I} - \mathbf{P}_{\alpha})$ (E) for every α so that $(\mathbf{I} - \mathbf{P}) (\mathbf{E}) \subseteq$ $\bigcap_{\alpha} (\mathbf{I} - \mathbf{P}_{\alpha})$ (E). Likewise, since $\mathbf{P}\mathbf{x} = \lim_{\alpha} \mathbf{P}_{\alpha}\mathbf{x}$ by definition, we have $\mathbf{P}(\mathbf{E}) \subseteq \operatorname{clm} \{\mathbf{P}_{\alpha}(\mathbf{E})\}$, while from $\mathbf{P}\mathbf{P}_{\alpha} = \mathbf{P}_{\alpha}$ we get $P_{\alpha}(E) \subseteq P(E)$ for every α , so that $P(E) = cIm \{ P_{\alpha}(E) \}$. Thus we are justified in using the notation $P = \bigvee_{\alpha} P_{\alpha}$.

REFERENCES

- 1. J.Y. Barry, On the convergence of ordered sets of projections, Proc. Amer. Math. Soc., 5 (1954), 313-314.
- 2. N. Bourbaki, Espaces Vectoriels Topologiques, Paris, 1953-1955.
- N. Dunford and J. Schwartz, Linear Operators, New York, 1958.