ON CONVERGENCE OF PROJECTIONS IN LOCALLY CONVEX SPACES

J. E. Simpson ${ }^{1}$
(received August 10, 1965)

This note is concerned with the extension to locally convex spaces of a theorem of J.Y. Barry [1]. The basic assumptions are as follows. E is a separated locally convex topological vector space, henceforth assumed to be barreled. E ' is its strong dual. For any subset A of E, we denote by $w(A)$ the closure of A in the $\sigma-\left(E, E^{\prime}\right)$-topology. See [2] for further information about locally convex spaces. By a projection we shall mean a continuous linear mapping of E into itself which is idempotent. A net $\left\{\mathrm{P}_{\alpha}: \alpha \in \Gamma\right\}$ of projections will be said to be increasing if $\alpha \geq \alpha^{\prime}$ always implies $P_{\alpha} P_{\alpha^{\prime}}=P_{\alpha^{\prime}} P_{\alpha}=P_{\alpha^{\prime}}$. The symbol $V_{\alpha} P_{\alpha}$ is used to denote that projection, if it exists, with the properties i) $\left(V_{\alpha} P_{\alpha}\right)(E)=\operatorname{cIm}\left\{P_{\alpha}(E)\right\}$, the smalle st closed linear subspace of E which contains $\bigcup_{\alpha} P_{\alpha}(E)$, and ii) $\left(I-V_{\alpha} P_{\alpha}\right)(E)=\bigcap_{\alpha}\left[\left(I-P_{\alpha}\right)(E)\right]$.

Following Barry we now give the following definition.
Definition. Given an increasing net $\left\{P_{\alpha}\right\}$ of projections on E, we say that a point y_{x} of E is a weak x-cluster point of $\left\{P_{\alpha}\right\}$ if $y_{x} \in \cap_{\alpha} w\left(\left\{P_{\beta} x: \beta \geq \alpha\right\}\right)$.

THEOREM. Let $\left\{P_{\alpha}\right\}$ be a bounded increasing net of projections on E. Then there is a projection P on E such

[^0]that $P=V_{\alpha} P_{\alpha}$ and $P x=\lim P_{\alpha} x$ for all x in E if and only if $\left\{P_{\alpha}\right\}$ has a weak x-cluster point for every x in E.

Proof:
I) When P exists, it is apparent that $P x=\lim _{\alpha} P_{\alpha} x$ is a weak x-cluster point of $\left\{P_{\alpha}\right\}$ for every x.
II) Conversely, letting y_{x} be a weak x-cluster point of $\left\{\mathrm{P}_{\alpha}\right\}$, we first show that

$$
\begin{equation*}
P_{\alpha} x=P_{\alpha} y \quad \text { for every } \alpha . \tag{1}
\end{equation*}
$$

To this end, let α be fixed. Then for every x^{\prime} in E^{\prime} and every $\varepsilon>0$, let $N=N\left(y_{x^{\prime}}{ }^{t} P_{\alpha} x^{\prime}, \varepsilon\right)=$ $\left\{z \in E^{\prime}:\left|<z-y x^{\prime}{ }^{t} P_{\alpha} x^{\prime}>\right|<\varepsilon\right\}$. From the definition of an x-cluster point, it follows that there must be some $\beta \geq \alpha$ such that $P_{\beta} x \in N$. Hence $\varepsilon>\left|P_{\beta} x-y{ }_{x},{ }^{t} P_{\alpha} x^{\prime}>\right|=$ $\left|<P_{\alpha} P_{\beta} x-P_{\alpha^{\prime}} y_{x^{\prime}} x^{\prime}>\left|=\left|<P_{\alpha}\left(x-y_{x}\right), x^{\prime}>\right|\right.\right.$. Since ε and x^{\prime} are arbitrary, (1) follows.

$$
\text { Now since } y_{x} \in w\left(\left\{P_{\beta} x: \beta \geq \alpha\right\}\right) \text { for every } \alpha \text {, it }
$$

follows from a classic theorem of Banach, (see [3], p. 422, Theorem V.3.13 for a convenient formulation) that y_{x} is in the closure, in the original topology on E, of the convex hull of $\left\{P_{\beta} x: \beta \geq \alpha\right\}$ for every α. Thus for every neighborhood S of zero in E there are finite sets of scalars $\left\{b_{k, S}: k=1,2, \ldots, n_{S}\right\}$ and of indices $\left\{\alpha_{k, S}: k=1,2, \ldots, n_{S}\right\}$ such that

$$
\begin{equation*}
y_{x}-T_{S} x \in S, \tag{2}
\end{equation*}
$$

where $T_{S}=\sum_{k=1}^{n} b_{k, S} P_{\alpha_{k, S}}$. It is easily verified that if
$\alpha \geq \alpha_{k, S}$ for each $k=1,2, \ldots, n_{S}$, then

$$
\begin{equation*}
P_{\alpha} T_{S}=T_{S} \tag{3}
\end{equation*}
$$

Now let W be any neighborhood of zero in E, and finc a neighborhood U of zero in E such that $U \div U \subseteq W$. Since $\left\{P_{\alpha}\right\}$ is bounded and E is barreled, $\left\{P_{\alpha}\right\}$ is equicontinuous and there is a neighborhood V of zero such that $P_{\alpha}(V) \subseteq U$ for every α. Let $\alpha_{o} \geq \alpha k, U \cap V$ for every $k=1,2, \ldots, n \in \cap$ Then, for all $\alpha \geq \alpha_{0}$,
(4) $y_{x}-T_{U \cap V} x \in U \cap V$
from (2),
(5) $T_{U \cap V^{x}-P} T_{U} U \cap V^{x=0}$
from (3),

$$
\begin{equation*}
P_{\alpha} y_{x}-P_{\alpha} x=0 \tag{7}
\end{equation*}
$$

from (1).

From these statements it follows that $y_{x}-P_{\alpha} x \in U+U \subset W$. Hence $\lim _{\alpha} P_{\alpha} x=y_{x}$. Let $P x=\lim _{\alpha} P_{\alpha} x$. Since $\left\{P_{\alpha}\right\}$ is equicontinuous, P is in E^{\prime}. Also, from 1), $P^{2} x=P y_{x}=$ $\lim _{\alpha} P_{\alpha} y=\lim _{\alpha} P_{\alpha} x=P x$. Hence P is a projection. Also, $P P_{\alpha}=P_{\alpha} P=P_{\alpha}$ for all α.

Finally, if $x \in \cap_{\alpha}\left(I-P_{\alpha}\right)(E)$ then $\left(I-P_{\alpha}\right) x=x$ for all α. Hence $(I-P) x=x-\operatorname{Lim}_{\alpha} P_{\alpha} x=\lim _{\alpha}\left(x-P_{\alpha} x\right)=x$. Therefore, $\left.\cap_{\alpha}(I-P)_{\alpha}\right)(E) \subseteq(I-P)(E)$. At the same time, for each α, $\left(I-P_{\alpha}\right)(I-P)=I-P-P_{\alpha}+P_{\alpha} P=I-P$. Consequently, $(I-P)(E) \subseteq\left(I-P_{\alpha}\right)(E)$ for every α so that (I-P) (E) \subseteq $\cap_{\alpha}\left(I-P_{\alpha}\right)(E)$. Likewise, since $P x=\operatorname{Iim}_{\alpha} P_{\alpha} x$ by definition, we have $P(E) \subseteq \operatorname{clm}\left\{P_{\alpha}(E)\right\}$, while from $P P_{\alpha}=P_{\alpha}$ we get
$P_{\alpha}(E) \subseteq P(E)$ for every α, so that $P(E)=\operatorname{clm}\left\{P_{\alpha}(E)\right\}$.
Thus we are justified in using the notation $P=V_{\alpha} P_{\alpha}$.

REFERENCES

1. J. Y. Barry, On the convergence of ordered sets of projections, Proc. Amer. Math. Soc., 5 (1954), 313-314.
2. N. Bourbaki, Espaces Vectoriels Topologiques, Paris, 1953-1955.
3. N. Dunford and J. Schwartz, Linear Operators, New York, 1958.

[^0]: 1 This note is excerpted from the author's doctoral
 dissertation, Yale University.

