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The surface texture of materials plays a critical role in wettability, turbulence and
transport phenomena. In order to design surfaces for these applications, it is desirable
to characterise non-smooth and porous materials by their ability to exchange mass and
momentum with flowing fluids. While the underlying physics of the tangential (slip)
velocity at a fluid–solid interface is well understood, the importance and treatment
of normal (transpiration) velocity and normal stress is unclear. We show that, when
the slip velocity varies at an interface above the texture, a non-zero transpiration
velocity arises from mass conservation. The ability of a given surface texture to
accommodate a normal velocity of this kind is quantified by a transpiration length.
We further demonstrate that normal momentum transfer gives rise to a pressure
jump. For a porous material, the pressure jump can be characterised by so-called
resistance coefficients. By solving five Stokes problems, the introduced measures of
slip, transpiration and resistance can be determined for any anisotropic non-smooth
surface consisting of regularly repeating geometric patterns. The proposed conditions
are a subset of the effective boundary conditions derived from formal multi-scale
expansion. We validate and demonstrate the physical significance of the effective
conditions on two canonical problems – a lid-driven cavity and a turbulent channel
flow, both with non-smooth bottom surfaces.

Key words: porous media, flow–structure interactions

1. Introduction
The physical behaviour of a number of fluid systems is dramatically modified by the

presence of a small-scale surface roughness. For example, in wetting (figure 1a) – that
is, when a liquid in contact with a solid reaches a balance of surface tensions – the
resulting apparent contact angle θ is very sensitive to the details of the surface texture
(Wenzel 1936; Quéré 2008). At high Reynolds numbers (of order 1000 and above),
the pressure loss in turbulent pipes is a function of the wall roughness (figure 1b)
(Nikuradse 1950; Jiménez 2004). Yet another example is the transport phenomena
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FIGURE 1. Examples of problems that are sensitive to surface properties. Droplet
spreading over a rough surface (a), friction drag of turbulent flow on a rough surface (b)
and particle transport through the interface with a rough porous material (c).

involving porous media, where the exchange of mass, momentum, energy and other
passive scalars between a free flowing fluid and a porous medium depends very much
on the roughness at the interface between the two domains (figure 1c).

Engineers take advantage of the sensitivity to the surface texture to modify
large-scale flow features and to enhance the transport phenomena. Efficiency of
heat exchangers (Mehendale, Jacobi & Shah 2000; Agyenim et al. 2010) is highly
dependent on the surface texture. In scaffold design for bone regeneration, the cell
growth on the implant (a porous biomaterial such as a calcium phosphate cement)
depends on the interaction between the surrounding liquid and the surface texture
of the implant (Dalby et al. 2007; Perez & Mestres 2016). The performance of fuel
cells depends on the ability of gas flow to efficiently transport the water vapour
away from the cathode, a thin porous medium (Prat 2002; Haghighi & Kirchner
2017). Turbulent skin friction on wings or turbine blades can be reduced by using
riblets, which are able to push quasi-streamwise vortices away from the wall (Walsh
& Lindemann 1984).

The design of the surface texture in the examples mentioned above is based on a
trial and error procedure that may require a tremendous amount of effort, time and
expensive surface manufacturing equipment. The formulation presented in this paper
provides a framework for modelling the interaction between free flows and various
textured and porous surfaces. Our modelling approach provides a direct relationship
between the microscopic geometrical details of a complex surface and the associated
macroscopic transport of mass and momentum. Thus it has the potential to replace
the trial and error procedure in the design phase.

Due to the multiscale nature of the problems described above, fully resolved
numerical investigations – of both the complex surface and the free flow above
it – are practically impossible to perform in applied settings. Effective approaches
are actively pursued to circumvent this difficulty. In this way, one can capture the
averaged effect of the microscale features on the macroscopic processes, and hence
avoid resolving microscopic geometric details. Some recent examples of effective
modelling applied to drying, cell growth, heat exchange and flow modelling can
be found in works by Mosthaf, Helmig & Or (2014), Vaca-González et al. (2018),
Laloui, Nuth & Vulliet (2006), Wang et al. (2018) and Zampogna et al. (2019a).
The main challenge for effective models describing fluid–surface interaction is the
specification of a boundary condition at an artificially created interface between the
free-fluid region and the complex surface. Despite the recent advancements, we still
lack interface conditions that capture the dominant physical features associated with
complex anisotropic surfaces.

Before highlighting the main ingredients of our model, we make a brief account
of the current state-of-the-art of effective boundary conditions of textured and
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FIGURE 2. Schematics of the slip length L (a), the transpiration length M (b) and the
resistance coefficient f (c).

porous surfaces. A two-dimensional configuration is sufficient for this purpose. The
streamwise and wall-normal coordinates are denoted by x and z, where the effective
boundary conditions are imposed at a planar interface at coordinate z= zi. For rigid
textured surfaces with a characteristic size `, one may impose the slip velocity
condition (Navier 1823) as an effective boundary condition,

ux = L(∂zux + ∂xuz) on z= zi. (1.1)

Here, ux is the tangential velocity component at the interface, uz is the wall-normal
velocity component at the interface and L ∼ ` is the slip length. Geometrically –
as shown in figure 2(a) – the slip length in its simplest possible representation
(i.e. assuming no variation in the x direction) is the distance that the velocity
profile has to be linearly extrapolated to reach zero value. There has been extensive
development of the slip boundary condition for textured and porous surfaces (Saffman
1971; Sahraoui & Kaviany 1992; Miksis & Davis 1994; Sarkar & Prosperetti 1996;
Gupte & Advani 1997; Jäger & Mikelić 2001; Stroock et al. 2002; Bolanos &
Vernescu 2017). In the existing approaches, the interface normal (transpiration)
velocity is typically set either to zero uz = 0 (for textured surfaces) or to the interior
flow uz = u−z (for porous surfaces) due to mass conservation arguments or as the
leading-order boundary condition (Mohammadi & Floryan 2013; Lācis & Bagheri
2016; Jiménez Bolaños & Vernescu 2017).

Configurations with porous surfaces require additional boundary conditions. If
the bulk of the surface (i.e. interior of the porous material) is governed by the
Darcy–Brinkmann equation, which is typical for works considering the method
of volume averaging (Whitaker 1998), stress jump conditions are often derived
(Ochoa-Tapia & Whitaker 1995; Valdés-Parada et al. 2009, 2013). In the current
work, however, we consider only Darcy’s law within the bulk of the porous surface.
Consequently, a condition for the Darcy pressure or the pore pressure p− is needed.
The pressure continuity p= p−, where p is the free-fluid pressure, has been a common
choice in the past (Ene & Sanchez-Palencia 1975; Levy & Sanchez-Palencia 1975;
Hou et al. 1989; Lācis & Bagheri 2016). The most notable recent theoretical and
numerical developments (Marciniak-Czochra & Mikelić 2012; Carraro et al. 2013;
Carraro, Marušić-Paloka & Mikelić 2018) have resulted in the pressure jump condition

p− − p=−µCπ∂zux − 2µ∂zuz. (1.2)

Here, µ is the fluid dynamic viscosity and Cπ is a stabilisation parameter derived
from matching boundary layer solutions with exterior solutions. The coefficient Cπ is
non-zero only for anisotropic porous surfaces. The pressure interface condition – as
well as the velocity interface condition – for porous media has been a subject of many
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investigations and is still debated (Beavers & Joseph 1967; Mikelić & Jäger 2000;
Han, Ganatos & Weinbaum 2005; Le Bars & Grae Worster 2006; Jäger & Mikelić
2009; Carraro et al. 2015, 2018; Rosti, Cortelezzi & Quadrio 2015; Lācis & Bagheri
2016; Zampogna & Bottaro 2016; Angot, Goyeau & Ochoa-Tapia 2017; Zampogna,
Magnaudet & Bottaro 2019b).

In this work, we extend the above conditions with new terms for the wall-normal
velocity condition and the pressure condition. Our proposed set of boundary conditions
is called the transpiration-resistance (TR) model, and it is applicable to any textured
or porous surface consisting of regular repeating geometric entities. The TR model
captures the transport of interface tangential momentum as well as the transport of
mass and interface normal momentum. It is a homogenised boundary condition, valid
for configurations with a scale separation ε = `/H� 1, where H is the characteristic
length scale of the free fluid. It consists of the slip boundary condition (1.1) for the
interface tangential velocity. The wall-normal velocity in the TR model is

uz = u−z −M∂xux. (1.3)

The first term is the seepage Darcy velocity, given by u−z = (K/µ)∂zp−, where K is the
interior permeability. The second term quantifies how much a surface texture allows
exchange of mass with the surrounding fluid due to a streamwise variation of the slip
velocity. Using continuity, the above condition for textured surfaces (where u−z = 0)
can be written as uz = M∂zuz. Geometrically (figure 2b), the transpiration length M
is thus the distance below the interface for which a non-zero transpiration velocity
uz can exist. This depth is obtained from a linear extrapolation of the wall-normal
component of the outer flow, uz. For a porous surface, the TR model provides the
pressure condition,

− p+ 2µ∂zuz =−p− + f u−z . (1.4)

Here, the left-hand side is the normal stress of the outside free flow on the interface
plane, and the right-hand side is the normal stress from the porous material. The
resistance coefficient f quantifies the friction force that the Darcy seepage velocity
generates while passing through the interface (figure 2c).

Three assumptions underlie the proposed TR model.

(A1) Creeping flow assumption Re < 1, which allows us to solve a given flow
problem near the interface with the help of linear decomposition.

(A2) Scale separation assumption ε� 1, which leads to constant macroscopic flow
field variables (velocities, pressures and all macroscopic gradients of these
fields) over the characteristic length ` of the surface.

(A3) The surface is homogeneous i.e. it consists of repeating geometric entities or
elements, which allows us to consider only a single structure to determine
surface properties.

Under these assumptions, the slip length, the transpiration length and the resistance
coefficients are properties of the surface texture only, and can be computed by
solving five fundamental Stokes problems. For a given texture, the knowledge of
these effective coefficients provides important information on the diffusive/advective
transport into the material as well as the ability of the solid skeleton to resist an
externally imposed shear stress. The TR model is based on conditions derived from a
formal multi-scale expansion (MSE) in the small parameter ε (Sudhakar et al. 2019).
By including higher-order terms for the transpiration velocity and for the pressure,
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FIGURE 3. (a) Shows a flow domain with a generic free flow. The flat interface with the
vertical coordinate zi above the surface texture is depicted using a transparent plane. The
red rectangle is the interface cell. (b) Shows the interface cell with a bottom coordinate
ẑb(x, y) – describing the surface texture – and a top coordinate ẑt. The tangential shear
stress is decomposed in unit forcing terms along the x (c) and the y (d) axes.

we will show using numerical simulations that the error of the TR model is close to
O(ε2).

This paper is organised as follows. In §§ 2 and 3, we describe and validate the TR
model for textured surfaces and porous surfaces, respectively. In § 4, we show using
the turbulent channel flow that the transpiration velocity in the TR model – despite
being a higher-order term from an asymptotic viewpoint – is essential from a physical
viewpoint. In § 5, the TR model is discussed in the context of formal multi-scale
expansion and, finally, we provide conclusions in § 6.

2. A model for textured surfaces
In this section, we present the TR model for three-dimensional (3-D) textured

surfaces in contact with a free flowing fluid, assuming (A1)–(A3). First, we explain
the boundary condition for the interface tangential velocity (the slip condition) and
show how to obtain the associated slip length tensor. Second, we introduce the
transpiration velocity condition and demonstrate how to determine the transpiration
length tensor by making use of mass conservation. Next, we compute the slip and
transpiration tensors and validate the model against geometry-resolved direct numerical
simulations. Finally, the effect of the interface location on the accuracy of the TR
model is discussed.

2.1. Tangential interface velocity and slip length
The tangential velocity condition in the TR model is provided by the standard slip
condition, which for 3-D textured surfaces is

(ux, uy)= ut =
L

µ
· τ on z= zi, (2.1)

where τ = µ(∂zux + ∂xuz, ∂zuy + ∂yuz) and L = (Lxx, Lxy; Lxy, Lyy) is the symmetric
positive definite (Kamrin & Stone 2011) surface slip length tensor. Here, ut is the
tangential velocity vector, and the subscript t is used interchangeably with the x and
y components.

We consider a patterned wall and a vortical flow over it, as illustrated in figure 3(a).
The scale separation assumption (A2) allows us to introduce two different spatial
coordinates: xi and x̂i. The former is used to describe spatial variations over large
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length scales (xi ∼ H). The latter is used to describe microscopic variations over
much smaller roughness scale (x̂i ∼ `). The effective boundary condition (2.1) is a
macroscopic condition; the microscopic features of the texture are embedded in an
averaged sense in the slip length tensor L.

To determine L, we consider a small volume near the surface of the texture with
a cross-section ` × `. This volume contains a representative surface structure, see
figure 3(a,b). Within this interface cell, the scale separation assumption (A2) allows us
to treat the shear stress from the free fluid τ as a spatially constant external parameter.
Due to the creeping flow assumption (A1), the equations governing the flow response
to the free-fluid shear stress are the Stokes equations,

−∇p̂+µ1û = −δ(ẑ− ẑi)τ , (2.2)
∇ · û = 0, (2.3)

where δ is the Dirac delta function with ẑ as an argument and consequently it has
the unit of inverse metres (m−1). This set of equations is equivalent to a two-domain
description satisfying velocity continuity and stress jump at the interface (appendix B).
Additionally, equations (2.2)–(2.3) are the same as previously used and derived by
Luchini, Manzo & Pozzi (1991), Kamrin, Bazant & Stone (2010) and Luchini (2013).
The imposed boundary conditions are no slip and no penetration on the solid structure
(u= 0 on ẑ= ẑb). We impose periodic conditions at the vertical faces of the interface
cell (due to the assumption (A3)). At the top surface of the cell, we impose a zero-
stress condition (Σ · n= 0 on ẑ= ẑt) to keep the shear stress at the interface as the
only driving force of the problem.

The linearity assumption (A1) allows us to write the solution as a product between
a response operator R̂τ and the free-fluid shear stress,

û= R̂τ · τ . (2.4)

This can be expanded as

û = (R̂τ · ex)τx + (R̂τ · ey)τy (2.5a)

= û(τx) τx

µ
+ û(τy) τy

µ
, (2.5b)

where we have defined

û(τx)
=µR̂τ · ex and û(τy)

=µR̂τ · ey. (2.6a,b)

Thus the velocity fields û(τx) and û(τy) are solutions of the following two fundamental
problems,

−∇p̂(τx)
+µ1û(τx)

=−µδ(ẑ− ẑi)ex, ∇ · û
(τx)
= 0; (FPsx)

−∇p̂(τy)
+µ1û(τy)

=−µδ(ẑ− ẑi)ey, ∇ · û
(τy)
= 0. (FPsy)

The fundamental problems are forced in the x and y directions, respectively, with unit
shear at the plane zi. The boundary conditions are the same as for equations (2.2)–
(2.3). The fundamental problems are named with two capital letters FP complemented
with two small letters denoting the forcing direction. For example, equation (FPsx)
reads ‘Fundamental Problem forced by shear in x-direction’.
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uz
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x

ẑ = ẑi

ẑ

FIGURE 4. Illustration of the transpiration velocity as a consequence from mass
conservation owing to the variation of slip velocity along the interface. Control volume
(CV) below the interface (ẑ= ẑi) is denoted with a shaded (blue) region. The quantities ux,1
and ux,2 denote slip velocities at the left and the right boundaries of the CV, respectively.

Taking the surface average of expression (2.5b) at the interface, we obtain

u= 〈û〉i = 〈û
(τx)
〉i
τx

µ
+ 〈û(τy)

〉i
τy

µ
on z= zi. (2.7)

No average is carried out for the free-fluid shear stress, because it is constant within
the interface cell (A2). The surface average of an arbitrary quantity â is defined as

〈â〉i = 〈â〉s(ẑi), where 〈â〉s(ẑ)=
1
`2

∫ `

0

∫ `

0
â(x̂, ŷ, ẑ) dx̂ dŷ. (2.8)

By comparing the surface-averaged velocity in the interface cell (2.7) with the slip
boundary condition (2.1), we observe that the components of the slip length tensor
can be obtained as

Lxx = 〈û(τx)
x 〉i, Lyx = 〈û(τx)

y 〉i, Lxy = 〈û(τy)
x 〉i, Lyy = 〈û(τy)

y 〉i. (2.9a−d)

In terms of the response operator, the slip tensor becomes L = µ〈R̂τ 〉i. Note that
the dimension of the vector fields û(τx) and û(τy) is the same as for velocity per
shear, which gives a unit of metres (m). The units of the different fields introduced
throughout the paper are summarised in table 2.

2.2. Interface normal velocity and transpiration length
We begin with a simple motivation for the transpiration velocity based on the
principle of mass conservation. We consider a two-dimensional rough surface and
define a control volume (CV) below the interface z = zi as shown in figure 4. We
assume that there is a slip velocity variation from ux,1 at the left side of the CV to
ux,2 at the right side of the CV. The mass fluxes at the left and the right boundaries of
the CV are proportional to the slip velocities at the interface (a direct consequence of
(A1)). Consequently, mass conservation requires a non-zero transpiration velocity uz
at the interface. If the slip velocity is increasing ux,2> ux,1, the generated transpiration
velocity is, therefore, negative.

More generally, the interface normal velocity condition in the TR model for a 3-
D textured surface is provided by a linear law relating the normal velocity with the
tangential variation of slip velocity,

un = uz =−M :∇2ut on z= zi, (2.10)
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(x2, y2, ẑi)
 Q3      

Q2

Q1

Q5Q4

ẑ
x

y
(x1, y1, ẑb)

FIGURE 5. Control volume for deriving the transpiration length tensor M . All the possible
volumetric fluxes are indicated with thick arrows.

where M = (Mxx, Mxy; Mxy, Myy) is the transpiration length tensor – exhibiting the
same symmetry properties as the slip length tensor – and ∇2 = (∂x, ∂y) is gradient
operator containing the two tangential directions. The double dot product between
two second-rank tensors A and B is defined as A : B = AijBij, where summation over
repeating indices is implied. We use the normal n subscript interchangeably with the
z component. The proposed expression, motivated by the conservation of mass, also
emerges from a formal multi-scale expansion (see § 5, appendix A and Sudhakar et al.
2019). A similar multi-scale expansion has been recently used by Bottaro (2019) to
confirm the present transpiration velocity condition.

To determine M , we make use of mass conservation in a 3-D setting. We define
a CV with size (x2 − x1) × (y2 − y1) × (ẑi − ẑb) over a number of texture elements
as shown in figure 5. By definition, no flux goes through the impermeable bottom
surface. Therefore mass conservation requires

Q1 +Q2 +Q3 +Q4 +Q5 = 0, (2.11)

where Qi is the volumetric flux through faces of the CV (figure 5). The flux through
the vertical faces (i= 1, . . . , 4) of the CV can be evaluated as

Qi =

∫
Si

u · n dS=
∫ ẑi

ẑb

∫ s2

s1

u · n d ẑ ds, (2.12)

where u is the effective velocity field at the CV face, n is the unit normal vector of
the surface and s is either x or y, depending on the orientation of the surface. Note that
the integral in the wall-normal direction is carried out over the microscale ẑ, because
macroscopically the textured surface is infinitesimal and variation in depth does not
exist.

Next, we use equation (2.8) in conjunction with the solution of fundamental
problems (FPsx), (FPsy) to rewrite equation (2.12) as

Qi =

∫ ẑi

ẑb

∫ s2

s1

u · n d ẑ ds=
∫ ẑi

ẑb

∫ s2

s1

〈û〉s(x, y, ẑ) · n d ẑ ds

=

∫ ẑi

ẑb

∫ s2

s1

[〈R̂τ 〉s(ẑ) · τ (x, y)] · n d ẑ ds=
(

Rτ ·

∫ s2

s1

τ ds
)
· n, (2.13)
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where we have defined the response tensor Rτ as

Rτ =

∫ ẑi

ẑb

〈R̂τ 〉s d ẑ=
1
`2

∫ `

0

∫ `

0

∫ zi

zb

R̂τ (x̂, ŷ, ẑ) dx̂ dŷ d ẑ. (2.14)

The flux through the top wall is expressed as

Q5 =

∫ x2

x1

∫ y2

y1

uz dx dy. (2.15)

Inserting the expressions for the fluxes through the CV faces into the mass
conservation identity (2.11) we obtain∫ x2

x1

∫ y2

y1

uz dx dy = −
(

Rτ ·

∫ y2

y1

[τ (x2, y)− τ (x1, y)] dy
)
· ex

−

(
Rτ ·

∫ x2

x1

[τ (x, y2)− τ (x, y1)] dx
)
· ey. (2.16)

To proceed towards the effective boundary condition (2.10), we take an infinitesimal
CV limit, which gives us

uz1x1y = −[Rτ · (τ (x+1x, y)− τ (x, y))1y] · ex

− [Rτ · (τ (x, y+1y)− τ (x, y))1x] · ey, (2.17)

were we have 1y= y2 − y1, 1x= x2 − x1 and x1 = x and y1 = y. Dividing both sides
by 1x1y and using the definition of a derivative, we obtain

uz =−(Rτ · ∂xτ ) · ex − (Rτ · ∂yτ ) · ey. (2.18)

This expression can be rewritten using double dot product as

uz =−Rτ : ∇2τ . (2.19)

To obtain the transpiration length tensor, we express the tangential shear stress from
(2.1) and insert the result into (2.19). Comparing the final result with (2.10) yields

M =µRτ · L
−1. (2.20)

Recall that the tensor Rτ can be obtained as a post-processing step from the
fundamental problems (FPsx), (FPsy) using the volume integral (2.14).

It is interesting to note that the velocity conditions (2.1), (2.10) can be written in
a more compact form,ux

uy
uz

=
Lxx 0 0

0 Lxx 0
0 0 Mxx

 ·
∂zux + ∂xuz
∂zuy + ∂yuz
∂zuz

 , (2.21)

valid for an incompressible flow over isotropic geometries or for incompressible
two-dimensional flows. The upper left 2 × 2 block corresponds to the slip length
tensor L introduced before, while the lower right element Mxx is the first term of
the transpiration length tensor M . The equivalence with the previous formulation
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Interface
Effective boundary conditions

ux = Lxx™zux
ux = -Mxx™xux

¶ 0.5¶ ÷  0.5¶ 
zi = 0.2¶

u = (U0, 0)

H u 
= 

0

u 
= 

0

H
 -

 z i

u 
= 

0

u 
= 

0

H

(a) (b)

z

x

H

u = (U0,0)

FIGURE 6. Lid-driven cavity with a textured bottom. (a) Shows the computational domain
used for the resolved simulations. The bottom surface consists of ten regular cavities. The
domain for effective model simulation is shown in (b).

is obtained using the continuity equation, i.e. ∂zuz = −∂xux − ∂yuy. The form (2.21)
can be useful in practice, for example, if boundary conditions are imposed weakly
in the finite element method. A similar set of boundary conditions – obtained by
neglecting ∂xuz and ∂yuz – has been numerically investigated by Gómez de Segura
et al. (2018). In their work, the focus was on elucidating the turbulent flow response
to the boundary condition (2.21) where all the coefficients for the slip and the
transpiration lengths could take different values; however, connection to a surface
texture geometry has never been made.

2.3. Numerical validation of velocity conditions
We consider a lid-driven cavity whose bottom surface is made of a texture with the
characteristic length scale ` (figure 6a). The macroscopic length scale H corresponds
to the cavity width and depth. The scale separation parameter is equal to ε = `/H =
0.1. A no-slip condition is applied on all surfaces except the top wall, which moves
with a prescribed velocity (U0, 0). Details about the numerical solver can be found in
§ C.1.

The moving upper wall generates a clockwise rotating vortex. This vortex imposes
a negative shear on the rough surface. It also induces a downward mass flux
at the right half of the cavity and an upward mass flux at the left half of the
cavity. Near the textured surface, one can observe velocity fluctuations with a
wavelength corresponding to the texture size `. To obtain macroscopic flow fields
from geometry-resolving direct numerical simulation (DNS), we average out the
microscale oscillations by creating an ensemble of 50 DNS simulations. The ensemble
consists of configurations in which the textured surface at the bottom of the cavity is
incrementally shifted in the x direction. The shift between neighbouring simulations
is `/50. We believe that the ensemble average is the most appropriate way to obtain
macroscopic variations due to the boundaries of the cavity. For periodic configurations,
moving average or Fourier filtering could be equally accurate choices. The tangential
and the transpiration velocities from the ensemble-averaged DNS along z = 0.2` are
shown with black lines in figures 7(a) and 7(b), respectively.
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x/H

−0.0150
−0.0125
−0.0100u x

/U
0

u z
/U

0

−0.0075
−0.0050
−0.0025

0

DNS
Model

x/H

−0.00075

−0.00050

−0.00025

0

0.00025

0.00050

0.00075

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

(a) (b)

FIGURE 7. Tangential (a) and normal (b) velocities along the interface between the flow
in the lid-driven cavity and the rough bottom. Dashed vertical lines show the streamwise
locations where the DNS and model predictions are compared in table 1.

zi/` Lxx/` Mxx/` ux/U0 uz/U0 ux/ūx uz/ūz

0.0 0.018 0.025 −1.24× 10−3 1.09× 10−5 1.028 0.831
0.1 0.118 0.061 −7.81× 10−3 1.67× 10−4 0.975 0.932
0.2 0.218 0.110 −1.39× 10−2 5.22× 10−4 0.961 0.913
0.3 0.318 0.160 −1.96× 10−2 1.05× 10−3 0.950 0.894
0.4 0.418 0.210 −2.50× 10−2 1.74× 10−3 0.943 0.879
0.5 0.518 0.259 −3.02× 10−2 2.58× 10−3 0.937 0.868

TABLE 1. The slip length Lxx and the transpiration length Mxx for a range of interface
locations zi above the textured surface. The effective tangential velocity ux is sampled at
(0.5H, zi). The effective transpiration velocity uz is sampled at (0.25H, zi). The model
predictions are finally normalised using the ensemble averaged results from DNS ūx and ūz.

For comparison, we set up an effective simulation of the problem with the domain
and boundary conditions shown in figure 6(b). We observed that in this particular
shear-driven flow configuration the ∂xuz term in the shear stress at the wall is very
small compared to ∂zux. Therefore, in the effective simulation we neglect ∂xuz. We
define the interface location at the previously selected coordinate zi = 0.2`. The
coefficients for the boundary conditions (2.1), (2.10) – the slip and the transpiration
lengths – are computed as described in §§ 2.1 and 2.2, using a FreeFEM++
open-source code (Lācis & Bagheri 2016 –2019). At this specific interface location,
we have Lxx = 0.218` and Mxx = 0.110`. The velocities at z= 0.2` from the effective
simulation are compared to the ensemble-averaged DNS in figure 7(a,b). It is clear
that the effective boundary conditions accurately predict the ensemble average (or the
macroscopic variation) of both velocity components.

The results obtained using the TR model are reasonably accurate for different
interface locations. To show this, we repeat the previous effective computation for a
range of interface locations zi= (0.0, 0.1, 0.3, 0.4, 0.5)`. For each interface coordinate,
the effective coefficients Lxx and Mxx are recomputed using the fundamental problems
(FPsx)–(FPsy), see table 1. To quantitatively present the TR model predictions, we
select two streamwise positions at the interface plane, shown with vertical dashed
lines in figure 7. In table 1, we present the model predictions of ux sampled at point
(0.5H, zi) for all interface locations. As the interface moves upwards – further away
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from the solid structures – the value of the predicted slip velocity increases due to a
larger distance over which the viscous friction can bring the velocity to the no-slip
value at the wall. This effect is correctly captured by the model through the linear
increase of the slip length Lxx (table 1). In other words, the information about the
interface location is provided to the effective model through the adjustment of the
coefficients. The interface normal velocity component uz and transpiration length Mxx

exhibit the same behaviour.
In the last two columns of table 1, we present the ratio between model predictions

and the ensemble-averaged DNS results. We observe that, for all interface locations,
the relative error (1− u/ū) is below 7 % for the slip velocity. The relative error for
the transpiration velocity is below 14 %. There is a trend of an increasing error as
the interface is moved upwards, except for the interface location zi = 0. Despite the
trend of increasing error with interface location, the TR model has a remarkably good
accuracy taking into account that the transpiration velocity varies over two orders of
magnitude (see 5th column of table 1). It has to be mentioned that the convergence
of the ensemble averaging for the interface location zi = 0 is very slow and we used
250 simulations to obtain a smooth result. The shift of the textured wall between
each simulation is then `/250. We have carried out similar numerical computations
on equilateral triangular surface texture and obtained the same behaviour as reported
above.

This investigation shows that it is possible to adjust the interface height over
distances O(`) without a significant loss of accuracy. A similar conclusion about the
interface location has already been reached numerically by Lācis & Bagheri (2016)
and theoretically by Marciniak-Czochra & Mikelić (2012) for the slip velocity alone.
However, as a ‘rule-of-thumb’, we suggest placing the interface as close to the solid
structure as possible without intersecting the solids.

3. The TR model for porous surfaces

In this section, we extend the TR model to 3-D porous surfaces by augmenting
the set of boundary conditions for the textured wall with a pressure condition. This
is achieved by considering the transfer of normal momentum between the free flow
region and the porous surface.

To determine the coefficients appearing in the interface boundary conditions, we will
adopt a similar interface-cell approach as for the textured surface (see figure 8a,b).
The bottom coordinate of the interface cell, ẑb, is chosen sufficiently deep such that
it can be considered as part of the interior (Darcy) domain. As a rule-of-thumb, the
interface cell should contain around four solid skeleton entities ẑb≈ ẑi− 4` and extend
a similar distance in the free fluid ẑt ≈ ẑi + 4`. From the scale separation assumption
(A2) it follows that, in the interface cell, the shear stress from the free fluid and the
pore pressure gradient from the porous material are both constant.

3.1. Velocity boundary conditions
For a porous surface, the tangential velocity boundary condition is identical to the
textured surface, i.e. the slip condition (2.1). The interface normal velocity condition,
on the other hand, becomes

un = u−n −M : ∇2ut on z= zi, (3.1)
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¶
¶ ẑt £ ẑi 

ẑi

ẑ

ẑb £ ẑi - 4¶ 

xy

+ 4¶

=  ÷†x
µ +  ÷†y

µ +  ÷™xp-

µ +  ÷™yp-

µ +  ÷™zp-

µ

(a) (b) (c) (d) (e) (f) (g)

FIGURE 8. (a) Illustrates a system consisting of a porous medium and a free fluid.
The transparent plane is the interface. The solid red cuboid is the interface cell (a,b).
(b–g) Shows the interface cell and the corresponding decomposition into five fundamental
problems forced either with the shear at the interface (c,d) or the pore pressure gradient
below the interface (e–g).

where u−n is the interface normal Darcy velocity, satisfying

u−n =
(
−

K

µ
· ∇p−

)
· n. (3.2)

This term is induced by mass conservation between the free fluid and the porous
domain.

The tensors M and L are determined by solving the fundamental problems (FPsx)–
(FPsy). The only difference from the textured surface is that the solid structures within
the interface cell represent the porous material. Consequently, all the elements in L
and M can be obtained through expressions (2.9) and (2.20), respectively. The interior
permeability tensor (K ) of the porous medium is computed through a set of Stokes
equations in a bulk unit cell (Whitaker 1998; Mei & Vernescu 2010).

3.2. Pressure boundary condition
The pressure boundary condition for a general 3-D porous surface, obeying
assumptions (A1)–(A3), is obtained through a balance between the normal free-fluid
stress and the stress from the porous material, i.e.

− p+ 2µ∂zuz =−p− + f (1) · u− + f (2) · ut on z= zi. (3.3)

The normal stress from the porous material consists of the pore pressure p− and two
friction coefficients, f (1) and f (2). The coefficient f (1) describes the interface normal
resistance that the Darcy flow u− must overcome to transport mass and momentum
across and along the interface. The coefficient f (2) provides the interface normal force
due to the slip velocity near the interface. It exists only for anisotropic and misaligned
surface geometries, similarly to the stabilisation parameter (see (1.2)) derived by
Marciniak-Czochra & Mikelić (2012) and Carraro et al. (2018). Misalignment in
this context is a difference between the principal axes of the pore geometry and the
coordinate axes.

The friction coefficients are again determined by considering the interface cell
(figure 8b). The difference from the textured surface is the existence of the pore
pressure resulting in an additional forcing term in the governing equations of the
interface cell, yielding

−∇p̂+µ1û = −δ(ẑ− ẑi)τ +H(ẑi − ẑ)∇p−, (3.4)
∇ · û = 0. (3.5)
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Variable p̂ û p̂(τx), p̂(τy) û(τx), û(τy) p̂( px), p̂( py), p̂( pz) û( px), û( py), û( pz)

Unit Pa m s−1 Pa s m Pa s m m2

TABLE 2. Summary of pressure and velocity fields with the corresponding units.

Darcy’s law is valid only in the porous material, therefore the pressure gradient
forcing is considered only below the interface. A 1-D Heaviside step function H(ẑ)
is used to distinguish between regions above and below the interface. Boundary
conditions for the interface cell are the same as for the equations (2.2)–(2.3) except
at the bottom of the domain, where we impose the interior solution corresponding
to the Darcy flow due to the same pressure gradient ∇p− (Whitaker 1998; Mei &
Vernescu 2010; Lācis & Bagheri 2016).

Then, we use the linearity assumption (A1) and write the pressure as

p̂= r̂τ · τ − r̂p · ∇p−. (3.6)

Here, r̂τ and r̂p are the response operators related to the shear stress τ and the pressure
gradient ∇p−, respectively. This expression is expanded as

p̂ = r̂τ · (τxex + τyey)− r̂p · (∂xp−ex + ∂yp−ey + ∂zp−ez)

= (r̂τ · ex)τx + (r̂τ · ey)τy − (r̂p · ex)∂xp− (r̂p · ey)∂yp− (r̂p · ez)∂zp

= p̂(τx) τx

µ
+ p̂(τy) τy

µ
− p̂(px) ∂xp

µ
− p̂(py) ∂yp

µ
− p̂(pz) ∂zp

µ
, (3.7)

where we have defined

p̂(τx)
=µr̂τ · ex, p̂(τy)

=µr̂τ · ey (3.8a,b)

and
p̂(px)
=µr̂p · ex, p̂(py)

=µr̂p · ey, p̂(pz)
=µr̂p · ez. (3.9a−c)

Note that p̂(τx) and p̂(τy) are the pressure fields appearing in the fundamental problems
(FPsx), (FPsy); they are the pressure responses to the interface shear forcing in the x
and y directions, respectively. Furthermore, p̂(px), p̂(py) and p̂(pz) are the pressure fields
associated with the following three fundamental problems

−∇p̂(px)
+µ1û(px)

=−µH(ẑi − ẑ)ex, ∇ · û
(px)
= 0; (FPpx)

−∇p̂(py)
+µ1û(py)

=−µH(ẑi − ẑ)ey, ∇ · û
(py)
= 0; (FPpy)

−∇p̂(pz)
+µ1û(pz)

=−µH(ẑi − ẑ)ez, ∇ · û
(pz)
= 0. (FPpz)

These problems describe the response to the pressure gradient forcing along the three
coordinates and have been previously derived by Lācis & Bagheri (2016) using formal
multi-scale expansion. Keep in mind that in (FPpx)–(FPpz) the fields û(px), û(py) and
û(pz) have units of m2, similar to the permeability of a porous medium, see table 2.

From the five fundamental problems (FPsx)–(FPpz), we can determine the resistance
vectors f (1) and f (2) for the pressure condition (3.3). We start with f (2). It generates a
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pressure jump
p− − p= f (2) · ut = f̃

(2)
·

τ

µ
, (3.10)

where f̃
(2)
= f (2) · L. The pressure field response (3.7) due to the shear is

p̂= p̂(τx) τx

µ
+ p̂(τy) τy

µ
. (3.11)

Then, we need to relate the effective pressures in porous and free-fluid regions to the
linear pressure responses p̂(τx) and p̂(τy) in the interface cell. For the velocity, a simple
plane average at the interface (2.7) is sufficient. However, for the pressure condition
a single pressure value will not provide the necessary information about the pressure
jump. Therefore, we define the effective pressure in the interior and free fluid as

p− =
1
Vf

∫
`2

∫ ẑb+`

ẑb

p̂ dV = 〈p̂〉−, p=
1
Vf

∫
`2

∫ ẑt

ẑt−`

p̂ dV = 〈p̂〉+, (3.12a,b)

with Vf corresponding to the fluid volume in the integration region. To neglect any
transition effects of the pressure field near the interface, these volume averages are
taken at the bottom and at the top of the interface cell. In this way, the averaging
operation is sufficiently far away from the interface to obtain a representative pressure
value for the interior and the free fluid.

Now we insert the pressure field decomposition (3.11) into (3.12) and we take the
difference between the interior pressure and the free-fluid pressure,

p− − p=
(
〈p̂(τx)
〉
−
− 〈p̂(τx)

〉
+
) τx

µ
+
(
〈p̂(τy)
〉
−
− 〈p̂(τy)

〉
+
) τy

µ
. (3.13)

By comparing the above to (3.10), we obtain

f̃ (2)x = 〈p̂
(τx)
〉
−
− 〈p̂(τx)

〉
+, f̃ (2)y = 〈p̂

(τy)
〉
−
− 〈p̂(τy)

〉
+. (3.14a,b)

We emphasise that p̂(τx) and p̂(τy) are pressure fields in the interface cell generated
due to shear stress forcing (figure 8c,d) and can be computed from the fundamental
problems (FPsx), (FPsy). Finally, the resistance vector f (2), appearing in the front of
the slip velocity in (3.3), is obtained from

f (2) = f̃
(2)
· L−1. (3.15)

The procedure to get this friction coefficient is similar to the one reported by
Marciniak-Czochra & Mikelić (2012) and Carraro et al. (2013).

We turn our attention to the resistance coefficient f (1). The pressure jump condition
(3.3) due to the Darcy velocity is

p− − p= f (1) · u− =−f̃
(1)
·
∇p−

µ
, (3.16)

where f̃
(1)
= −f (1) · K . The pressure field response (3.7), corresponding to the pore

pressure gradient forcing, is

p̂=−p̂(px) ∂xp−

µ
− p̂(py) ∂yp−

µ
− p̂(pz) ∂zp−

µ
. (3.17)
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ux = Lxx™zux
uz = -Mxx™xux + un

-

zi = 0.1¶
Effective bounday conditions

Stokes equation

Darcy equationH
/2

0.1 ¶

H
(a) (b) (c)

H

0.6H

¶ ÷ ¶z
x

(i)

2r
2a

å

2b

2rb

2ri

(ii) (iii)

-p + 2µ       = -p- + f (1) · u-  ™uz

™z

FIGURE 9. A lid-driven cavity with a porous bed. (a) Shows the dimensions of the
computational domain. The dashed vertical line indicates the streamwise position where
the DNS and the effective models are compared. (b) Depicts an enlarged view of the
porous materials showing the microscale geometry of the three test cases considered. The
interface is located at a distance of 0.1` above the solid structure. (c) Shows the domain
for the continuum description.

Using (3.12), we can express the pressure jump as

p− p− = 〈p̂〉+ − 〈p̂〉− =
(
〈p̂(px)
〉
−
− 〈p̂(px)

〉
+
) ∂xp−

µ

+
(
〈p̂(py)
〉
−
− 〈p̂(py)

〉
+
) ∂yp−

µ
+
(
〈p̂(pz)
〉
−
− 〈p̂(pz)

〉
+
) ∂zp−

µ
. (3.18)

The comparison of (3.16) and (3.18) yields

f̃ (1)x = 〈p̂
(px)
〉
−
− 〈p̂(px)

〉
+, f̃ (1)y = 〈p̂

(py)
〉
−
− 〈p̂(py)

〉
+, f̃ (1)z = 〈p̂

(pz)
〉
−
− 〈p̂(pz)

〉
+.

(3.19a−c)
We recall that the pressure fields in the interface cell are generated by the pore
pressure gradient forcing below the interface (figure 8e–g), and they are computed
from fundamental problems (FPpx)–(FPpz). The final form of the friction coefficient
is,

f (1) =−f̃
(1)
· K−1. (3.20)

This friction coefficient term, which to the best of authors’ knowledge is reported for
the first time, is particularly important for capturing the correct pressure jump across
the interface for layered problems, as we demonstrate in the next section.

3.3. Validation of the TR model for porous surfaces
We consider the same flow configuration as in § 2.3, but we replace the bottom
textured wall with a porous surface, see figure 9(a). The porous medium consists
of a periodic distribution of solid inclusions with a characteristic length scale `

(see ` × ` square in figure 9a). The width and the height of the cavity are H,
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Configuration Porosity (φ) Geometry details Permeability tensor (K )

(i) 0.75 r= 0.28`
(

0.014 0
0 0.014

)
`2

(ii) 0.78 a= 0.36`, b= 0.19`,
α = 45◦

(
0.016 0.003
0.003 0.016

)
`2

(iii) φb = 0.95
φi = 0.80

rb = 0.13`
ri = 0.25`

(
0.064 0

0 0.064

)
`2

TABLE 3. Geometrical properties of the porous media considered in this work (see
graphical representation in figure 9b). The subscript i corresponds to the interface and
the subscript b corresponds to the bulk. The porosity φ is defined as the ratio between
the solid volume and the fluid volume. The last column shows the interior permeability
tensor K .

while the depth of the porous material is H/2. The scale separation parameter is
again ε = `/H = 0.1. The flow reaches the interior seepage velocity quickly (Lācis
& Bagheri 2016; Lācis, Zampogna & Bagheri 2017); therefore, a porous material
containing only five repeating structures in depth is sufficient for using Darcy’s
equation in the interior.

To demonstrate the generality of the TR model, we consider three kinds of porous
geometries, see figure 9(b). Configuration (i) has circular solid inclusions, which
results in an isotropic porous medium. The anisotropic elliptic inclusions considered
in configuration (ii) are the same as investigated by Carraro et al. (2013). The last
geometry (iii) has isotropic circular inclusions with the interface layer different from
the interior. The porosity and geometrical details of the three configurations are listed
in table 3.

We carry out fully resolved DNS. For each configuration, the mean over an
ensemble of 50 shifted porous beds is computed. The free flow is similar to the flow
in the lid-driven cavity with the textured bottom (§ 2.3) except that there are mass
fluxes in and out of the porous material. The averaged DNS will be compared to
effective representations of the porous bed (figure 9c). Since the flow configuration
is similar to the one reported in § 2.3, we will again neglect ∂xuz in the effective
simulations. We have checked that ∂xuz is much smaller than ∂zux. Within the porous
domain, we employ Darcy’s law, where the only unknown quantity is the pore
pressure p−. The interior permeability tensors (K ) for all geometries are listed in the
last column of table 3. They were obtained by solving a set of Stokes equations in
a periodic unit cell in the bulk (Whitaker 1998; Mei & Vernescu 2010). A Neumann
condition on pore pressure ∇p− · n= 0 is enforced at solid boundaries of the cavity.
This condition corresponds to zero fluid flux through the wall. Boundary conditions
for the free fluid remain the same as in § 2.3. We place the interface at a distance
zi = 0.1` above the solid structures; the interface location zi = 0.0 was not accessible
due to meshing issues. We compute the effective parameters appearing in boundary
conditions (2.1), (3.1), (3.3) using the procedure explained in §§ 2.1, 2.2 and 3.2. The
slip and the transpiration lengths, reported in table 4, have nearly the same value for
the three configurations because the porous materials have similar porosity near the
interface (table 3).

To validate the velocity conditions (2.1), (3.1), we sample the ensemble-averaged
DNS and the effective model at coordinates (0.5H, zi) and (0.25H, zi) for slip and
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FIGURE 10. The pressure (a) and the transpiration velocity (b) profiles of the lid-driven
cavity with layered isotropic porous bed (iii). (a) Shows the distribution of pressure along
the vertical dashed line in figure 9(a). The grey shaded region corresponds to the porous
material.

Config. Lxx/` Mxx/` f (1)x /(µ/`) f (1)z /(µ/`) f (2)x /(µ/`) ux/ūx u−z /ūz uz/ūz

(i) 0.1516 0.0856 0.000 −10.43 0.000 0.958 0.629 1.127
(ii) 0.1563 0.0885 2.125 −7.948 −1.541 0.958 0.661 1.137
(iii) 0.1538 0.0866 0.000 −38.23 0.000 0.986 0.828 1.153

TABLE 4. The slip length, the transpiration length and the resistance coefficients f (1) and
f (2) for the porous medium geometries shown graphically in figure 9(b). The last three
columns show the ratio between the model and the DNS results for the slip and the
transpiration velocities.

transpiration velocities, respectively. The ratios between the model predictions and the
DNS are given in last columns of table 4. It is clear that the slip velocity is predicted
as accurately as for the textured surfaces. In the second to last column of table 4
we list the ratio between the Darcy transpiration velocity u−z – sampled just below
point (0.25H, zi) – and the DNS result. The Darcy velocity alone is a rather inaccurate
predictor and has a relative error of up to 37 %. The agreement between the TR model
(3.1) – that augments the Darcy contribution with the term containing the transpiration
length – and the DNS is better as the relative error is smaller than 15 %. If a smaller
error is desired, one can use the full multi-scale expansion model to reduce the error
to below 8 % (Sudhakar et al. 2019).

To validate the pressure condition (3.3), we analyse the ensemble-averaged DNS
of configuration (iii). The pressure p̂ along the vertical dashed lined in figure 9(a) is
shown in figure 10(a) with a solid black line. The region corresponding to the porous
domain is shadowed. We observe that the pressure field undergoes a sharp variation
when transitioning from the free-fluid region to the porous medium, as shown by
an inset in figure 10(a). The sharp variation indicates that there could be a pressure
jump in the effective representation. Note that there are microscale oscillations in the
pressure field, because the employed ensemble average filters out only the microscale
variations in the x direction. For comparison, the pressure obtained from the effective
model is shown using dotted blue symbols in figure 10(a). We can observe that
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the agreement between model predictions and DNS is good both in free fluid and
interior, while the sharp variation in the near vicinity of the interface is not modelled.
This is a direct consequence of having an infinitely thin interface in the effective
representation, which condenses all variations near the boundary to a single line. The
same quantitative agreement we observed for the configurations (i) and (ii).

To show the importance of the resistance coefficients f (1) and f (2), we carried out
two more effective simulations. In the first one – called ‘leading order’ – we set
f (1) = 0 in the pressure condition (3.3). This corresponds to pressure condition
proposed by Marciniak-Czochra & Mikelić (2012) Carraro et al. (2013) and Carraro
et al. (2018). In the second one – called ‘pressure continuity’ – we impose p = p−,
which has been a common approach in the past (Ene & Sanchez-Palencia 1975; Levy
& Sanchez-Palencia 1975; Hou et al. 1989; Lācis & Bagheri 2016). Results from the
leading-order model and the pressure continuity model are reported in figure 10(a)
using crosses and a dashed curve, respectively. We observe that both conditions result
in a poor agreement between the model and the DNS if compared to the TR model.

In addition, an inaccurate pressure condition has consequences for the flow field, as
illustrated in figure 10(b). There, the transpiration velocity at the interface is shown
using the same symbols as in figure 10(a). We observe that the error in the pressure
condition can lead to significantly different – and inaccurate – vertical velocity
predictions. The coefficient f (1) imposes a larger resistance for the wall-normal
velocity, and thus it decreases the transpiration by precisely the correct amount.

4. Role of the transpiration in a turbulent channel flow

In this section, we demonstrate with a specific example – fully developed turbulent
flow over a textured surface – that a small transpiration velocity can be crucial to
capturing the correct physics of the problem. Here, the domain consists of a periodic
channel whose bottom surface is covered with ordered cuboid roughness elements (see
inset in figure 11a).

We define a flat interface on the crest plane of the cuboids. The region below
this interface is discarded in the effective representation of the textured wall. We
impose three different boundary conditions on the interface; (i) no-slip condition
corresponding to a smooth wall, (ii) slip condition (2.1) and (iii) the TR model,
including also the transpiration velocity (2.10). Since the cuboids have the same
geometry in both x and y directions and they are aligned with the chosen coordinate
system, we have Lxx = Lyy, Mxx = Myy and Lxy = Mxy = 0. The values of Lxx and Mxx

are provided in table 5. They were computed a priori by solving the fundamental
problems (FPsx)–(FPsy) for a cuboid roughness element in the interface unit cell
using the procedure described in § 2. Following the work by Gómez de Segura et al.
(2018), we also neglect the ∂xuz and ∂yuz terms in the slip boundary condition.

The simulations are carried out under conditions leading to Reτ = uτδ/ν ≈ 180,
where uτ is the friction velocity. For all simulations, we impose a constant mass flux;
the driving pressure gradient is continuously adjusted. The details of the numerical
simulation are reported in § C.2. Figure 11(a) shows the time- and space-averaged
mean velocity profiles for the three effective simulations in plus (or wall) units. The
origin is set to the crest plane of the roughness. The logarithmic part of the mean
flow can be represented by

U+ =
1
κ

ln(z+)+ B−1U+, (4.1)
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FIGURE 11. (a) Shows the time- and space-averaged velocity profile (mean profile) for the
turbulent channel flow. The inset in (a) provides the simulation domain: 6δ× 4δ× (2+ k)δ,
where k is the height of the roughness elements and δ is the channel half-height. The
dimensions of the periodic cuboid roughness elements are 0.1δ × 0.1δ × kδ, with k/δ =
0.04 and those are contained in a periodic tile of 0.2δ× 0.2δ along wall-parallel directions.
(b) Shows the root-mean-square of the velocity fluctuations for streamwise u′rms, spanwise
v′rms and wall-normal w′rms components. Here we compare results from geometry resolved
simulations and three effective models.

k/δ Lxx/δ Mxx/δ Reτ U+s 1U+

No-slip — — — 178.76 0.0 0.0
Slip only 0.04 0.01146 0 172.32 1.978 −0.812
TR model 0.04 0.01146 0.01602 178.85 2.011 0.106
Geometry-resolved 0.04 — — 184.70 1.942 0.886

TABLE 5. Friction Reynolds numbers (Reτ ) and slip velocity (U+s ) at the bottom wall of
the turbulent channel flow with smooth, rough and slip boundary conditions at the bottom
wall. Here k and δ represent the roughness elements’ height and channel half-height,
respectively. Lxx and Mxx are coefficients used in (2.1), (2.10). For the considered roughness
geometry Lxx = Lyy, Mxx = Myy and Lxy = Lyx = Mxy = 0. Finally, 1U+ is the roughness
function or the shift of the mean velocity profile in the logarithmic region.

where κ = 0.392 and B= 4.48 (Millikan 1939; Luchini 2017). Moreover, 1U+ is the
roughness function that quantifies the shift in the mean velocity profile.

From figure 11(a), we observe that the slip velocity boundary condition produces
an upwards shift (1U+s ) of the velocity profile in the logarithmic region compared to
the no-slip solution. The transpiration induces an additional shift 1U+2 which is in
fact similar to 1U+s , despite that the transpiration velocity is formally a higher-order
boundary condition. The shift 1U+2 has the opposite sign and the mean velocity
profile is translated downwards. This illustrates the sensitivity of the turbulent channel
flow to the transpiration velocity as recognised in earlier studies (Orlandi & Jiménez
1994; Jiménez et al. 2001; Orlandi & Leonardi 2006; García-Mayoral & Jiménez
2011).

We also carried out DNS using an immersed boundary method to resolve the flow
around cuboids (Breugem, Boersma & Uittenbogaard 2006). In figure 11(a) the time-
and space-averaged mean flow of the geometry-resolved DNS is displayed as a solid
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black curve. We observe that the TR model yields a mean velocity profile that is
closer to the geometry-resolved DNS compared to the model with the slip condition
alone. A good qualitative agreement is also observed for the root mean square velocity
fluctuations (figure 11b).

The friction Reynolds number Reτ as well as the slip velocity U+s at the crest
plane and the shift in the logarithmic profile 1U+ for all simulations are given in
table 5. For channel flow with rectangular cuboid roughness elements, the friction
velocity (and thus the skin-friction drag) at the rough wall is larger compared to
that of a smooth wall (Orlandi & Leonardi 2006). However, the effective simulation
without the transpiration (denoted as ‘Slip only’) predicts a reduction in the skin-
friction drag as observed by a smaller Reτ and a negative roughness function 1U+.
Negative roughness function corresponds to a positive shift in the velocity profile.
In contrast, the TR model is able to modify the near-wall turbulence in a correct
way, predicting that the roughness induces a drag increase. The slip velocity U+s is
similar for both effective simulations. This provides an additional confirmation that
the transpiration velocity is the reason behind the difference in the drag.

Additional insight into the role of the transpiration in the effective simulation can
be gained from the total wall shear-stress, given by

τw =µ
∂U
∂z︸ ︷︷ ︸
τV

− ρu′xu′z︸ ︷︷ ︸
τR

, (4.2)

where ρ is the fluid density. Here, the overbar denotes time- and space-averaged
quantities, and (·)′ represent turbulent fluctuating quantities. We emphasise that the τw
here corresponds to the effective wall in the homogenised model setting, as opposed
to the real wall of the textured surface. The first term (τV) is the viscous stress, and
the second term (τR) is the Reynolds stress. For channel flow with slippage only, the
wall-normal fluctuations are zero (u′z = 0) at the homogenised wall. Hence, equation
(4.2) simplifies to τw = τV and only the viscous stress is modified by the boundary
condition. In contrast, when also the transpiration condition is imposed, u′z 6= 0, which
allows for a direct modification of the Reynolds stress at the homogenised wall. More
thorough analysis of transpiration velocity effect on the turbulence can be found in
papers by Gómez de Segura et al. (2018) and García-Mayoral, Gómez-de Segura &
Fairhall (2019).

The TR model is based on the creeping flow or linearity assumption (A1). Naturally,
the model is expected to work, if the roughness size is below the size of the viscous
sub-layer. The roughness considered here is so-called transitional roughness (Jiménez
2004), which is slightly larger than the viscous sub-layer (k+ ≈ 7). The model,
however, still provides a physically reasonable approximation of the DNS, despite the
fact that there are inertial effects present in the flow between textured elements. For
even larger roughness elements, inertial effects inside the textured surface will become
more important, rendering the fundamental problems (FPsx)–(FPpz) inaccurate. From
our experience, the TR model will become very inaccurate for roughness heights
around k+ ≈ 20; this limit, however, can be geometry specific and therefore the TR
model should be verified for different types of textures before drawing more general
conclusions.

An empirical model for describing substantially larger surface textures would be
required to capture nonlinear effects, such as sweeps and ejections in the boundary
layer (Breugem et al. 2006) and transpiration velocity due to the pressure fluctuations
(García-Mayoral et al. 2019). This is however outside of the scope of this work.
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5. Comparison to the multi-scale expansion
We compare the effective conditions in the TR model (2.1), (2.10), (3.1), (3.3)

with a set of conditions obtained from a multi-scale expansion (MSE). Appendix A
provides the essential components of the derivation. A more in depth analysis and
derivations of the MSE model is presented in a paper by Sudhakar et al. (2019). Here,
we focus our attention on two aspects; first, one-to-one comparison between the terms
of the TR model and the MSE and, second, the accuracy of the TR model compared
to the MSE.

5.1. One-to-one comparison between the TR model and the MSE
An expansion up to the order O(ε) results in the following boundary conditions (A 32)
for the free-fluid velocity at the interface,

u= Le ·
τ

µ︸ ︷︷ ︸
O(Us)

− K e ·
∇p−

µ
+Me :

∇τ

µ︸ ︷︷ ︸
O(εUs)

+O(ε2Us), (5.1)

where Us is a characteristic magnitude of the slip velocity. The tensor Me is a
third-rank tensor with 81 elements, while the tensors Le and K e are both second-rank
tensors with 9 elements. The double dot operation between a third-rank tensor A and
a second-rank tensor B is defined as A : B= AijkBjk, where summation over repeating
indices is implied.

The leading-order term O(Us) of the velocity condition (5.1) is the slip term. The
slip tensor L in the TR model (2.1) corresponds to the upper left 2× 2 block of Le.
From mass conservation arguments, it can be shown that the last row and column of
tensor Le appearing in (5.1) are zero. Thus there is no transpiration velocity at O(Us).

There are two higher-order O(εUs) terms in the velocity condition (5.1); a Darcian
term related to the pore pressure gradient and a term related to the variation of
the shear stress. In the TR model, the Darcy contribution to the tangential velocity
components at the interface is neglected. In other words, the TR model has the Darcy
contribution only for the wall-normal transpiration component (3.1). One may again
show from mass conservation, that the last row of K e in equation (5.1) is equal to the
last row of the interior permeability tensor K . Therefore, the Darcy term u−z in the TR
model (3.2) corresponds to (K e · ∇p−/µ) · n̂. Finally, the term related to the variation
of the shear stress in (5.1) is compared with the transpiration boundary conditions in
the TR model (2.10). We observe that the TR model contains some of the next-order
terms arising from the variation of the shear stress; the TR model contains only
a second-rank tensor corresponding to the tangential shear stress variations in the
tangential directions, while the full third-rank tensor in the MSE corresponds to all
shear stress variations in all directions. The contribution from the variation of the
shear stress to the tangential velocity components is neglected in the TR model.

The boundary condition for the pressure derived using MSE (A 33) is

p− − p= b · τ︸︷︷︸
O(1P)

− a · ∇p− + C : ∇τ︸ ︷︷ ︸
O(ε1P)

+O(ε21P), (5.2)

where 1P is the characteristic magnitude of a pressure drop in the system. Here,
b and a are vectors and C is a second-rank tensor. The leading term O(1P) of
expression (5.2) induces a pressure jump proportional to the shear stress. It can
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Tangential velocity Normal velocity Pressure jump
(ut) (un) (p− − p)

Leading order µ−1L · τ 0 −2µ∂zuz + f (2) · ut

Next order 0 u−n −M : ∇2ut f (1) · u−

TABLE 6. Summary of the TR model boundary condition terms at the orders at which
corresponding terms emerge from the formal multi-scale expansion.

be shown through mass conservation and force balance that the last element in b
(corresponding to shear stress 2µ∂zuz) is always equal to −1. Therefore this term can
be transferred to the left-hand side and grouped together with ‘−p’ to yield the total
free-fluid stress, as appearing in the TR model (3.3). Furthermore, we assert that the
first two elements of the vector b in expression (5.2) correspond to the friction factor
f (2) in (3.3), which can be confirmed by replacing the shear stress in expression (5.2)
with µL−1ut. Thus there is a full overlap of the leading-order pressure jump terms
between the TR and the MSE. Regarding the last two higher-order O(ε1P) terms in
the pressure condition (5.2): the vector a corresponds to the friction factor f (1), which
is confirmed by replacing the pore pressure in equation (5.2) with µK−1u−, while
the term corresponding to the variations of shear stress is completely neglected for
the pressure condition in the TR model.

In table 6 we group the different terms of the TR model according to the order
at which they emerge in the multi-scale expansion. The slip velocity in the TR
model contains only the leading-order term with a reduced shear stress vector, while
the transpiration condition and the pressure condition contains all the leading-order
contributions and some of the next-order corrections.

5.2. Accuracy of the TR model compared to the MSE
We compare the flow and the pressure in the lid-driven cavity with a textured and
a porous surface computed from fully resolved ensemble-averaged DNS with three
different effective models; (i) the zeroth-order model, containing only leading-order
terms from the MSE condition (5.1)–(5.2), (ii) the first-order model, containing all
terms from the MSE condition (5.1)–(5.2) and (iii) the TR model.

The transpiration velocity along the interface – at the same textured wall as
discussed in § 2.3 – is shown in figure 12(a). The pressure distribution along the
vertical slice – of the same layered geometry as discussed in § 3.3 – is shown in
figure 12(b). The interface in both cases is located at zi = 0.1`. As expected, the TR
model has a clear improvement over the zeroth-order MSE model. It is observed that
the first-order MSE model and the TR model nearly overlap for both the transpiration
and the pressure fields. We can thus conclude that the TR model provides nearly as
good approximation as the MSE model, but with significantly reduced complexity.

As a final remark, we note that the TR model is not mathematically (or
asymptotically) fully consistent. If mathematical rigour is sought, all the next-order
terms for the slip velocity, transpiration velocity and pressure condition should be
taken into account. However, as we have demonstrated for the turbulent channel
flow, the transpiration velocity from the TR model induces a large shift of the mean
velocity profile changing the sign of the roughness function. Thus this example shows
that higher-order terms can be physically important.
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FIGURE 12. The transpiration velocity along the interface between the flow in the lid-
driven cavity and the rough surface (a). Pressure distribution along the vertical slice for
the cavity flow over the layered porous surface (b). Interface location zi = 0.1`.

6. Conclusions
The TR model provides a set of accurate effective boundary conditions suitable for

modelling a free fluid interacting with rough and porous surfaces. These boundary
conditions can be incorporated into computational fluid dynamics codes and thus
enable investigations of how fully anisotropic textures and porous materials interact
with external fluids. We have validated the TR model for creeping flows over textured
and porous surfaces. Moreover, based on our investigations, we suggest to place the
interface as close to the solid structures as possible without intersecting the solid
structures.

The values of the coefficients within the TR model – the slip length tensor L, the
transpiration length tensor M , the resistance vectors f (1) and f (2) – provide direct
information of the transfer of mass and momentum that can be expected when the
surface interacts with a flow. These coefficients can be computed for any surface
topology using five fundamental Stokes problems and are properties only of the
surface itself. We make an analogy with the bulk porous material to highlight the
significance of coefficients L, M , f (1) and f (2). In this analogy, the permeability is an
established measure that characterises the ability of the porous material to transmit
fluids. This measure is invaluable in understanding and designing porous materials
for applications. In a similar way, we believe that slip, transpiration and resistance
coefficients have a physical meaning on their own.

The TR model is derived by making three assumptions; (i) a creeping flow near
the surface texture; (ii) scale separation between the texture size and the flow length
scale and; (iii) a repeating surface geometry. This means that the proposed model is
a type of homogenised interface condition. By using a formal multi-scale expansion,
we have identified the theoretical orders of different terms present in the TR model.
We have also shown how the TR model and MSE model predictions compare using
the lid-driven cavity as a test bed. Based on this comparison, we have justified that
certain higher-order terms of the MSE model can be neglected. This results in a set of
effective boundary conditions that are much simpler to implement and use compared
to the full MSE conditions.

For configurations where there exists an intrinsic hydrodynamic sensitivity to the
wall-normal velocity, the transpiration velocity may become as important as the
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slip velocity, although the former is, from an asymptotic viewpoint, a higher-order
correction. We have shown one such example here, namely the turbulent channel flow,
for which the friction at the rough wall has a direct contribution from wall-normal
velocity fluctuations. Similarly, the resistance terms in the normal stress balance
condition for porous media can be shown to have different sizes via scaling analysis,
but the relevance of the terms can only be determined when the targeted application is
taken into consideration. Here, we have shown that a so-called layered porous material
need a higher-order resistance coefficient in order to physically capture the ‘layering
effect’. In nature, there is an abundance of porous materials with inhomogeneous
layers; one example is the otolith structure inside human ear, which is part of our
vestibular apparatus. Otoliths (calcium carbonate crystals) are located on top of a gel
membrane, in which a hairy sensory structure is located. The transfer of external
fluid into these types of complex materials thus requires the higher-order description
based on transpiration length and resistance coefficients.

The generalisation of the TR model to elastic and poroelastic surfaces is relatively
straightforward by applying the model locally, fixed to the displacing solid (Lācis
2019). Furthermore, the TR model can also be used for curved interfaces using
a coordinate transformation, provided that the curvature of the interface is larger
than characteristic surface length `. Another interesting direction is the extension
of the TR model by considering the slip length, the transpiration length and the
resistance coefficients as spatially varying, time dependent as well as flow dependent
(for example, shear or Reynolds number dependent). Indeed, extensions of this kind
may open up exciting modelling opportunities in applied problems including turbulent
flows, heat transfer, nutrition transport, etc.
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Appendix A. Derivation of boundary conditions

In this appendix, we derive boundary conditions between a free fluid and a porous
or textured surface using multi-scale expansion (MSE). The derivation follows the
approach previously used by Lācis & Bagheri (2016) and is reported in full detail
in the work by Sudhakar et al. (2019).
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A.1. Dimensionless Navier–Stokes equations
We start with the incompressible dimensional Navier–Stokes (NS) equations. We
render the NS equations dimensionless using relationships

û=Usû′, p̂=1Pp̂′, x= `x′, t= tst′, (A 1a−d)

where primed variables are dimensionless. Here, Us is a characteristic slip velocity
near the surface, 1P is a characteristic pressure drop in the system and ts is a
characteristic time scale. Using relationships (A 1), the dimensionless Navier–Stokes
equations read

Re[St∂tû
′
+ (û′ · ∇)û′] = −∇p̂′ +1û′, (A 2)

∇ · û′ = 0. (A 3)

By using scale estimate `1P/µ∼ Us, we obtain Reynolds and Strouhal numbers as

Re=
ρUs`

µ
and St=

`

tsUs
, (A 4a,b)

respectively. Here, ρ is the fluid density and µ is the fluid dynamic viscosity.

A.2. Macroscale flow decomposition
We separate the free flow into fast and slow components. The decomposition for
velocity and pressure is

û′ =U′ + û′+ and p̂′ = P′ + p̂′+, (A 5a,b)

respectively. Here, û′+ and p̂′+ are velocity and pressure perturbations caused by a
textured or porous surface, while U′ and P′ are the fast macroscale flow. We assume
that U′ and P′ obey the NS equations complemented with a homogeneous no-slip
condition U′= 0 at the artificial interface with the surface (z= zi). Within the surface
there is only a slow flow with velocity field û′− and pressure field p̂′− satisfying the
NS equations. Gathering the resulting governing equations for flow variables û′± and
p̂′± we obtain

Re[St∂tû
′+
+ (û′+ · ∇)û′+ + f (û′+,U′)] =−∇p̂′+ +1û′+, z > zi,

∇ · û′+ = 0, z > zi,

Σu−
· n=Σu+

· n+ΣU
· n, û′− = û′+, z= zi,

Re[St∂tû
′−
+ (û′− · ∇)û′−] =−∇p̂′− +1û′−, z 6 zi,

∇ · û′− = 0, z 6 zi,

(A 6)

(A 7)

(A 8a,b)

(A 9)

(A 10)

where velocity continuity and total stress continuity have been imposed at the artificial
interface. The forcing term from the macroscopic fast flow is defined as

f (û′+,U′)= (U′ · ∇)û′+ + (û′+ · ∇)U′, (A 11)

while the stress tensors are

Σu±
=−p̂′±I +∇û′± + (∇û′±)T and ΣU

=−P′I +∇U′ + (∇U′)T. (A 12a,b)

By summing up (A 6)–(A 10) with governing equations for U′ and P′, one can recover
the single set of NS equations for the whole domain.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

89
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.897


Transfer of mass and momentum at rough and porous surfaces 884 A21-27

A.3. Multi-scale expansion
To carry out the MSE, we introduce so-called macroscale and microscale coordinates,
as

x′ =
x̂
H

and x̂′ =
x̂
`
, (A 13a,b)

respectively. The nabla operator can be expressed using the chain rule

∇=∇1 + ε∇0, (A 14)

where ∇1 and ∇0 correspond to nabla operators containing x̂′ and x′ coordinates,
respectively. Here, ε = `/H � 1 is the scale separation parameter. The standard
amplitude expansion is employed for the perturbation velocity and pressure fields as

û′± = û′±(0) + εû′±(1) + ε2û′±(2) +O(ε3), (A 15)
p̂′± = p̂′±(0) + εp̂′±(1) + ε2p̂′±(2) +O(ε3). (A 16)

We insert the chain rule (A 14) and amplitude expansions (A 15)–(A 16) in the
governing equations for perturbation velocity (A 6)–(A 10). We assume that Reynolds
and Strouhal numbers are small (Re6O(ε2), St6O(1)) and group the terms appearing
at different orders.

A.3.1. The O(1) problem and solution ansatz
The problem at order O(1) reads

−∇1p̂′+(0) +∆1û′+(0) = 0, ∇1 · û
′+(0)
= 0, z > zi,

Σu−(0)
· n=Σu+(0)

· n+ΣU
· n, û′−(0) = û′+(0), z= zi,

−∇1p̂′−(0) +∆1û′−(0) = 0, ∇1 · û
′−(0)
= 0, z 6 zi.

(A 17a,b)

(A 18a,b)

(A 19a,b)

One can observe, that equations (A 17)–(A 19) are forced by the macroscopic flow
stress tensor ΣU at the interface z = zi. Therefore we anticipate that the flow field
solution will take form

û′±(0) = L′±e · τ
′, (A 20)

where L′e is an unknown 3 × 3 tensor field, and τ ′ = ε(∇0U′ + (∇0U′)T) · n is the
viscous stress vector at the surface. The pressure field solution, on the other hand,
should take form

p̂′+(0) = b′+ · τ ′ and p̂′−(0) = b′− · τ ′ + p′−(0), (A 21a,b)

where b′± is an unknown vector field and p′−(0) is a zeroth-order pressure field below
the interface containing only macroscale variations. This term balances the free flow
pressure P′ at the interface.

A.3.2. The O(ε) problem and solution ansatz
The problem at order O(ε) reads

−∇1p̂′+(1) +∆1û′+(1) = g(L′+e , b′+) :∇0τ
′, z > zi,

∇1 · û
′+(1)
=−L′+e :∇0τ

′, z > zi,

Σu−(1)
· n=Σu+(1)

· n, û′−(1) = û′+(1), z= zi,

−∇1p̂′−(1) +∆1û′−(1) = g(L′−e , b′−) :∇0τ
′
+∇0p′−(0), z 6 zi,

∇1 · û
′−(1)
=−L′−e :∇0τ

′, z 6 zi,

(A 22)

(A 23)

(A 24a,b)

(A 25)

(A 26)
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where the double contraction between 3× 3× 3 tensor A and 3× 3 tensor B is defined
as A :B= AijkBjk. We observe that the problem is forced by volume forcing and mass
sources which are proportional to the macroscopic gradient of pressure within the
surface as well as the macroscopic gradient of the free flow shear stress. The volume
forcing contains the g function, defined as

g(L′±e , b′±)= b′±δ + 2∇1L′±e . (A 27)

We assume that the velocity field solution takes form

û′±(1) =−K ′±e · ∇0p′−(0) −M ′±e : ∇0τ
′, (A 28)

where K ′±e is an unknown 3× 3 tensor field, and M ′±e is an unknown 3× 3× 3 tensor
field. The pressure field solution should take the following form

p̂′±(1) =−a′± · ∇0p′−(0) − C ′± : ∇0τ
′, (A 29)

where a′± is an unknown vector field and C ′± is an unknown 3× 3 tensor field.

A.4. Resulting boundary conditions
In this section, we present the derived boundary conditions. The result and derivation
holds both for textured and porous surfaces.

A.4.1. The O(1) boundary conditions
The boundary condition with O(ε) error is derived based on solution of the O(1)-

problem (A 20)–(A 21). For the velocity, we employ the surface average of solution
(A 20) at the interface and neglect all higher-order terms. Then we relate the fast flow
field to the resulting total flow field and finally go back to the dimensional variables.
This yields

u= (`L) ·
τ

µ
+O(εUs) on z= zi, (A 30)

where the dimensionless 3× 3 tensor L=〈L′+e 〉i is a surface average of the microscale
tensor field L′+e .

For pressure jump, we follow the same approach as for velocity. However, instead
of a single surface average, we employ two volume averages (one in the free-fluid
region, and the second in the interior region) and define the difference as a measure
of the pressure jump. We have to also remember that the pressure in the free fluid
contains both the perturbation and the macroscale fast flow solution (A 5). Taking all
this into account, we obtain

p− − p= b̄ · τ +O(ε1P) on z= zi, (A 31)

where b̄=〈b′−〉−−〈b′+〉+ is the difference between the two volume averages computed
from fields b′±.

A.4.2. The O(ε) boundary conditions
The boundary condition with O(ε2) error is derived using the same procedure as in

§ A.4.1 by taking additionally into account the solution of the O(ε)-problem (A 28)–
(A 29).
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The velocity boundary condition then becomes

u= (`L) ·
τ

µ
− (`2K) ·

∇p−

µ
+ (`2M) :

∇τ

µ
+O(ε2Us) on z= zi, (A 32)

where the dimensionless 3×3 tensor K=〈K ′+e 〉i is a surface average of the microscale
tensor field K ′+e and the dimensionless 3 × 3 × 3 tensor M = 〈M ′+e 〉i is the surface
average of the microscale tensor field M ′+e .

The pressure boundary condition becomes

p− − p= b̄ · τ − (`ā) · ∇p− + (`C) :∇τ +O(ε21P) on z= zi, (A 33)

where dimensionless vector with 3 components ā = 〈a′−〉− − 〈a′+〉+ is the difference
in the volume-averaged fields a′± and the dimensionless 3 × 3 tensor C = 〈C ′−〉− −
〈C ′+〉+ is the difference in the volume-averaged fields C ′±. The boundary conditions
(A 32)–(A 33) are presented in the main paper (5.1)–(5.2) and discussed in the context
of the TR model.

Appendix B. Equivalence to a two-domain description
In this appendix, we elaborate on how the Dirac delta function is used for surface

forcing in (2.2)–(2.3). In essence, this notation is equivalent to having a two-domain
description and enforcing continuity of the velocities and jump in stress, as appearing
in multi-scale expansion (A 18) and also as reported in work by Lācis & Bagheri
(2016).

Let us consider the equations (2.2)–(2.3) in three different regions; (i) above
the interface, (ii) below the interface and (iii) in a close vicinity to the interface.
Introducing plus notation for variables above the interface and minus notation for
variables below the interface, we rewrite (2.2)–(2.3) as

−∇p̂+ +µ1û+ = 0, ∇ · û+ = 0, ẑ> ẑi, (B 1a,b)

−∇p̂− +µ1û− = 0, ∇ · û− = 0, ẑ< ẑi, (B 2a,b)

where we have used the property of the Dirac delta that it is zero everywhere except at
ẑ= ẑi. Now, however, there is additional surface that requires new boundary conditions.
From the continuity of solution at the single domain, we state that the first condition
at ẑ= ẑi must be continuity of velocities, i.e. û+= û−. This is, however, not sufficient
and a stress condition is also required. Consider (2.2)–(2.3) in the near vicinity of
the interface ẑ = ẑi before introduction of plus and minus notation. We rewrite the
momentum equation (2.2) by making use of the Newtonian fluid stress tensor Σ as

∇ · [−p̂I +µ{∇û+ (∇û)T}] =∇ ·Σ =−δ(ẑ− ẑi)τ , (B 3)

where I is the identity tensor. We integrate the equation in the interface normal
direction from ẑi − δẑ to ẑi + δẑ and get

Σ |ẑi+δẑ · ez −Σ |ẑi−δẑ · ez +

∫ ẑi+δẑ

ẑi−δẑ
[∂xΣ · ex + ∂yΣ · ey] d ẑ=−τ , (B 4)

where we have explicitly integrated out the divergence part in z-direction as well
as Dirac delta function, which gives one as long as the integration interval is
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encapsulating the interface coordinate from both sides. Assuming that the fluid
stress tensor varies smoothly in x and y directions, we have∫ ẑi+δẑ

ẑi−δẑ
[∂xΣ · ex + ∂yΣ · ey] d ẑ= 0 (B 5)

as the integration interval shrinks to zero δẑ→ 0. Consequently the integral (B 4) can
be rewritten as

Σ |ẑ−i · ez =Σ |ẑ+i · ez + τ , (B 6)

where fluid stress tensors are evaluated at the interface from the negative side Σ |ẑ−i
(function of p̂− and û−) and from the positive side Σ |ẑ+i (function of p̂+ and û+). By
taking into account the orientation of unit normal of the interface ez = n, we have

Σ |ẑ−i · n=Σ |ẑ+i · n+ τ , (B 7)

which is the final boundary condition needed for the two domain formulation of the
interface-cell problem.

Appendix C. Description of numerical methods
In this appendix, we describe more details of the numerical methods we have used

through this work.

C.1. Laminar flow
To discretise the domain for the rough configuration (figure 6), we use node spacing
1st = 0.05` at the top wall and 1sb = 0.005` at the surface texture. The very fine
mesh for the rough configuration was chosen to make sure that the variations in the
final averaged data are not due to resolution issues. To resolve the small shift for
rough simulations for interface location zi = 0, we used node spacing 1st = 1.0` at
the top wall and 1sb = 0.002` at the surface texture. The node spacing for effective
textured simulations is 1st =1sb = 0.05`.

To discretise the domain for the porous configurations (figure 9), we use
node spacing 1st = 0.125` at the top wall and 1sb = 0.05` at the porous
structures. For effective simulations of porous configurations, we use node spacing
1st =1sb = 0.083` at all walls.

We solve the incompressible Stokes equations with finite element solver FreeFEM++
(Hecht 2012). We choose a monolithic approach, i.e. the momentum and continuity
equations are treated at the same time, which leads to natural treatment of boundary
conditions, which mix velocities and pressures.

C.2. Turbulent flow
For turbulent simulations, we use a periodic uniform grid in the spanwise (x) and
streamwise (y) directions, and a stretched grid in the wall-normal (z) direction.
The solver is based on a staggered grid with a third-order Runge–Kutta time
scheme combined with a splitting technique. A semi-explicit sub-iteration scheme
is used to implement the model velocity boundary conditions. The results are made
dimensionless using the viscous length and the friction velocity defined as uτ/ν
and uτ , respectively. These quantities are computed at the cuboids crest plane to be
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compared to the TR model. The mesh spacings for the geometry resolving simulation
in viscous units are 1x+ = 1y+ = 1.794, 1z+w = 0.358 and 1z+c = 3.096; subscripts
‘w’ and ‘c’ denote near wall and channel centre line respectively. Within the textured
layer, we use a constant near-wall mesh spacing 1z+w . We also impose 5 layers of
uniform 1z+w at both channel walls. For the effective (and smooth wall) simulations,
the mesh spacing is 1x+ = 7.8, 1y+ = 5.1, 1z+w = 0.3 and 1z+c = 4.8. The no-slip
simulation was validated with Lee & Moser (2015) and 1.2 % difference was observed
in mean velocity profile at the channel centre for the current choice of resolution. The
convergence of the TR model and the slip simulations was evaluated by increasing
the spatial resolution by 33 %, which lead to change of 0.7 % in the mean velocity
value at the centre of the channel.

The Reynolds number for the geometry-resolved case is defined as Rerough=U(δ+
k/2)/ν = 2856 based on the bulk velocity U = 1, the half-channel height and the
kinematic viscosity ν. As the height of the domain is truncated for the TR model,
we consider the Reynolds number computed on the reduced domain, cutting off the
roughness part. It becomes Re = Uδ/ν = 2839.2 with Uc = 1.014 the bulk velocity
computed on this truncated domain. This Reynolds number is kept constant for all
DNSs, which leads to Reτ =uτδ/ν≈180 for a smooth channel, where uτ is the friction
velocity.
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