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For single point positioning solutions with multi-Global Navigation Satellite System (GNSS)
constellations, the Position Dilution Of Precision (PDOP) and Time Dilution Of Precision
TDOP) are quality measures to specify the additional multiplicative affect of measurement
error on positioning accuracy and the timing accuracy, respectively. Considering the dimen-
sion of the unknown vector (including the three-dimensional positioning information of the
receiver as well as the receiver clock biases related to these single constellations), this paper
theoretically derives new formulae to describe the change of PDOP and TDOP. In addition,
the detailed expressions of the variable quantity of the PDOP and TDOP are also obtained. The
results show that if the dimension of the unknown vector is invariant in case of removing one
or more satellites belonging to the existing tracked multi-GNSS constellations, both the
PDOP and TDOP increase. On the other hand, if removing satellites reduces the dimension
of the unknown vector, the PDOP neither increases nor decreases. However, the change of
the TDOP is different, and it becomes smaller.
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1. INTRODUCTION. The future of Global Navigation Satellite Systems (GNSS)
is promising, with the integration of multi-GNSS constellations, such as the Global
Positioning system (GPS), Globalnaya Navigatsionnaya Sputnikovaya Sistema
(GLONASS), Galileo and BeiDou System (BDS or Compass), becoming an im-
portant direction for future development of satellite navigation (Blomenhofer, 2004;
Shi and Cui, 2011). In comparison with single constellations, multi-GNSS constella-
tions will be beneficial for improvements of positioning calculation and integrity
monitoring (Hewitson and Wang, 2006; Wang and Ober, 2009; Teng and Shi, 2012;
Xu et al., 2012; Angrisano et al., 2013; Dautermann, 2014; Torre and Caporali, 2015).
The Geometric Dilution of Precision (GDOP) is an important parameter utilised in

the propagation of random error (noise) in measurements of the noise levels of the
unknown (solved for) parameters (Yang et al., 2011), and it is a quality measure to
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specify the additional multiplicative affect of measurement error on the positioning ac-
curacy and the timing accuracy. Actually, the GDOP can be divided into the PDOP
(Position Dilution Of Precision) and (Time Dilution Of Precision). The former
describes the effect of geometry on the relationship between the measurement error
and the three-dimensional positioning error. The latter is related to the timing accur-
acy. The lower PDOP and TDOP values are, the higher positioning accuracy and the
timing accuracy will be, given the same level of measurement error (Kaplan and
Hegarty, 2006; Rzepecka et al., 2014).
In our former studies (Teng andWang, 2014), the change of GDOP with the number

of satellites was discussed. In this paper, we mainly analyse the change of PDOP and
TDOP with respect to the number of satellites. The remaining parts of this paper are
organised as follows. The definitions of PDOP and TDOP with multi-GNSS constel-
lations are given in Section 2. The relationship between them and the number of satel-
lites are derived theoretically in Section 3. Moreover, the detailed expressions of the
variable quantity of the PDOP and TDOP are also obtained in this section. In
Section 4, a numerical experiment will be provided to validate the change of PDOP
and TDOP. Finally, some conclusions are drawn.

2. DEFINITION OF PDOP AND TDOP IN MULTI-GNSS CONSTELLA-
TIONS. For single point positioning with multi-GNSS constellations, the coordinate
and time system errors between different single constellations are two important issues
to be solved. Yang et al. (2011) analysed the coordinate system errors, and concluded
that the difference of coordinate systems used in the GNSS constellations has no influ-
ence on the calculation of GDOP, PDOP and TDOP.
In terms of dealing with the differences in the time systems, there are generally two

ways (Kaplan and Hegarty, 2006; Defraigne and Baire, 2011). One is broadcasting the
time difference between different constellations in the broadcast ephemeris. Such
observed time differences (called GNSS time offsets) may also be treated as pseudo-
measurements (Wang et al., 2011). The other is adding one unknown time system
error parameter. In this paper, the time difference is considered as one unknown par-
ameter in the process of positioning calculation.
When the GNSS positioning is based on one single constellation, for example GPS

(the coordinate reference framework WGS-84), the following pseudorange equation
between the ith satellite and the receiver is given by

pi ¼ kr� rik þ cΔt1 ð1Þ
where r= (x,y,z) denotes the three-dimensional coordinates of the receiver, pi and ri=
(xi,yi,zi) denotes the pseudorange and the three-dimensional coordinates of the ith sat-
ellite, respectively, cΔt1 is the receiver clock bias relative to the constellation in unit of
meter. In Equation (1), the detailed procedures for calculating the position of each sat-
ellite (ri) can be found in Rapinski et al. (2012).
In the process of positioning calculation, a truncated Taylor Series expansion is

applied to Equation (1) around the approximate coordinates of the receiver
~r ¼ ~x,~y,~zð Þ,

Δ pi ¼ pi �~pi ¼ hiΔrT þ cΔt1 ð2Þ
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where ~pi ¼ k~r� rik, Δr ¼ r�~r, and hi ¼ ~r� rið Þ=~pi ∈ R1×3 denotes the direction
cosine vector from the receiver to the ith satellite.
When there are α satellites, the measurement equation for the positioning calcula-

tion can be written as

Δ p1
Δ p2
� � �
Δ pα

2
664

3
775 ¼

h1 1
h2 1
� � � � � �
hα 1

2
664

3
775 Δr cΔt1½ �T ð3Þ

which has a general form represented as

z1 ¼ H1Δx1 ð4Þ
In Equation (4), z1 represents the measurement vector, Δx1¼ Δr cΔt1½ �T denotes the
unknown vector to be estimated and it includes four unknown parameters. The design
matrix H1 is given by

H1 ¼ hT1 hT2 � � � hTα
1 1 � � � 1

� �T
¼ H

!
1 1α

h i
ð5Þ

Similarly, if one or more constellations are combined with the GPS constellation, the
corresponding measurement equation is expressed as

z2 ¼ H2Δx2 ¼ H
!

2 1β
h i

Δr cΔt2½ �T

z3 ¼ H3Δx3 ¼ H
!

3 1γ
h i

Δr cΔt3½ �T
� � �

8>><
>>: ð6Þ

where the design matrices H2, H3, · · · have β,γ, · · · rows, respectively. The number
of rows equals the number of tracked satellites in the respective constellations. The
cΔt2,cΔt3, · · · are the receiver clock biases associated with these constellations.
Combining Equation (6) with Equation (4) leads to

z ¼ HΔx ð7Þ
where

z ¼ zT1 zT2 zT3 � � �� �T
Δx ¼ Δr cΔt1 cΔt2 cΔt3 � � �½ �T

(
ð8Þ

Suppose the multi-GNSS constellations are composed of m individual constellations,
the number of receiver clock bias equals m. Thus, there are (m+ 3) parameters to be
calculated in the unknown vector. In addition, the design matrix H is given by

H ¼
H
!

1 1α 0α 0α � � �
H
!

2 0β 1β 0β � � �
H
!

3 0γ 0γ 1γ � � �
� � � � � � � � � � � � � � �

2
66664

3
77775 ∈ R αþβþ γþ ���ð Þ× mþ3ð Þ ð9Þ

In Equation (9), the ones and zeros vectors are located in different columns in order to
include each receiver clock bias, because the biases for different constellations are
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different (Wang et al., 2011). Moreover, n= α + β + γ+ · · · denotes the total number
of satellites tracked in the multi-GNSS constellations.
As the proper weighting of individual satellites range measurement is required, the

weight matrix Q should be introduced. Moreover, Q is a block diagonal matrix and its
diagonal element is associated with the corresponding satellite. More details about the
weight matrix and the impact of different measurement errors are discussed in Blanco-
Delgado and Nunes (2010). When Q is taken into consideration, we define

R ¼ HTQH
� ��1 ð10Þ

Then the PDOP and TDOP in the single point positioning with the multi-GNSS con-
stellations are defined as

PDOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i¼1

r ið Þ
s

, TDOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPmþ3

i¼4
r ið Þ

s
ð11Þ

where r(i) denote the diagonal elements of R. It is worth mentioning that the definition
of TDOP with the multi-GNSS constellations is relative to the number of the single
constellations composed of the multi-GNSS constellations. This is different from the
single constellations.

3. CHANGE OF PDOPAND TDOP INMULTI-GNSS CONSTELLATIONS.
Regarding the positioning applications with GNSS constellations, open sky is the best
environment (Li et al., 2010). However, in certain applications, the satellite signals are
susceptible to obstructions. Thus one or more satellites cannot be used for positioning
calculation or are not visible anymore. In addition, the impact of higher cut-off eleva-
tion angle on the number of satellites should be taken into consideration. To take one
example, Teunissen et al. (2014) analysed the influence of the cut-off elevation angle on
the number of satellites for a combined GPS/BDS constellation. The results showed
that the receiver can track more satellites under a lower cut-off elevation angle com-
pared with the higher one. The above situations can be regarded as removing one or
more satellites from the tracked multi-GNSS constellations.
When one satellite belonging to the tracked multi-GNSS constellations is removed,

the dimension of the unknown vector (influenced directly by the number of the receiver
clock biases) may keep invariant or decreasing. The two different cases lead to different
changes of PDOP and TDOP with the number of satellites. In this section, we take an
example of multi-GNSS constellations including two single ones (short for the dual-
GNSS constellations hereafter), and then derive the change of PDOP and TDOP
with the number of satellites.

3.1. Invariant Dimension of the Unknown Vector. Supposing that Hn and Qn are
the design and weight matrices, and the design and weight matrices that removed the
nth satellite from the constellations are H(n−1) and Q(n−1). If the dimension of the
unknown vector remains invariant, then we have

Hn ¼ H n�1ð Þ
hn 0 1

� �
¼ H n�1ð Þ

h

� �
, Qn ¼ Q n�1ð Þ

qn

� �
ð12Þ

with hn being the direction cosine vector from the receiver to the nth satellite. For the
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dual-GNSS constellations, as there are five unknown parameters, the dimensions of
H(n−1) and Hn are (n− 1) × 5 and n × 5, respectively. According to Equation (6), we
can obtain

HT
n QnHn¼ HT

n�1ð ÞQ n�1ð ÞH n�1ð Þ þ qnhTh ð13Þ

Taking the inverse of both sides of Equation (13) leads to

Rn¼ HT
n QnHn

� ��1¼ HT
n�1ð ÞQ n�1ð ÞHn�1 þ qnhTh

	 
�1
ð14Þ

To find the change of PDOP and TDOP with the number of satellites, we consider the
Woodbury matrix identity,

Aþ BCDð Þ�1¼A�1 � A�1B C�1 þDA�1B
� ��1

DA�1 ð15Þ

where A, B, C and D all denote matrices with the correct size.
From this theorem, we have

Rn ¼ HT
n�1ð ÞQ n�1ð ÞHn�1 þ qnhTh

	 
�1

¼ HT
n�1ð ÞQ n�1ð ÞH n�1ð Þ

	 
�1
� φ HT

n�1ð ÞQ n�1ð ÞH n�1ð Þ
	 
�1

hTh HT
n�1ð ÞQ n�1ð ÞH n�1ð Þ

	 
�1

¼ Rn�1 � φR n�1ð Þh
ThR n�1ð Þ

ð16Þ
where

φ ¼ q�1
n þ h HT

n QnHn
� ��1

hT
h i�1

¼ q�1
n þ hRnhT

� ��1 ð17Þ

In Equation (17), q�1
n > 0, and h Rn h

T is a positive definite quadratic form, so φ is also
positive.
Let μ¼ hR n�1ð Þ ∈ R1×5, then Equation (16) is simplified as

Rn ¼ R n�1ð Þ � φμTμ ð18Þ

It is clear that the diagonal elements of the matrix μTμ are positive. Therefore,

rn ið Þ < r n�1ð Þ ið Þ, i ¼ 1, � � �, 5 ð19Þ

Based on the definition of PDOP and TDOP in Equation (11), we obtain

PDOPn < PDOP n�1ð Þ
TDOPn < TDOP n�1ð Þ

�
ð20Þ

From the inequalities in Equation (20), it is clear that the PDOP and TDOP always
increase when the number of satellites decreases, but at the same time, the dimension
of the unknown vector is invariant. Equation (20) is a qualitative analysis about the
change of PDOP and TDOP with the number of satellites.
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In addition to deriving the change of PDOP and TDOP, we define

ΔPDOPn ¼ PDOP2
n � PDOP2

n�1ð Þ
��� ���

ΔTDOPn ¼ TDOP2
n � TDOP2

n�1ð Þ
��� ���

8<
: ð21Þ

as the variable quantity of the PDOP and TDOP with the number of satellites.
Substituting Equation (16) into Equation (21) leads to

ΔPDOPn ¼ φ
P3
i¼1

R n�1ð Þ : , ið ÞhT� �2
ΔTDOPn ¼ φ

P5
i¼4

R n�1ð Þ : , ið ÞhT� �2
8>>><
>>>: ð22Þ

where R(n−1)(:,i) denotes the ith row of R(n−1).
Furthermore, substitution of Equation (17) into Equation (22) results in

ΔPDOPn ¼ q�1
n þ hRnhT

� ��1P3
i¼1

R n�1ð Þ : , ið ÞhT� �2
ΔTDOPn ¼ q�1

n þ hRnhT
� ��1P5

i¼4
R n�1ð Þ : , ið ÞhT� �2

8>>><
>>>: ð23Þ

The equality in Equation (23) describes the variable quantity of the PDOP and the
TDOP when the dimension of the unknown vector is invariant. It is a quantitative ex-
pression about the change of the PDOP and TDOP.

3.2. Variant Dimension of the Unknown Vector. If removing one satellite from the
tracked dual-GNSS constellations reduces the dimension of the unknown vector, it
means that there is only one satellite in the first or the second constellation.
Herewith we suppose that β= 1, then we have

H
!

n ¼ H
!

n�1ð Þ 0
~hn 0 1

" #
¼ H

!
n�1ð Þ 0
~h 1

" #
, Q

!
n ¼ Q

!
n�1ð Þ

~qn

� �
ð24Þ

It is worth mentioning that when the only satellite from the second constellation is
removed, the dual-GNSS constellations become a single constellation. In this case,
the number of the unknown vector decreases from five to four, so the dimension
of the design matrixH

!
n�1ð Þ becomes (n− 1) × 4. Although Equation (24) also describes

the change of the design andweight matrices, it is different from Equation (12). On the
basis of Equation (24), we can get

~H
T
n
~Qn

~Hn ¼ H
!T

n�1ð Þ~Q n�1ð ÞH
!

n�1ð Þ þ~qn~h
T~h ~qn~h

T

~qn~h ~qn

" #
ð25Þ
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The inverse of Equation (25) is given by

~H
T
n
~Qn

~Hn

	 
�1

¼
H
!T

n�1ð Þ~Q n�1ð ÞH
!

n�1


 ��1

���

��� ~qn�~qn h
!

H
!T

n�1ð Þ~Q n�1ð ÞH
!

n�1ð Þþ~qn h
!T

h
!
 ��1

~qn h
!T

 !�1

2
66664

3
77775

ð26Þ
Consider Equation (10), and then we have

R
!

n¼
R
!

n�1ð Þ

~qn�~qn h
!

H
!T

n�1ð Þ~Q n�1ð ÞH
!

n�1ð Þþ~qn h
!T

h
!
 ��1

~qn h
!T

 !�1

2
664

3
775 ð27Þ

with R
!

n∈R5×5 and R
!

n�1ð Þ∈R4×4. From Equation (27), we can obtain

~rn ið Þ¼~r n�1ð Þ ið Þ; i¼1,���,4

~rn 5ð Þ¼ ~qn�~qn h
!

H
!T

n�1ð Þ~Q n�1ð ÞH
!

n�1ð Þþ~qn h
!T

h
!
 ��1

~qn h
!T

 !�1

8>><
>>: ð28Þ

Therefore,

PDOP
����!

n¼PDOP
����!

n�1ð Þ ð29Þ
The equality in Equation (29) demonstrates that although removing one satellite
reduces the dimension of the unknown vector, the PDOP keeps constant. Actually,
this can also be understood from the point of the impact of different constellations
on positioning calculation. If removing one satellite leads to a decrease in the
number of unknown parameters, it means that there is only one satellite belonging
to a certain constellation. The satellite is only utilised for determining the receiver
clock bias relative to the corresponding constellation, and it has no influence on the
positioning information directly linked with the PDOP. Therefore when the only satel-
lite is removed, the PDOP neither increases nor decreases. This is different from the
change of PDOP in Section 3.1.
Furthermore, according to the definition of TDOP in Equation (11), we have

TDOP
����!

n�1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r n�1ð Þ 4ð Þp

TDOP
����!

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~rn 4ð Þ þ~rn 5ð Þp

(
ð30Þ

Similar to Equation (21), we define

ΔTDOP
����!

n ¼ TDOP
����!2

n � TDOP
����!2

n�1ð Þ ð31Þ

as the variable quantity of the TDOP with the number of satellites.

151SOME REMARKS ON PDOP AND TDOPNO. 1

https://doi.org/10.1017/S0373463315000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000508


Combining Equation (30) with Equation (31), then the latter becomes

ΔTDOP
����!

n ¼~rn 5ð Þ ¼ ~qn �~qn h
!

H
!T

n�1ð Þ~Q n�1ð ÞH
!

n�1ð Þ þ~qn h
!T

h
!
 ��1

~qn h
!T

 !�1

ð32Þ

According to the proof in our previous work (Teng and Wang, 2014),~rn 5ð Þ is positive.
Thus,

TDOP
����!

n > TDOP
����!

n�1ð Þ ð33Þ

That is to say, if removing one satellite from the tracked dual-GNSS constellations
reduces the dimension of unknown vector, the TDOP decreases. This is also different
from the change of TDOP in Section 3.1.
As the PDOP and TDOP compose the GDOP, the equality in Equation (29) and the

inequality in Equation (33) are the fundamental reasons for the change of the GDOP
in our earlier studies (Teng and Wang, 2014).

3.3. Further Discussion on the Change of TDOP. In this section, we will further
analyse the change of TDOP based on the expression of the variable quantity of the
TDOP. The component and the monotonicity of the variable quantity of the TDOP
are discussed, respectively.

3.3.1. The component of the variable quantity of the TDOP. For the convenience
of discussion, the variable quantity of the TDOP in Section 3.1 and 3.2 can be sum-
marised as

ΔTDOPn ¼ q�1
n þ hRnhT

� ��1P5
i¼4

R n�1ð Þ : , ið ÞhT� �2
ΔTDOP
����!

n ¼ ~qn �~qn h
!

H
!T

n�1ð Þ~Q n�1ð ÞH
!

n�1ð Þ þ~qn h
!T

h
!
 ��1

~qn h
!T

 !�1

8>>>><
>>>>:

ð34Þ

where

R n�1ð Þ¼ HT
n�1ð ÞQ n�1ð ÞH n�1ð Þ

	 
�1

Rn¼ HT
n QnHn

� ��1¼ HT
n�1ð ÞQ n�1ð ÞHn�1 þ qnhTh

	 
�1

8><
>: ð35Þ

In Equation (34), we can conclude what ΔTDOPn and ΔTDOP
����!

n have in common is
using the weight and the vector of the removed satellite, and the weight matrix and
the design matrix of the remaining satellites as variables. This point can be understood

easily. And most of all, the significant difference between ΔTDOPn and ΔTDOP
����!

n is

that two items are required for ΔTDOPn. However, ΔTDOP
����!

n only needs one item.
The reason for this phenomenon can be explained on the basis of the definition of

the TDOP. If removing one satellite from the tracked satellites cannot decrease the di-
mension of the unknown vector, there are two receiver clock biases (relative to the cor-
responding constellations) to be estimated. Correspondingly, the variable quantity of
the TDOP (ΔTDOPn) can be divided into two corresponding components, which
refer to R(n−1)(:,4) and R(n−1)(:,5).
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In addition, if the dimension of the unknown vector decreases from five to four after
one satellite is removed, the receiver clock bias (relative to the removed satellite)
cannot be estimated anymore. The impact of this removed satellite on the TDOP
can be regarded as the variable quantity of the TDOP. As a consequence, ΔTDOP

����!
n

only includes one item.
3.3.2. The monotonicity of the variable quantity of the TDOP. The monotonicity

of ΔTDOP
����!

n will be derived hereafter. We mainly derive the monotonicity with the
weight of the removed satellite. Similar to the method in our previous work (Teng

and Wang, 2014), we decompose H
!T

n�1ð Þ~Q n�1ð ÞH
!

n�1ð Þ as

H
!T

n�1ð Þ~Q n�1ð ÞH
!

n�1ð Þ ¼ UΛUT ð36Þ
In Equation (37), U is an orthogonal matrix, and Λ ¼ diag λ1, � � � , λ4½ � is a diagonal

matrix. As H
!T

n�1ð Þ~Q n�1ð ÞH
!

n�1ð Þ is a symmetric and positive definite matrix, the diag-
onal elements λi (i = 1∼4) are positive (Horn and Johnson, 2010). After some compli-
cated derivations, Equation (37) holds.

ΔTDOP
����!

n ¼ ~qn �~qn h
!

H
!T

n�1ð Þ~Q n�1ð ÞH
!

n�1ð Þ þ~qn h
!T

h
!
 ��1

~qn h
!T

 !�1

¼ 1þ γ

~qn
ð37Þ

where

γ ¼ υTΛ�1υ ¼
X4
i¼1

υ2i
λi


 �
ð38Þ

with υi (i = 1∼4) being the ith element of the vector υ ¼ ffiffiffiffiffi
~qn

p
h
!
U.

To facilitate the derivation, by defining β ¼ h
!
U ¼ β1, � � � , β4

� �
, then we have

γ ¼
X4
i¼1

υ2i
λi


 �
¼~qn

X4
i¼1

β2i
λi

 !
ð39Þ

Substituting Equation (39) into Equation (37) leads to

ΔTDOP
����!

n ¼ 1þ γ

~qn
¼ 1
~qn

þ
X4
i¼1

β2i
λi

 !
ð40Þ

In Equation (40), it is clear to see that the second item is irrelevant to the weight of the
removed satellite ~qnð Þ. Therefore, for the case when removing one satellite from the
tracked satellites does not reduce the dimension of the unknown vector, we can con-
clude that the variable quantity of the TDOP is monotonically decreasing with the
weight of the removed satellite.

4. A NUMERICAL EXAMPLE. A numerical example is given to demonstrate
the change of PDOP and TDOP in this section. For brevity, the weight matrix is
assumed as an identity one.
Herewith we put emphasis on discussing the change of PDOP and TDOP in the case

of the variant dimension of unknown vector. Suppose that there are five satellites in the
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dual-GNSS constellations, and only one satellite belongs to the second single constel-
lation. Then the design matrix is given by

H5 ¼

�0�2057 0�5397 0�8164 1 0
0�5208 �0�8430 0�1348 1 0
�0�7745 0�3587 0�5210 1 0
0�1494 0�7532 0�6406 1 0
�0�9270 0�2141 0�3079 0 1

2
66664

3
77775

In this experiment, the fifth satellite is removed so that the four remaining satellites
belong to the first constellation. The PDOP obtained from five satellites is the same
as that obtained from the four remaining satellites. It is 5·6079. However, before and
after removing the fifth satellite, the TDOP decreases from 2·9941 to 2·3452. This
example illustrates that when removing one satellite reduces the dimension of the
unknown vector, the PDOP and TDOP may have different changes. Namely, the
PDOP neither increases nor decreases, while the TDOP decreases.

5. CONCLUSIONS. From the point of the dimension of the unknown vector, this
paper has theoretically derived the changes of PDOP and TDOP with the number of
satellites in single point positioning with multi-GNSS constellations. The results have
demonstrated that when the dimension of the unknown vector is invariant, the PDOP
and TDOP always increase with the decrease in the number of satellites. However, if
removing satellites leads to a decrease in the dimension of the unknown vector, the
PDOP neither increases nor decreases. But, in this case, the change of the TDOP is dif-
ferent, and it becomes larger.
Moreover, the detailed expressions of the variable quantity of the PDOP and TDOP

with regard to the number of satellites are also derived. Especially when removing
satellites reduces the dimension of the unknown vector, the monotonicity of the vari-
able quantity of the TDOP with the weight of the removed satellite is also taken into
consideration. The theoretical derivation shows that the variable quantity of the
TDOP is monotonically decreasing with the weight of the removed satellite. Such
new characteristics about PDOP and TDOP, together with other new characteristics
about GDOP in our former studies, can enrich the knowledge base on the DOP for
multi-GNSS constellation-based positioning.
Besides the monotonicity of the variable quantity of the TDOP, the monotonicity of

the variable quantity of the PDOP for multi-GNSS constellations will be considered in
future investigations. In addition, other characteristics about the variable quantity of
the PDOP and the TDOP (i.e., the contribution of different satellites to the variable
quantity of the PDOP and the TDOP) also deserve further research.
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