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ABSTRACT. Let âf be a class of groups which is closed under the 
forming of subgroups, epimorphic images and extensions. It is 
shown that every soluble product G = AB of two âf -subgroups A 
and B, one of which satisfies max or min, is an âf-group (Theorem 
A). If X satisfies an additional requirement, then every soluble 
product G = AB of two âf -subgroups A and B, one of which is a 
torsion group with min-p for every prime p, is an âf-group 
(Theorem B). Corollary: Every soluble product G = AB of two 
7T-subgroups A and B with min-p for every prime p in the set of 
primes IT, is a IT -group with min-p for every p. 

Throughout the following let âf be a class of groups which is closed under the 
forming of subgroups, epimorphic images and extensions. For which classes âf 
is every soluble product G = AB of two âf-subgroups A and B an âf-group? 
The following theorem generalizes Theorems A and B of [2] on this question. 

THEOREM A. If the soluble group G = AB is the product of two ^-subgroups A 
and B, one of which satisfies max or min, then G is an 9£-group. 

Here, a group satisfies max [min] if its subgroups satisfy the maximum 
[minimum] condition. A group satisfies min-p if its p-subgroups satisfy the 
minimum condition. 

If the class âf fulfills an additional requirement one can prove the following 
result. 

THEOREM B. Let every soluble torsion group with finite Sylow-p-subgroups for 
every prime p, which is factorized by two ^-subgroups, be an dC-group. If the 
soluble group G = AB is the product of two ^-subgroups A and B, one of which 
is a torsion group with min-p for every prime p, then G is an $6-group. 

In this theorem the class âf can for instance be the class of soluble torsion 
groups with min-p for every prime p or the class of soluble groups with finite 
sectional rank or the class of soluble groups with finite torsionfree rank. In 
particular Theorem B contains as a special case the following answer to a 
question of [3]. 
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COROLLARY. If the soluble group G = AB is the product of two ir-subgroups A 
and B with min-p for every prime p in the set of primes IT, then G is a IT-group 
with min-p for every p. 

Among the many group classes â? that can be taken for the class âf in 
Theorem A are the class of groups with max, the class of groups with min, the 
class of polyminimax groups, the class of 77-groups with min-p for every prime 
p, the class of groups with finite Prufer rank, the class of soluble groups with 
finite sectional rank and the class of soluble groups with finite torsionfree rank. 
Using the arguments below and the results of [8] one can easily prove that for 
each of these particular group classes âf the following holds: 

If the soluble group G = AB is the product of two a?-subgroups A and B, 
one of which is abelian, then G is an âf-group. 

This raises the following question: 
Is for each of these special group classes $? every soluble product of two 

â?-groups an âf-group? 

To prove the above theorems one has to show that an abelian normal 
subgroup K of a product G = AB of two âf-subgroups A and B is an âf-group. 
For this the factorizer X = %(K) of K in G is investigated, which is the smallest 
factorized subgroup of G which contains K\ see [1], Theorem 1.7, p. 108. This 
is done in Theorem 1.1 and 2.3 below. Since this question seems to be of 
independent interest, we have formulated these results in a rather general 
form, to make them applicable for later use. 

The notation of this paper is standard and may be found in [5] or [7]. Note 
that âf is always a class of groups inherited by subgroups, epimorphic images 
and extensions. 

1. Groups with max or min. If K is an abelian normal subgroup of the 
group G = AB, which is the product of two âf-subgroups A and B, and if 
X = âf(K) is the factorizer of K in G, then by [1], Theorem 1.7, p. 108, 

X = A K n B K = KA* = KB* = A*B* 

with A* = AHBK and B* = BHAK. Since K is abelian, C = 
(A* C\ K)(B* C\ K) is an abelian normal subgroup of X. As an abelian product 
of two âf-subgroups C is an âf-group. The factor group X/C has the following 
properties 

X/C = (K/C)(A*C/C) = (KIC)(B*C/C) = (A* C/C)(B* CI C) 

where the abelian normal subgroup K/C of X/C satisfies 

(KIQ H (A^CIC) = (K/C) H (B*CIC) = 1. 

In particular A*C/C^B*CIC 
These observations may be used to obtain criteria for X to be an âf-group. 
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THEOREM 1.1. Let the group G = AB be the product of two %-subgroups A 
and B. The factorizer X = âf (K) of the abelian normal subgroup K of G is an 
dC-group if at least one of the following conditions holds: 

(a) X is hyperabelian and A or B satisfies max, 
(b) X is hyperabelian or locally soluble and A or B satisfies min. 

Proof, Consider the reduction above with the same notations. Then 
A*C/C^B*CIC. 

In case (b) the hyperabelian or locally soluble group X/C = 
(A*C/C)(B*C/C) is the product of two ^-subgroups A*C/C and B*C/C with 
min. By [5], Theorem 5.8, p. 172, A*C/C and B*C/C are Cernikov groups. 
Hence by [4], Theorem 4, X/C is a soluble Cernikov group. Since X/C is the 
product of two âf-subgroups, it is an $6-group by [2], Lemma 3.1, p. 9. Since C 
is also an âf-group, X is an âf-group. 

In case (a) the hyperabelian group X/C is the product of two â?-subgroups 
A*C/C and B*C/C with max. By [1], Corollary 3.3, p. 112, X/C satisfies the 
maximum condition on normal subgroups, so that X/C is soluble. As a soluble 
product of two subgroups with max also X/C satisfies max and therefore is 
polycyclic; see [6] or [9]. By the following Lemma 1.2 X/C is an âf-group as a 
polycyclic product of two âf-groups. Since C is an âf-group, X is an âf-group. 
This proves the theorem. 

LEMMA 1.2. If the polycyclic group G = AB is the product of two âf-
subgroups A and B, then G is an âf- group. 

Proof, Every polycyclic group G has a finite series leading from 1 to G with 
cyclic factors in which the first factors are all infinite; see [7], 5.4.15., p. 148. If 
G is finite, then G is an âf-group as a finite soluble product of two $?-groups. If 
G is infinite, A or B is infinite and the infinite cyclic group is an âf-group. 
Since âf is closed under the forming of extensions, it is now easy to see that G 
is an âf-group. 

REMARK 1.3. If every finite product of two âf-subgroups is an âf-group, then 
Theorem 1.1 also holds if âf is locally finite and A or B satisfies min. 

2. Groups with min-p. The following reduction lemma is useful in the 
investigation of groups factorized by two subgroups with min-p for the prime p. 

LEMMA 2.1. Let the group G = AB be the product of two subgroups A and B 
with min-p for the prime p. If the locally finite-soluble factorizer X = %(K) of the 
abelian normal subgroup K of G does not satisfy min-p, then there exists an 
epimorphic image X of X which does not satisfy min-p with the following 
properties : 

(i) X = ~KÂ = 1Œ = ^B and KnÂ = KnË = l 
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where the normal subgroup K of X is an epimorphic image of K and the 
subgroups Â and B of X are factors of A and B and therefore satisfy min-p, 
(ii) If the p-subgroups of A and B are finite, the p-subgroups of Â and B are 
finite, if X has infinite p-subgroups then so does X, 

(iii) 0P,(X) = 1. 

Proof. Since X = %(K) is the factorizer of K, 

X = KA* = K £ * = A*E* 

with A* - A H BK and E* - B n AK. If Q - €V(X), then 

X/Q = {KQIQ){A*QIQ) = (KQ/Q)(B*Q/Q) = (A*QIQ)(B*QIQ) 

where KQ/Q — K/(K n Q) — Kp is a normal abelian p-subgroup of XIQ and 
A*Q/Q^A*l(A*nQ) and B * Q / Q - B * / ( B * n Q ) satisfy min-p (and have 
finite p-subgroups in case (ii)). Then 

CIQ = ((KQ/Q) H (A*Q/Q))((1CQ/Q) n (B*Q/Q)) 

is a normal p-subgroup of X/C which satisfies min-p and hence is a Cernikov 
p-group (and even finite in case (ii)). Consider 

X = (X/Q) / (C/Q)-X/C 

K = (KQIQ)(C/Q)/(C/Q) - (KC/C) - K/(K H C) 

Â = ( A * Q / Q ) ( C / Q ) / ( C / Q ) - A * C / C - A * / ( A * n C ) 

B = (B*Q/Q)(CIQ)/(C/Q) - £*C/C - B*/(B* n C). 

Since C satisfies min-p (has finite p-subgroups) and X does not, X does not 
satisfy min-p (has infinite p-subgroups). Then 

X = KÂ = KB = ÂË, KnÂ = KnÈ = l, 

where K is a normal abelian p-subgroup of X and the subgroups Â and B of X 
satisfy min-p (have finite p-subgroups). 

The maximal normal p'-subgroup of X/C has the form (?P(X/C) = S/C with a 
normal subgroup S of X containing C. Since S is a normal subgroup of X 
containing Q, 

Since C/Q is a Cernikov (finite) p-group and S/C and Q are p'-groups, S 
satisfies min-p (has finite p-subgroups). Since S is locally finite-soluble, by [5], 
Theorem 3.17, p. 94, S/6P>(S) = S/Q is an almost-p group and hence a 
Cernikov group (is finite). As a p'-factor of such a group S/C is finite. Hence 
<9P'(X) is finite. This proves the lemma. 

In any group G let $(G) be the intersection of all subgroups of finite index 

https://doi.org/10.4153/CMB-1984-026-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1984-026-4


1984] FACTORIZED GROUPS 175 

in G. If G is locally finite-soluble with min-p for every prime p, then by [5], 
Corollary 3,18, p. 95, ${G) is a divisible abelian torsion normal subgroup of G 
whose primary components have finite rank and the Sylow-p-subgroups of 
G/£(G) are finite for every p. 

LEMMA 2.2. If the radical torsion group G = AB = KA = KB is the product of 
an abelian normal p- subgroup K and subgroups A and B with KDA=Kr\B = 
1 such that A — B satisfies min-q for every prime q and 6P>(G) is finite, then G is 
an almost-p Cernikov group. In particular, if the p-subgroups of A and B are 
finite, then G is finite. 

Proof. Let q be any prime. By hypothesis the maximal normal q-subgroup 
6q(A) of A is a Cernikov group. If $q(A) = ̂ (0q(A)), then $q(A) is a divisible 
abelian normal q-subgroup of A of finite rank and Oq(A)l$q(A) is finite. The 
structure of 6q(B) is similar. 

By [3], Lemma 1.2, £q(A)K = $q(B)K. By [3], Lemma 1.3, <^q(A), ^q(B)> is 
a q-group. Let q ̂  p. If a e$ q (A) , then a = bx with b e$q(B) and xeK. Hence 
ab~1 = x is a q-element and a p-element, so that a = b. This show ^ q ( A ) ç 
$q{B). Similarly ^ q ( B ) ç ^ q ( A ) , so that $q(A) = $q(B) is a normal q-subgroup 
of G. Since €V(G) is finite, ^q(A) = ̂ q(B) = l. Hence 0q(A) and 0q(B) are 
finite. 

By [3], Lemma 1.2, Oq(A)K = €q(B)K. By [3], Lemma 1.3, (0q(A), 0q(B)) is 
a finite q-group. If axe€q{A), then ax = bxxx with bxe€q(A) and xxeK. 
Hence axb\x = xx is a q-element and a p-element, so that ax = bx. This shows 
that 6q(A)^0q(B) is a normal q-subgroup of G. 

Since G is locally finite, €q{A) = 3lq{A) is the q-component of the Hirsch-
Plotkin radical $/l{A) of A. Hence 

» P ' ( A ) = J ! 0q(A) £ <»p'(G) <= CP,(G), 

so that &p>(A) is finite. Since dtp(A) = €P(A) is a Cernikov p-group, 91(A) = 
â£p(A)x<%p(A) is a Cernikov group. Since A is radical, St (A) contains its 
centralizer in A. Thus A/9t(A) is a torsion group of automorphism of the 
Cernikov group 9t(A) and hence is a Cernikov group; see [5], Theorem 1.F.3, 
p. 35. It follows that A is a Cernikov group, so that also B — A is a Cernikov 
group. By [4], Theorem 4, G is a Cernikov group. Since 6V>(G) is finite, G is an 
almost-p group. By [1], Lemma 5.6, p. 113, 

^ (G) = ^(AX?(B). 

If the p-subgroups of A and B are finite, then $(G) = ${A)${JS) = 1 and G is 
finite. 

The following theorem contains information on the factorizer of an abelian 
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normal torsion subgroup of a group which is the product of two subgroups with 
min-p for every prime p. 

THEOREM 2.3. If the group G = AB is the product of two subgroups A and B 
with min-p for every prime p, then the radical torsion factorizer X = âf(K) of an 
abelian normal subgroup K of G satisfies min-p for every prime p. If the 
p-subgroups of A and B are finite, then the p-subgroups of X are finite. 

Proof. Assume that X does not satisfy min-p for the prime p. By Lemma 2.1 
there exists an epimorphic image X of X which does not satisfy min-p and 
which has certain properties. These imply that by Lemma 2.2 X is an almost-p 
Cernikov group. If the p-subgroups of A and JB are finite, then X is finite. This 
proves the theorem. 

The following lemma contains further information on the structure of the 
subgroup X in Theorem 2.3. 

LEMMA 2.4. If the radical torsion group G = AB with min-p for every prime p 
is the product of two subgroups A and B, then 

Proof. For every prime p the p-component Jp = ^ P (G) of $(G) is a normal 
p-subgroup of G. If X = 8?(JP) is the factorizer of ^p , then 

X = %(JV) = JVA* = JVB* = A*B* 

with A* = A H BJP and B* = B n AJP. Since the p-component ^ P (A) of J (A) is 
contained in the abelian group Jp, ^ P (A) is a normal subgroup of A*/ p =X. 
Similarly £P(B) is a normal subgroup of B*JP =X. Hence 

N = ^P(A)^P(B) 

is a normal subgroup of X contained in Jp. Since the p-subgroups of A/^P(A) 
and BI$P(B) are finite, the p-subgroups of A*N/N and B*N/N are finite. It is 
easy to see that XIN is the factorizer of Jp/N in X/N=(A*NIN)(B*NIN). By 
Theorem 2.3 the p-subgroups of X/N are finite. In particular the p-subgroup 
Jp/N of X/N is finite and hence must be trivial. Therefore JP=N = 
$P(A)$P(A)£P(B). It follows that 

^(G) = n^p(A)^p(B) = n ^ p ( A ) n ^ p ( B ) = ^(A)^(B) 
p p p 

This proves the lemma. 

We specialize now these results for soluble groups. 

COROLLARY 2.5. If the soluble group G = AB is the product of two TT-

subgroups A and B with min-p for every prime p in the set of prime rr, then G is a 
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ir-group with min-p for every p and 

In particular, if the p-subgroups of A and B are finite for some prime p, then the 
p-subgroups of G are finite. 

Proof. By [3], Corollary 2.2, G is a 7r-group. Assume that G = AB is a 
counterexample of minimal derived length which does not satisfy min-p for the 
prime p. The last nontrivial term K of the derived series of G is an abelian 
normal subgroup of G. By Theorem 2.3 the factorizer X = <%(K) of K satisfies 
min-p. Since G/K satisfies min-p for every prime p, G satisfies min-p. The 
remaining statements follow from Lemma 2.4. 

3. Proof of Theorems A and B. Assume that not every soluble product of 
two âf-groups is an a?-group. Then there exists a counterexample G = AB of 
minimal derived length. The last nontrivial term K of the derived series of G is 
an abelian normal subgroup of G such that G/K is an âf-group. Consider the 
factorizer 

X = X(K) = A*K = B*K = A*B* 

with A* = AHBK and B* = BHAK. In the case of Theorem A it follows 
from Theorem 1.1 that X is an âf-group, so that K is an âf-group, a 
contradiction. 

In the case of Theorem B observe that by the reduction in the beginning 
of section 1 it may be assumed that A* — B* is a torsion group with min-p for 
every prime p. By Corollary 2.5 X is a torsion group with min-p for 
every p and ^(X) = ^(A*)^(B*). Since $(A*) and ^(B*) are âf-groups, 
also the abelian group ${X) is an âf-group. The group X/J>(X) = 
( A W t f ( X ) ) ( B V W ( X ) ) is the product of two âf-subgroups and has 
finite Sylow-p-subgroups for every prime p. By hypothesis X/^(X) is therefore 
an âf-group, so that âf and hence K are âf-groups. It follows that G is an 
âf-group. This contradiction proves Theorem B. 
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