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Multipolar spherical and cylindrical vortices
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Multipolar spherical solutions to the three-dimensional steady vorticity equation are
provided. These solutions are based on the separation of radial and angular contributions
in terms of the spherical Bessel functions and vector spherical harmonics, respectively. In
this set of multipolar vortex solutions, the Hicks–Moffatt swirling vortex is categorized
as a vortex of degree � = 1 and therefore as a vortex dipole. This swirling vortex is
the three-dimensional dipole in spherical geometry equivalent to the two-dimensional
Lamb–Chaplygin dipole in polar geometry. The three-dimensional dipole solution admits
two linearly superposable solutions. The first one is a Trkalian flow and the second one is a
cylindrical solid-body rotation with swirl. The higher � > 1 multipolar vortices found are
either vanishing-helicity vortices or Trkalian flow vortices. The multipolar Trkalian flows
admit two circular polarizations given by the sign of the wavenumber k. It is also found
that piecewise vortex solutions, consisting of interior rotational and exterior potential flow
domains, satisfying velocity continuity conditions at the vortex boundary, are possible in
the general multipolar Trkalian spherical vortex. A particular polarized dipole solution
in three-dimensional cylindrical geometry, consisting as well in the superposition of a
Trkalian flow and a rigid motion, is also analysed. This swirling vortex may be interpreted
as the three-dimensional dipole in cylindrical geometry equivalent to the two-dimensional
Lamb–Chaplygin dipole in polar geometry.

Key words: vortex flows

1. Introduction

The Lamb–Chaplygin (LC) dipole model may be considered, due to its transport of linear
and angular momenta and its stability properties, a fundamental building block of vortex
interactions with distributed vorticity satisfying the two-dimensional (2-D) isochoric
inviscid Euler flow equations (Chaplygin 1903; Meleshko & van Heijst 1994). In particular,
LC dipole theoretical solutions can be naturally extended to geophysical vortex dynamics
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to investigate either multilayer shallow-water processes, where they are often referred
to as modons (Flierl, Stern & Whitehead 1983), vortex interaction with topography
(Gonzalez & Zavala Sansón 2021) or continuously stratified three-dimensional (3-D) flows
under the quasi-geostrophic approximation (Viúdez 2019). The mathematical definition
of the LC dipole vorticity, as well as that of similar multipolar vortices in 2-D and in
quasi-geostrophic 3-D dynamics, is based on the functional separation between radial (ρ)
and angular (ϕ) contributions in terms of the Bessel function of the first kind Jm(kρ), of
order m and wavenumber k, and the sinusoidal functions eimϕ , such that the vorticity modes
ζm(ρ, ϕ) = Jm(kρ) eimϕ , being proper functions of the 2-D Laplacian operator in polar
geometry, satisfy the 2-D Helmholtz equation, and hence steady 2-D material vorticity
conservation. The success of the LC dipole model stimulates the question of whether
there is a mathematical analogue to the 2-D LC dipole, and similar multipolar vortices,
in 3-D flows satisfying the steady 3-D vorticity equation. The purpose of this work is to
answer this question. We show that 3-D vorticity distributions whose radial and angular
dependences are given by spherical Bessel functions and vector spherical harmonics,
respectively, provide exact solutions to the steady vorticity equation in spherical geometry.
These solutions are called here ‘multipolar spherical vortices’.

Recently Scase & Terry (2018) proved that Hill’s spherical ring (Hill 1894) is a particular
case of the Hicks–Moffatt swirling spherical vortex (Hicks 1899; Moffatt 1969, 2017) in
the limit of vanishing wavenumber k → 0. In the vector spherical harmonics framework
used here, the Hicks–Moffatt swirling spherical vortex arises as the first mode in the set of
multipolar spherical vortex solutions, and it may therefore be qualified as a vortex dipole.
Thus, the Hicks–Moffatt swirling spherical vortex may be interpreted as the 3-D analogue
in spherical geometry to the 2-D LC dipole in polar geometry. This approach reveals
therefore the strong link between the 2-D LC dipole and the 3-D Hill’s and Hicks–Moffatt
spherical vortices.

This paper is organized as follows. The radial and angular decomposition of the flow is,
in the general multipolar vortex, described in § 2. Vector spherical harmonics are used to
prescribe the angular contributions, and then the isochoric constraint is readily employed
to reduce from three to only two the number of independent radial components of the flow
in the general multipolar vortex. Next § 3 considers the dipolar mode aligned along the
z-axis (mode � = 1, m = 0). This dipolar mode deserves particular consideration because
it is unique in the sense that it admits a superposition of two independent solutions.

The interior vorticity distribution of a 2-D LC dipole propagating straight on the
xy-plane along the x̂-axis direction is ζ (ρ, ϕ) = J1(ρ) sin ϕ ẑ, where the radius ρ2 =
x2 + y2 and ϕ is the usual polar angle of 2-D geometry. In 3-D space, the vortex lines
of positive and negative vorticity of this dipole are parallel and have infinite length. If a
3-D spherical bounded vortex is sought, one may, intuitively, curve the, say positive, vortex
lines in order to form circular vorticity lines in 3-D space and construct a kind of LC dipole
vorticity distribution in every azimuthal plane, with constant ϕ, given by j1(r) sin θ ϕ̂. An
azimuthal vorticity distribution of this kind would provide a 3-D dipole analogue to the
2-D LC dipole. The relation above for the azimuthal vorticity ζ(r, θ, ϕ) ≡ ω(r, θ, ϕ) · ϕ̂,
where (r, θ, ϕ) are the usual spherical coordinates and ϕ̂ is the azimuthal unit vector, is,
however, not imposed apriori here in the mathematical development, but it is deduced as
a steady solution to the 3-D vorticity equation

∂ω

∂t
= ∇uω − ∇ω u, (1.1)
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where u is the 3-D velocity field, ω = ∇ × u is the vorticity, and ∇u and ∇ω are the
velocity and vorticity gradient tensors, respectively, acting on ω and u. The steady dipolar
flow found is the superposition of two independent solutions, one of them (u10) being a
Trkalian flow (Lakhtakia 1994) in which ∇ × u10 = c0u10, for a constant c0, and the other
one being a cylindrical solid-body rotation with swirl that leaves invariant the condition
∇uω − ∇ω u = 0.

Once the dipolar mode solution has been analysed, § 4 provides the general multipolar
vortex solution for modes � > 1, m = −�, . . . , +�. These modes are Trkalian flows
(∇ × u�m = c0u�m) and correspond to the higher modes of the Trkalian flow component
of the dipolar vortex u10. The spherical multipolar solutions are, due to the oscillating
behaviour of the spherical Bessel functions as r → ∞, unbounded vortices. In order to
provide bounded piecewise vortex solutions with zero exterior vorticity, the irrotational
flow solutions are, within the vector spherical harmonics basis and for the general
multipolar vortex, given in § 5. With both the interior rotational and exterior irrotational
flow solutions available, the multipolar piecewise vortex solutions are given in § 6, with
emphasis on the dipolar piecewise vortex which admits a steady-state solution. Next
§ 7 analyses briefly a particular solution of the vortex dipole in cylindrical geometry.
This vortex dipole is also polarized, and consists, as its spherical counterpart, in the
superposition of a Trkalian flow and a rigid motion which leaves invariant the condition
∇uω − ∇ω u = 0. This particular solution completes the link between the 2-D LC vortex
dipole and the corresponding 3-D vortex dipoles in spherical and cylindrical geometries.
Finally, concluding remarks are given in § 8.

2. Radial–angular decomposition and isochoric condition

The radial and the angular contributions to the velocity field are separated using the
vector spherical harmonics basis, {Y m

� (θ, ϕ),Ψ m
� (θ, ϕ),Φm

� (θ, ϕ)}, defined in (A1) in
Appendix A, to describe the angular contribution. We introduce three scalar velocity
functions {u�m(r), v�m(r), w�m(r)} to describe the radial contributions to the velocity field

u�m(r, θ, ϕ) = u�m(r)Y m
� (θ, ϕ) + v�m(r)Ψ m

� (θ, ϕ) + w�m(r)Φm
� (θ, ϕ). (2.1)

The vector field Y m
� (θ, ϕ) is normal to the spherical surfaces, while Ψ m

� (θ, ϕ) and
Φm

� (θ, ϕ) are tangent to the spherical surfaces. Using the properties associated with the
divergence of radial fields in this basis, in (A2), the isochoric condition ∇ · u�m = 0
implies

u′
�m(r) + 2

r
u�m(r) − �(� + 1)

r
v�m(r) = 0. (2.2)

The radial functions w�m(r) do not contribute to ∇ · u�m because ∇ ·Φm
� = 0 and

∇w�m(r) is perpendicular to Φm
� (θ, ϕ). The vector lines of Φm

� (θ, ϕ) are therefore closed
lines on spherical surfaces.

The vector spherical harmonics for � = 0 are Y 0
0 = (1/

√
2π)r̂ and Ψ 0

0 = Φ0
0 = 0, so

that u00(r) = (1/
√

2π)u00(r)r̂, and relation (2.2) implies

u00(r) = 1√
2π

r̂
r2 . (2.3)

This solution has zero vorticity and it consists of potential flow with a point-source
singularity at r = 0. We henceforth assume modes � > 0 so that division by � is allowed.
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Relation (2.2) implies therefore that

v�m(r) = 2u�m(r) + ru′
�m(r)

�(� + 1)
, (2.4)

which allows us to reduce the three unknown velocity fields in (2.1) to only two, writing

u�m(r, θ, ϕ) = u�m(r)Y m
� (θ, ϕ) + 2u�m(r) + ru′

�m(r)
�(� + 1)

Ψ m
� (θ, ϕ) + w�m(r)Φm

� (θ, ϕ),

(2.5)

with u�m(r) and w�m(r) as the independent radial contributions to the velocity field.
Before obtaining the multipolar solutions u�m(r, θ, ϕ), it is convenient to analyse first

the vertically aligned dipole vortex (mode � = 1, m = 0) because this is a particularly
important case and its detailed description will help us to understand higher-order
multipoles.

3. Dipolar mode � = 1, m = 0

The dipole vortex, vertically aligned, is the multipole with � = 1 and m = 0. In this case
the corresponding vector spherical harmonics are

Y 0
1(θ) =

√
3

4π
cos θ r̂, Ψ 0

1(θ) = −
√

3
4π

sin θ θ̂ , Φ0
1(θ) = −

√
3

4π
sin θ ϕ̂.

(3.1a–c)

In this mode the vectors u10(r)Y 0
1(θ), v10(r)Ψ 0

1(θ) and w10(r)Φ0
1(θ) are the usual radial,

polar and azimuthal components of the velocity field associated with the spherical
coordinate system. Modes m = ±1 are only rotations of mode m = 0 and provide
essentially the same physical results though using more complicated mathematical
expressions. To lighten the notation, in this section, we will often omit the modal
subindices {�m} = {10}. Using (2.5) for � = 1 and m = 0, the local rate of change of
vorticity (1.1) is

∂ω

∂t
= ∇uω − ∇ω u

= −3(3 cos(2θ) + 1)

8πr2 {ru′(r)w(r) + u(r)[w(r) − rw′(r)]}r̂

+ 3 sin(2θ)

8πr
{w(r)[2u′(r) + ru′′(r)] − ru(r)w′′(r)}θ̂

+ 3 sin(2θ)

16πr2 {u(r)[r3u′′′(r) + 4r2u′′(r) − 4ru′(r)] + 4w(r)[rw′(r) − w(r)]}ϕ̂.

(3.2)

The steadiness condition for the radial vorticity component implies r̂ · (∇uω − ∇ω u)

= 0, which yields
w(r) = c0ru(r), (3.3)

where c0 is an arbitrary constant. Thus, apart from the null case u = v = w = 0, we may
consider, separately, three different sets of solutions for u(r) and v(r), namely solutions
with w(r) = 0 but u(r) /= 0, solutions with u(r) = 0 but w(r) /= 0, and solutions with
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c0 /= 0 such that both u(r) /= 0 and w(r) /= 0. Since the condition θ̂ · (∇uω − ∇ω u) = 0
is the radial derivative of r̂ · (∇uω − ∇ω u) = 0, the only remaining independent
constraint is the steadiness of the azimuthal vorticity ϕ̂ · (∇uω − ∇ω u) = 0, which is
used in the next subsections to obtain the velocity solutions.

3.1. Solutions with w(r) = 0: vortices without azimuthal velocity
In this case the velocity field is poloidal and the azimuthal component equation (3.2),
ϕ̂ · (∇uω − ∇ω u) = 0, implies

r2u′′′
a (r) + 4ru′′

a(r) − 4u′
a(r) = 0, (3.4)

where the subscript a is introduced to denote membership of this particular solution. The
solution to (3.4) is

ua(r) = c1r2 + c2

r3 + c3 =⇒ va(r) = 2c1r2 − c2

2r3 + c3, (3.5)

where c1, c2 and c3 are arbitrary constants. The solution with a singularity at the origin
r = 0 is not disregarded and the constants are, for kinematical reasons, redefined as
{c1, c2, c3} = {−χa/10, da, wa}

√
4π/3, so that the velocity field (3.5) is rewritten as

ua(r, θ) =
(

wa − χa

10
r2 + da

r3

)
cos θ r̂ −

(
wa − χa

5
r2 + da

r3

)
sin θ θ̂ , (3.6)

where waẑ is the non-divergent velocity at the origin r = 0. Velocity solution (3.6) with
da = 0 is the interior solution of Hill’s spherical vortex (Hill 1894). The vorticity field of
(3.6) is

ωa ≡ ∇ × ua = χa

2
r sin θ ϕ̂ = χa

2
ρ(r, θ) ϕ̂. (3.7)

Thus ωa is azimuthal, so that velocity and vorticity are normal vectors, ua · ωa = 0. The
vorticity (3.7) only depends on the constant χa, and therefore the velocity field involving
the constants wa and da is potential flow. The vorticity vanishes at the origin ωa(0) = 0,
but the vorticity curl,

χa ≡ ∇ × ωa = −∇2ua = χa(cos θ r̂ − sin θ θ̂) = χaẑ, (3.8)

is a constant vector with amplitude χa. The velocity ua admits a velocity potential
ψa(r, θ), such that ua = ∇ × ψa, given by

ψa(r, θ) =
(

wa − χa

10
r2 + da

3r3

)
r
2

sin θ ϕ̂ = ∇ × (φa(r)ẑ) = −ẑ × ∇φa(r), (3.9)

where

φa(r) ≡ r2

4

(
χ̂a

20
r2 − ŵa − 2da

3r3

)
. (3.10)

Since ψa = ∇ × (φaẑ), we have ∇ · ψa = 0, and the Laplacian of the velocity potential

∇2ψa = −∇ × ∇ × ψa = −ωa = − χ̂a

2
r sin θ ϕ̂ (3.11)

equals, with opposite sign, the vorticity field.
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3.2. Solutions with u(r) = 0: vortices with only azimuthal velocity w(r)
This case is less interesting but it is considered for completeness. In this case the
velocity field is toroidal and the steadiness of the azimuthal component of vorticity
ϕ̂ · (∇uω − ∇ω u) = 0 in (3.2) yields w(r) = wb(r) = c0r, where the subscript b is used
to label terms of this particular solution. The velocity

ub = ω̂b

2
r sin θ ϕ̂ = ω̂b

2
ρ ϕ̂ (3.12)

is only azimuthal, and the vorticity field

ωb = ω̂b(cos θ r̂ − sin θ θ̂) = ω̂bẑ (3.13)

is a constant vertical field. As in the previous case, velocity and vorticity are normal
vectors, ub · ωb = 0 and ωb × ub = −(ω̂2

b/2)ρρ̂. Velocity ub admits a velocity potential
of the form

ψb(r, θ) = ω̂br2

5

(
−cos θ

2
r̂ + sin θ θ̂

)
, (3.14)

such that, since ∇ · ψb = 0, its Laplacian is

∇2ψb = −∇ × ∇ × ψb = −ωb = −ω̂bẑ. (3.15)

The steady-state solutions with only azimuthal velocity are therefore solid-body rotations
around the ẑ-axis with cylindrical speed isosurfaces.

3.3. Solutions with non-vanishing u(r) and w(r)
This is the most interesting case of the dipolar mode. It is convenient to rename the
constant c0 → k/2 in (3.3) such that the relation between w(r) and u(r) is

w(r) = k
2

ru(r), (3.16)

where k /= 0 is a real, not necessarily positive, constant. The azimuthal component
equation ϕ̂ · (∇uω − ∇ω u) = 0 in (3.2) leads to

r2u′′′(r) + 4ru′′(r) + (k2r2 − 4)u′(r) = 0, (3.17)

whose solution is

u(r) = c1
j1(kr)√

kr
+ c2

y1(kr)√
kr

+ c3. (3.18)

Above, j1(x) and y1(x) are the spherical Bessel functions of the first and second
kinds, respectively, and {c1, c2, c3} are complex constants that allow negative values
of k. The fact that (3.17) does not depend explicitly on u(r) leads to the constant
solution c3 in (3.18). The velocity singularity at the origin r = 0 is discounted and
we set c2 = 0. The remaining constants are redefined, for kinematical interpretation, as
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{c1
√

k, c3
√

3} = {−2ŵ1
√

3π, 2ŵ2
√

π}, so that the vector velocity field is

u(r, θ) = u1(r, θ) + u2(r, θ)

= 3ŵ1

{
j1(kr)

kr
cos θ r̂ +

(
j2(kr)

2
− j1(kr)

kr

)
sin θ θ̂ − j1(kr)

2
sin θ ϕ̂

}

+ ŵ2

(
cos θ r̂ − sin θ θ̂ − kr

2
sin θ ϕ̂

)
. (3.19)

The dipole solution (3.19) is the sum of a radially oscillating part given by u1(r, θ) and a
radially monotonic part given by u2(r, θ). The azimuthal component of u1(r, θ), basically
the term j1(kr) sin θ ϕ̂, is the sought LC dipole dependence mentioned in § 1. This dipole
solution is, if we regard the first vorticity ball whose radius is given by the first zero of j1(x)
or j2(x), the interior solution of the Hicks–Moffatt (Hicks 1899; Moffatt 1969) swirling
spherical vortex. Thus, the Hicks–Moffatt vortex is categorized as a 3-D vortex dipole
because the number of nodal lines is given by the value of �, in this case � = 1, in the
vector spherical harmonics basis framework. Larger vorticity balls have been considered
recently by Bogoyavlenskij (2017) to investigate the vortex knots of these vortex solutions.

Velocity u2 is a cylindrical solid-body rotation with swirl. It is the velocity field that
leaves invariant the condition ∇uω − ∇ω u = 0. Since u2 is a rigid motion it may
be interpreted as the velocity of a (non-inertial) reference frame. This interpretation is
explained in more detail in Appendix B.

Since j0(0) = 1 and limx→0 j1(x)/x = 1/3, the constant ŵ1 + ŵ2 is the velocity at the
origin of the reference frame r = 0,

u(0) = u1(0) + u2(0) = (ŵ1 + ŵ2)ẑ. (3.20)

Since j1(x) is odd and j0(x) is even, the transformation k → −k changes the sign of the
azimuthal velocity u · ϕ̂ and therefore the vortex (3.19) admits two circular polarizations.
We may express (3.19), using a mix of basis vectors, as

u =
(

3ŵ1
j1(kr)

kr
+ ŵ2

)(
ẑ − k

2
ρϕ̂

)
+ 3ŵ1

j2(kr)
2

θ̂ . (3.21)

Expression (3.21) makes it clear that on the spherical surfaces whose radii are the zeros
j5/2,n of j2(x), velocities u1 and u2 are parallel (or antiparallel) regardless of the value
of their respective amplitudes ŵ1 and ŵ2. These spherical surfaces become stagnation
surfaces, as noticed by Moffatt (1969), when the ratio between the amplitudes ŵ2 and ŵ1
satisfies

ŵ2

ŵ1
= −3

j1(j5/2,n)

j5/2,n
= −j0(j5/2,n), (3.22)

where the last equality is found using the identity

j0(x) + j2(x) = 3
j1(x)

x
. (3.23)

The vorticity of (3.19) is

ω = ω1 + ω2, ω1 = −ku1, ω2 = −kŵ2ẑ. (3.24a–c)

Therefore u1 is a Trkalian flow
∇ × u1 = −ku1, (3.25)
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and hence a Beltrami flow as well, ω1 × u1 = 0, with helicity density

ω1 · u1 = −ku1 · u1 = −ku2
1(r, θ), (3.26)

whereas the Lamb vector and helicity density for the flow u2 are

ω2 × u2 = −k2 ŵ2
2

2
ρρ̂, ω2 · u2 = −kŵ2

2. (3.27a,b)

Therefore ω2 × u2 only vanishes along the ẑ-axis, and u2 has constant helicity density.
Explicitly, the vorticity field of (3.19) is

ω(r, θ) = ω1(r, θ) + ω2(r, θ)

= −3ŵ1k
{

j1(kr)
kr

cos θ r̂ +
(

j2(kr)
2

− j1(kr)
kr

)
sin θ θ̂ − j1(kr)

2
sin θ ϕ̂

}

− ŵ2k(cos θ r̂ − sin θ θ̂). (3.28)

The vorticity at the origin r = 0 is ω(0) = −(ŵ1 + ŵ2)kẑ. The vorticity field (3.28) has
no surfaces of zero amplitude because ω · ϕ̂ = 0 only occurs at the zeros kr = j3/2,n of
j1(kr), and on these spherical surfaces the condition ω · r̂ = 0 necessarily implies ŵ2 = 0
so that ω(j3/2,n, θ) = (3/2)ŵ1kj0(j3/2,n) sin θ θ̂ , which has no zeros except at the poles
θ = 0, π. Thus, if a piecewise vorticity vortex is constructed by assembling an interior
vorticity ball with this vorticity to an exterior irrotational flow through a single boundary
separating the rotational from the irrotational flow, it must necessarily imply vorticity
discontinuities at the vortex boundary. These vorticity jumps, however, may be avoided
by imposing different radial boundaries for the different vorticity terms. This problem is
not solved in this work and is left for future research.

In the limit x → 0 we have the following Taylor series expansions,

j0(x) ∼ 1 − x2

6
, j1(x) ∼ x

3
,

j1(x)
x

∼ 1
3

− x2

30
, (3.29a–c)

and therefore in the limit kr → 0 the vortex velocity

u(r, θ) ∼ −ŵ1k2
(

r2 cos θ

10
r̂ − r2 sin θ

5
θ̂

)
, (3.30)

which is the vortex ua(r, θ) (3.6) with wa = 0, da = 0 and χa = ŵ1k2. Thus, as noticed by
Scase & Terry (2018), Hill’s spherical ring is a particular case of Hicks–Moffatt swirling
spherical vortex in the limit of vanishing wavenumber.

We record also the Laplacian of the velocity (3.19),

∇2u(r, θ) = ∇2u1(r, θ) + ∇2u2(r, θ)

= −3ŵ1k
{

j1(kr)
kr

cos θ r̂ +
(

j2(kr)
2

− j1(kr)
kr

)
sin θ θ̂ − j1(kr)

2
sin θ ϕ̂

}

− ŵ2k(cos θ r̂ − sin θ θ̂). (3.31)

We now provide the streamfunctions ψ i satisfying ui = ∇ × ψ i with the divergenceless
constraint ∇ · ψ i = 0 for the velocity fields u1 and u2. Given the mathematical identity

∇2χ = −∇ × ∇ × χ + ∇(∇ · χ), (3.32)
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Multipolar spherical and cylindrical vortices

for any vector field χ , it is immediately deduced that ψ1 and ψ2 satisfy

∇2ψ i = −ωi. (3.33)

Therefore ψ1 = ω1/k2 = −u1/k, or

u1 = −kψ1, ω1 = k2ψ1. (3.34a,b)

Thus, ψ1 and all their rotational fields satisfy the vector Helmholtz equation,

∇2ψ1 + k2ψ1 = 0, ∇2u1 + k2u1 = 0, ∇2ω1 + k2ω1 = 0, . . . . (3.35a–c)

On the other hand, ψ2 satisfies

ψ2 = ŵ2

2

(
k
5

r2(cos θ r̂ − 2 sin θ θ̂) + r sin θ ϕ̂

)
. (3.36)

Since both u1 and u2 independently, as well as their sum, satisfy the vorticity steadiness
condition, they also satisfy

∇ × (ω × u) = ∇ × ((ω1 + ω2) × (u1 + u2)) = ∇ × (ω1 × u2 − u1 × ω2) = 0,

(3.37)

which is another way of proving that the flow solutions u1 and u1 are linearly superposable.
This means that there is a potential Ξ(r, θ) for the Lamb vector ω × u such that

ω × u = ∇Ξ. (3.38)

A simple potential is

Ξ(r, θ) = − ŵ2

4
kr(3ŵ1j1(kr) + ŵ2kr) sin2 θ. (3.39)

Since the components of u do not depend on ϕ, the components of ω do not either,
and therefore ϕ̂ · (ω × u), the component along ϕ of the Lamb vector, vanishes. From
Lagrange’s acceleration formula,

a = ∂u
∂t

+ ω × u + 1
2
∇(u · u), (3.40)

we readily obtain that

a · ϕ̂ = 0, (3.41)

and see that the flow has no azimuthal acceleration. Since in spherical coordinates a · ϕ̂ =
rϕ̈ sin θ + 2ṙϕ̇ sin θ + 2rθ̇ ϕ̇ cos θ , and in cylindrical coordinates a · ϕ̂ = ρϕ̈ + 2ρ̇ϕ, we
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A. Viúdez

obtain as an integral of motion

r2ϕ̇ sin2 θ = r2
0ϕ̇0 sin2 θ0, ρ2ϕ̇ = ρ2

0 ϕ̇0, (3.42a,b)

and therefore an integral of motion for a fluid particle ρ2(t)ϕ̇(t) = ρ2
0 ϕ̇0, which represents

the conservation of angular momentum

L ≡ r × u (3.43)

along ẑ, that is, defining Lz ≡ L · ẑ and using a dot (˙) for the material time derivative,

L̇ · ẑ = ˙L · ẑ = L̇z = ˙
ρ2ϕ̇ = 0, L̇ · ρ̂ = − z

ρ

˙
ρ2ϕ̇ = 0, (3.44a,b)

where we note that L̇ · ρ̂ /= ˙L · ρ̂. The field Lz(r, θ) is

Lz(r, θ) = −sin2 θ

2
r(3ŵ1j1(kr) + ŵ2kr), (3.45)

which implies the relation with the Lamb vector potential

Ξ = 1
2 kŵ2Lz. (3.46)

In these steady flow solutions, a potential P(r, θ), or negative pressure, of the
acceleration field a such that a = ∇P is easily obtained from (3.38), (3.39) and (3.40),
resulting in

P = Ξ + 1
2 u · u. (3.47)

4. Multipolar vortices

We now deal with the general multipolar vortex whose velocity u�m(r, θ, ϕ), given
by (2.5), already satisfies the isochoric condition ∇ · u�m = 0. The vector spherical
harmonics may be expressed as

Y m
� (θ, ϕ) = Ym

� (θ, ϕ)r̂, (4.1a)

Ψ m
� (θ, ϕ) =

(
m cot θ Ym

� (θ, ϕ) + Γ̂ m
�

Ym+1
� (θ, ϕ)

eiϕ

)
θ̂ + im csc θ Ym

� (θ, ϕ)ϕ̂, (4.1b)

Φm
� (θ, ϕ) = −im csc θ Ym

� (θ, ϕ)θ̂ +
(

m cot θ Ym
� (θ, ϕ) + Γ̂ m

�

Ym+1
� (θ, ϕ)

eiϕ

)
ϕ̂, (4.1c)

where

Γ̂ m
� ≡ √

� − m
√

� + m + 1. (4.2)

Henceforth, to simplify the notation, we will often omit the indices {�, m}. The vorticity
is

ω = ξ(r)Y + η(r)Ψ + ζ(r)Φ

= −�(� + 1)
w
r

Y − rw′ + w
r

Ψ + r(ru′′ + 4u′) − (� − 1)(� + 2)u
�(� + 1)r

Φ. (4.3)

We note from (4.3) that, due to the term (� − 1), only in the particular case � = 1 do the
vorticity components depend on u′(r) and u′′(r) but not on u(r). This fact allowed the
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Multipolar spherical and cylindrical vortices

introduction of the rigid motion u2 as a superposable velocity in the vortex dipole solution
(3.18). This property, which is absent for modes � > 1, is responsible for the vortex dipole
being a special case different from higher-order multipoles.

The Lamb vector llm(r, θ, ϕ), and their components relative to the vector spherical
harmonics basis {Y ,Ψ ,Φ}, are

l = (ηw − ζv)Φ2r̂ + (ζu − ξw)YΨ + (ξv − ηu)YΦ

= lY(r)
Φ2

Y
Y + lΨ (r)YΨ + lΦ(r)YΦ, (4.4)

where {lY, lΨ , lΦ} ≡ {ηw − ζv, ζu − ξw, ξv − ηu} are the terms with radial dependence
in the components of the Lamb vector relative to the basis {Y ,Ψ ,Φ}, and
Φ2 = Φ ·Φ = Ψ 2 = Ψ · Ψ . From (4.4) we obtain the curl of the Lamb vector,

∇ × l = Y(∇ × (lΨΨ + lΦΦ)) + lΦ
Φ2

r
r̂ + lY∇Φ2 × r̂

= lΦ
r

(Φ2 − �(� + 1)Y2)r̂ −
(

l′Φ + lΦ
r

)
YΨ +

(
l′Ψ + lΨ

r

)
YΦ + lY∇Φ2 × r̂.

(4.5)

From (∇ × l) · r̂ = 0, and since Φ2 /= �(� + 1)Y2 for integers � ≥ 0, we readily obtain
lΦ(r) = 0, which implies

w(r) = kr
�(� + 1)

u(r), (4.6)

and hence ∇ × l = 0 simplifies to(
l′Ψ + lΨ

r

)
YΦ + lY∇Φ2 × r̂ = 0. (4.7)

Now we analyse two sets of steady solutions (∇ × l = 0), namely non-Beltrami (l /= 0)
and Beltrami (l = 0) flows.

4.1. Non-Beltrami flows
We start with non-Beltrami flows. Condition (4.7) implies that both lY(r) and lΨ (r) must
be different from zero. Projection (∇ × l) · Ψ = 0 implies that lY(∇Φ2 × r̂) · Ψ = 0.
Therefore ∇Φ2 × r̂ must be parallel to Φ and, in order to satisfy the third condition
(∇ × l) ·Φ = 0, one must have YΦ = c0r∇Φ2 × r̂ for a constant c0. This implies that
Yr × ∇Y = −c0Φr × ∇Φ, hence ∇Y2 = −c0∇Φ2, and therefore Y2 + c0Φ

2 = c1, for
a constant c1. This condition is satisfied when � = 1, with c1 /= 0 in the cases m = ±1,
and c1 = 0 in the case m = 0, since

(Y0
1)

2 = 3
4π

cos2 θ, (Φ0
1 )2 = 3

4π
sin2 θ, (Y±1

1 )2 = −(Φ±1
1 )2 = 3

8π
e±2iϕ sin2 θ.

(4.8a–c)

For � = 1, a solution exists with non-zero Lamb components such that, relative to the
basis {Y ,Ψ ,Φ}, whose rotational is zero and therefore is a steady solution of the vorticity
equation. The solutions to this case have already been discussed in § 3.
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A. Viúdez

For modes � > 1, the condition Y2 + c0Φ
2 = c1 is satisfied (with c1 = 0) in the cases

m = ±�. In these cases, solutions u(r) to (4.7) exist as r�−1. The velocity components,
omitting a constant factor, are therefore

u(r) = (kr)�−1, v(r) = (kr)�−1

�
, w(r) = (kr)�

�
. (4.9a–c)

The corresponding vorticity solutions are

ω�±�(r, θ, ϕ) = k�r�−1(sin θ)�−1(sin θ r̂ + cos θ θ̂ ± iϕ̂)e±i�ϕ. (4.10)

These solutions have vanishing Laplacian ∇2u = 0, and therefore, since ∇ · u = 0, the
vorticity is irrotational, ∇ × ω = 0, and hence the vorticity Laplacian vanishes as well,
∇2ω = 0. We note, however, that these velocity and vorticity solutions are, for � > 1,
strictly complex-valued functions. The helicity density vanishes also, ω · u = 0, while the
Lamb vector, l ≡ ω × u, is

l�±�(r, θ, ϕ) = k2�r2�−1(sin θ)2�−1(sin θ r̂ + cos θ θ̂ ± iϕ̂)e±2i�ϕ. (4.11)

4.2. Beltrami flows

We turn now to Beltrami flows l(r, θ, ϕ) = 0. The term l · θ̂ is

l · θ̂ = u
�(� + 1)r

[r2u′′ + 4ru′ + u(k2r2 − (� − 1)(� + 2))], (4.12)

which, apart from the null solution u(r) = 0, has the solution

u(r) = c1
j�(kr)

kr
+ c2

y�(kr)
kr

. (4.13)

Omitting the term with a singularity at r = 0, the solution of the multipolar � > 1 vortex
velocity is therefore

uk
�m(r, θ, ϕ) = j�(kr)

kr
Y m

� (θ, ϕ) +
(

j�(kr)
�kr

− j�+1(kr)
�(� + 1)

)
Ψ m

� (θ, ϕ)

+ j�(kr)
�(� + 1)

Φm
� (θ, ϕ). (4.14)

In (4.14) the superscript k is introduced to explicitly express the dependence on the
wavenumber k, whose amplitude provides the relative spatial scale of the velocity field
and whose sign defines one of the two possible velocity polarizations. This is so because
j�(−x) = (−1)�j(x), that is, j�(x) and � have the same parity, and the parity of the Φ
component of velocity is opposite to the parities of the Y and Ψ components of velocity.
Explicitly we may express this as

(−1)�+1u−k
�m(r, θ, ϕ) = j�(kr)

kr
Y m

� (θ, ϕ) +
(

j�(kr)
�kr

− j�+1(kr)
�(� + 1)

)
Ψ m

� (θ, ϕ)

− j�(kr)
�(� + 1)

Φm
� (θ, ϕ). (4.15)

As happens with the Beltrami flow component of the vortex dipole flow, one may define
the streamfunction uk

�m(r, θ, ϕ) = ∇ × ψk
�m(r, θ, ϕ) with the constraint ∇ · ψk

�m = 0 and
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Multipolar spherical and cylindrical vortices

find that ψk
�m = −k−1uk

�m. Then the vorticity is simply ωk
�m = −kuk

�m. Thus, ψk
�m and all

their curls (as uk
�m, ωk

�m, χk
�m, . . . ) satisfy the vector Helmholtz equation

(∇2 + k2)(∇×)nψk
�m = 0, n = 0, 1, 2, . . . . (4.16)

Since uk
�m is a Trkalian flow, it satisfies the vector Helmholtz equation, ∇2u =

−k2u. Once it is known that the velocity flow solution u must be a Trkalian flow,
there is a shortcut to obtain u by noticing that, because of (A4), the Helmholtz
equation ∇2u = −k2(uY + vΨ + wΦ) implies that wΦ satisfies the vector Helmholtz
equation as well, ∇2(wΦ) = −k2wΦ. Because of (A4c) the component w(r) satisfies the
Bessel equation (r2w′(r))′ + (k2r2 − �(� + 1))w(r) = 0 whose solutions are the spherical
Bessel functions j�(kr) and y�(kr). Hence, from lΦ = 0 (4.6), we deduce u(r) = �(� +
1)w(r)/(kr), and finally from the isochoric condition (2.2) we obtain v(r) = (2u(r) +
ru′(r))/(�(� + 1)).

We end this section by noting that, since the vorticity field ωk
�m(x) satisfies the vector

Helmholtz equation, the time-dependent velocity and vorticity fields

ũk
�m(x, t) ≡ uk

�m(x)e−νk2t and ω̃k
�m(x, t) ≡ ωk

�m(x)e−νk2t, (4.17a,b)

where ν is a constant diffusivity, satisfy the Navier–Stokes vorticity equation for isochoric
flows

∂ω̃k
�m

∂t
+ ∇ × (ω̃k

�m × ũk
�m) = ν∇2ω̃k

�m, (4.18)

which for Beltrami flows is reduced to

∂ω̃k
�m

∂t
= −νk2ω̃k

�m. (4.19)

The non-Beltrami solutions given in § 4.1 trivially satisfy the Navier–Stokes vorticity
equation since the Laplacian of the vorticity vanishes.

5. Irrotational flow

Finite-size vortex flow configurations often separate the vortex solution into an interior
rotational flow and an exterior irrotational flow. This approach requires the specification
of irrotational flow matching boundary conditions at the vortex boundary and hence the
interest in providing the irrotational velocity components in the vector spherical harmonics
basis. This solution is simple and is provided here in the general multipolar case. We
introduce three scalar radial functions {ū�m(r), v̄�m(r), w̄�m(r)} in such a way that the
irrotational flow in the vector spherical harmonics basis is

ū�m(r, θ, ϕ) = ū�(r)Y m
� (θ, ϕ) + v̄�(r)Ψ m

� (θ, ϕ) + w̄�(r)Φm
� (θ, ϕ). (5.1)

Properties (A3) applied to ∇ × ū�m = 0 imply w̄�(r) = 0 and ū�(r) = (rv̄�(r))′. Thus we
may introduce the radial component of the potential R�(r) and identify ū�(r) = R′

�(r) and
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v̄�(r) = R�(r)/r. Since ū�m = ∇φ implies

ū�m(r, θ, ϕ) = R′
�(r)Y

m
� (θ, ϕ) + R�(r)

r
Ψ m

� (θ, ϕ), (5.2)

the irrotational flow potential is φ(r, θ, ϕ) = R�(r)Ym
� (θ, ϕ). For isochoric flows ∇ · ū =

∇2φ = 0, so that the radial part of the potential is

R�(r) = a1r� + a2r−�−1, (5.3)

where {a1, a2} are arbitrary constants. Solution (5.3) may also be obtained from the
isochoric condition (2.2). The velocity components are therefore

ū(r) = a1�r�−1 − a2(� + 1)r−�−2, v̄(r) = a1r�−1 + a2r−�−2, w̄(r) = 0, (5.4a–c)

where the constants {a1, a2} must be used for matching boundary conditions with the inner
rotational flow.

6. Piecewise vortices

6.1. The piecewise dipole vortex mode � = 1
In the case of the vortex dipole � = 1, we impose continuity of the velocity at the spherical
surface kr = �0, that is u10(�0/k, θ, ϕ) = ū10(�0/k, θ, ϕ), which using (5.4a–c) may be
written as

u10(�0/k, θ, ϕ) =
(

â1 − 2â2

(�0/k)3

)
cos θ r̂ −

(
â1 + â2

(�0/k)3

)
sin θ θ̂ , (6.1)

where {â1, â2} are constants. Using u10(�0/k, θ, ϕ) given by (3.19) we obtain

â1 = −ŵ1j2(�0), (6.2a)

â2 = − ŵ1

2

(�0

k

)3
j2(�0) = â1

2

(�0

k

)3
, (6.2b)

ŵ2 = −3ŵ1
j1(�0)

�0
. (6.2c)

Relation (6.2c) is a constraint between vortex amplitude parameters ŵ1 and ŵ2 that forces
the vortex dipole to have zero azimuthal velocity on the spherical surface in order to match
the exterior potential flow. Relations (6.2a) and (6.2b) imply that the flow at the spherical
boundary,

u10(�0/k, θ, ϕ) = ū10(�0/k, θ, ϕ) = 3
2 ŵ1j2(�0)θ̂ , (6.3)

is exclusively polar. In this case, due to (6.2c), the potential Ξ(r, θ) (3.39) vanishes at the
vortex boundary kr = �0 and therefore the minus pressure −p at the vortex boundary is
given by (1/2)u · u and is therefore continuous and equal to the constant (9/8)ŵ2

1j2(�0)
2.

The potential flow is therefore

ū10(r, θ, ϕ) = −ŵ1j2(�0)

[(
1 −

(�0

kr

)3
)

cos θ r̂ −
(

1 + 1
2

(�0

kr

)3
)

sin θ θ̂

]
, (6.4)

which as r → ∞ is a constant velocity along ẑ given by

ū∞
10 = −ŵ1j2(�0)(cos θ r̂ − sin θ θ̂) = −ŵ1j2(�0)ẑ = −U0. (6.5)

Since this far-field potential velocity is spatially constant, a property exclusive to the mode
� = 1, there is an unsteady velocity solution ũ10(x, t) with vanishing far-field potential
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Multipolar spherical and cylindrical vortices

velocity such that its initial state ũ10(x, t0) ≡ u10(x) + U0 or ũ10(x, t) = u10(x − U0t) +
U0, such that the dipole displaces with constant velocity U0 = ŵ1j2(�0)ẑ. The vorticity
evolution is just a rigid translation ω̃10(x, t) = ω10(x − U0t). The initial velocity field at
the initial time, say t0 = 0, is now a piecewise function given by

ũ10(r, θ, ϕ, t0)
3ŵ1

=
(

j1(kr)
kr

− j1(�0)

�0
+ j2(�0)

3

)
cos θ r̂

+
(

j2(kr)
2

− j1(kr)
kr

+ j1(�0)

�0
− j2(�0)

3

)
sin θ θ̂

+
(

− j1(kr)
2

+ j1(�0)

2
kr
�0

)
sin θ ϕ̂, kr ≤ �0, (6.6)

and
ũ10(r, θ, ϕ, t0)

ŵ1
= j2(�0)

(�0

kr

)3
(

cos θ r̂ + 1
2

sin θ θ̂

)
, �0 ≤ kr. (6.7)

Thus, if the vortex boundary is taken at any zero �0 = j5/2,n of j2(x), the piecewise vortex
is steady (U0 = 0) and the vortex does not have exterior potential flow.

A numerical example of this steady vortex is next described. The stability of the
piecewise vortex solutions in this work was analysed through numerical simulations
carried out using a 3-D pseudospectral code where the vorticity field ω̂(x, y, z, t) is
numerically integrated in a triply periodic domain using an explicit leapfrog time-stepping
method, together with a weak Robert–Asselin time filter to avoid the decoupling of even
and odd time levels (Dritschel & Viúdez 2003). Spatial fields are computed using the
pseudospectral method, wherein spatial derivatives are computed in spectral space, while
the advective nonlinear products are computed on the physical grid, and fast Fourier
transforms are used to go from one representation to the other.

The vorticity boundary is taken at �0 = j5/2,1 � 5.763, so that the ratio ŵ2/ŵ1 =
−3j1(j5/2,1)/j5/2,1 = −j0(j5/2,1) � 0.0862. We set the amplitude ŵ1 = 1 in such a way
that the vertical velocity at the origin is positive, and the radial wavenumber k = −1 so
that at the inner vortex ω̃10 · ũ10 > 0 (positive polarization).

Since, in the steady state, streamlines coincide with particle trajectories, figure 1,
displaying three sets of streamlines, encapsulates the main kinematical characteristics of
this vortex. The vortex has, on the plane z = 0, a circular streamline of radius r̂0 (black
streamlines in figure 1), which is the first root of

j2(r̂0)

2
− j1(r̂0)

r̂0
+ j1(�0)

�0
− j2(�0)

3
= 0, (6.8)

and whose numerical solution is r̂0 � 2.957. The second root of (6.8) is j5/2,1. This radius
may be used to distinguish the inner core vortex from the outer vortex, both inside the
rotational part of the vortex. Fluid particles located, on the plane z = 0, beyond this radius
descend and approach the vortex vertical axis, at the same time as they rotate around the
vortex axis, while fluid particles located inside this radius ascend and separate from the
vortex axis, as represented by the orange and red streamlines in figure 1.

The long-term motion of a single fluid particle is inferred from longer integration
streamlines shown in figures 2 and 3. Because u · r̂ = ṙ, the maximum and minimum
distance separation of every fluid particle from the origin occur always on the plane z = 0.
The streamline starting at point (x0, y0, z0) = (−5, 0, 0) (figure 2) makes 13 loops, during
an integration time Δt = 1000, before getting close, not really coming back exactly, to its
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(a) (b)

Figure 1. Side (a) and top (b) views of different sets of streamlines. Black streamlines are a set of streamlines
starting on the line segment limited by the points {(−3, 0, 0), (−2.9, 0, 0)}, orange streamlines start on the
line {(−4, 0, 0), (−3, 0, 0)} and red streamlines start on the line {(−4.1, 0, 0), (−4, 0, 0)}. Black and red
streamlines are included to distinguish more clearly the orientation of the band of orange streamlines. Velocity
vectors, coloured according to their magnitude, on the vertical xz-plane are included.
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(a) (b)

Figure 2. (a) Top view of the xy-plane and (b) side view of the xz-plane of the streamline starting at the point
(x0, y0, z0) = (−5, 0, 0). Total integration time Δt = 1000. The colour scale, proportional to the integration
time, is used to help to identify the curve. The inner black bold circle has radius r̂0 � 2.957, while the outer
black circle is the vortex boundary radius r = j5/2,1 � 5.763.

starting position, while the streamline starting at point (x0, y0, z0) = (−5.6, 0, 0) (figure 3)
makes only 12 loops, but it takes a longer integration time Δt = 4900, before getting close
to its starting position. As we approach the limit (x0, y0, z0) → (j5/2,1, 0, 0) the projection
on the plane z = 0 of every streamline loop approaches a straight line. This vortex was
however unstable when integrated numerically and developed amplifying waves starting
at about t = 40 (see supplementary movie 1 available at https://doi.org/10.1017/jfm.
2022.73).
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Figure 3. As in figure 2 but for the streamline starting at the point (x0, y0, z0) = (−5.6, 0, 0). Total
integration time Δt = 4900.
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Figure 4. Velocity distribution at (a) t = 0 and (b) t = 260. The colour scale corresponds to the vertical
velocity w and contour values range from w = −0.36 to w = 0.09, contour w = 0 in black, with contour
interval Δw = 0.01.

This vorticity distribution is unstable in the sense that it does not remain steady
when, as initial condition, it is time integrated using the vorticity equation (1.1). In this
case there is no need to add additional small vorticity perturbations since deviations
caused by truncation errors associated with any finite and discrete numerical scheme
are enough to destabilize the vortex. These numerical errors can be considered as the
smallest perturbation possible in any discrete numerical algorithm. The growth of these
perturbations is not due, however, to numerical noise (such as grid-size noise) but is
associated with the physical instability of the solution. Improvement of the space and
time numerical resolutions only causes a slowdown of the growth of the numerical
perturbations but it does not prevent their development. The instability of similar Beltrami
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vortices with swirl has been investigated theoretically (Hattori & Hijiya 2010) and
numerically (Dritschel 1991).

As a second numerical example of a piecewise vortex we consider an unsteady vortex
with ŵ2 = 0, and boundary at the third zero kr = j3/2,3. Explicitly, the initial vorticity field
is given by

ω(r, θ, ϕ)

ŵ1k
=
⎧⎨
⎩

j1(kr)
kr

cos θ r̂ +
(

j2(kr)
2

− j1(kr)
kr

)
sin θ θ̂ − j1(kr)

kr
sin θ ϕ̂, kr ≤ j3/2,3,

0, j3/2,3 < kr.
(6.9)

Several vortex configurations like this one having several vorticity layers were numerically
integrated in an attempt to find stable vortices. The initial vertical velocity is ŵ1 =√

3/π � 0.98. Initially the vortex displaces downwards with rigid vorticity as expected
with the vertical velocity given, but it soon becomes unstable at about t = 250 (see figure 4
and supplementary movie 2). Similar initial conditions with one to three vorticity layers
resulted also in unstable flows. Instability starts at the first (inner) vorticity layer, and not
at the outer vorticity layers as occurs in 2-D LC dipoles with several vorticity layers. This
is consistent with the fact that even the most simple piecewise vortices with only one
vorticity layer were found to be unstable.

6.2. Piecewise vortices for modes � > 1
Piecewise vortices for modes � > 1 may be defined in a way similar to that used for mode
� = 1. However, the Ψ component w(r) = (kr)�/� of the non-Beltrami flow solutions
(4.9a–c) has no zeros, and therefore velocity continuity with the irrotational flow, which
has w̄ = 0, cannot be achieved. For the Beltrami flows in the general case, a simple solution
for the location of the vortex boundary is at the zeros of j�(x), that is, kr = j�+1/2,n = �n,
where the velocity components w�(�n/k) = u�(�n/k) = 0. On this boundary the velocity
has only a Ψ component and is given by

uk
�m(�n/k, θ, ϕ) = − j�+1(�n)

�(� + 1)
Ψ m

� (θ, ϕ), (6.10)

and the irrotational solutions (5.4a–c) can be used to assemble the piecewise vortex. In
this case the interior rotational vortex velocity is given explicitly by

uk
�m(r, θ, ϕ) = j�(kr)

kr
Y m

� (θ, ϕ) +
(

j�(kr)
�kr

− j�+1(kr)
�(� + 1)

)
Ψ m

� (θ, ϕ)

+ j�(kr)
�(� + 1)

Φm
� (θ, ϕ), kr ≤ j�+1/2,n, (6.11)

while the exterior irrotational vortex velocity is given by

uk
�m(r, θ, ϕ) = − j�+1(�n)

2� + 1

[((
kr
�n

)�−1

−
(

kr
�n

)−�−2
)

Y m
� (θ, ϕ)

+
(

1
�

(
kr
�n

)�−1

+ 1
� + 1

(
kr
�n

)−�−2
)
Ψ m

� (θ, ϕ)

]
, j�+1/2,n ≤ kr.

(6.12)
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Multipolar spherical and cylindrical vortices

Owing to (3.40), in these steady Beltrami flow solutions, the pressure p is given by
the kinetic energy p = −(1/2)u · u and is therefore continuous at the vortex boundary.
For vortices � > 1, the far-field irrotational velocity components grow as r�−1 and are
therefore unbounded. Also, for vortices � > 1, the irrotational far-field flow is not, due
to the exponent � − 1 in (6.12), a rigid motion. Thus, if this far field is subtracted from
the total flow so as to obtain unsteady solutions with vanishing far-field flow, the moving
vorticity field, unlike what happens in the vortex dipole where � = 1, will not remain rigid.

The initial behaviour of these � > 1 modes with vanishing far-field flow is similar
to that of their 2-D and 3-D quasi-geostrophic counterparts. In 2-D flows governed by
the material conservation of vertical vorticity ζ(ρ, ϕ, t), the Bessel–azimuthal modes
ζm(ρ, ϕ, 0) ≡ Jm(ρ) exp(imϕ), with m > 1 and truncated at ρ = jm,1, are unstable modes
in the sense that they represent m vortex dipoles moving away from the origin along
different directions separated by an angle 2π/m. In 3-D quasi-geostrophic geophysical
flows governed by the material conservation of potential vorticity anomaly �(r, θ, ϕ, t),
the spherical Bessel–harmonic modes ��,m(r, θ, ϕ, 0) ≡ j�(r)Ym

� (θ, ϕ), with � > 1 and
truncated at r = j�+1/2,1, are unstable modes in the sense that they represent � vortex
dipoles moving horizontally away from the origin along different directions or at different
depths. However, the importance of these unstable modes is that in the presence of more
stable modes � = 0 (the spherical mode) or � = 1 (the dipolar mode), and if the amplitudes
of the unstable modes are small enough so as to be considered as small perturbations
to the amplitudes of the stable modes, the total flow may be unsteady but stable. This
theoretical approach was used to explain the stable precession of baroclinic vortices in
geophysical flows (Viúdez 2020), which was interpreted as the horizontal and circular
advection by a large-amplitude background flow associated with the spherical mode
j0(r) of the small-amplitude zonal mode j2(r)Y0

2(θ) tilted by a small-amplitude mode
j2(r)Y1

2(θ, ϕ). The possibility that a similar behaviour might occur for the 3-D modes
(6.11) with vanishing far-field velocity is left for future research.

7. Vortices in cylindrical geometry

Having analysed in the previous sections multipolar vortices in spherical geometry, we
briefly analyse in this section a particular vortex solution in cylindrical geometry. The
purpose of this section is to provide the vortex dipole in 3-D cylindrical geometry
equivalent to the 2-D LC vortex dipole in planar polar geometry. Following an approach
similar to that in § 3 to obtain spherical vortex solutions to the steady vorticity equation, we
obtain the particular polarized solutions u±(ρ, z) for a steady vortex dipole in cylindrical
geometry given by

u±(ρ, z) ≡ u±
1 (ρ, z) + u±

2 (ρ),

u±
1 (ρ, z)

ŵ1
≡ J1(kρ) sin(mz)ρ̂ ±

√
κ2 + 1 J1(kρ) cos(mz)ϕ̂ + κJ0(kρ) cos(mz)ẑ,

u±
2 (ρ)

ŵ2
≡ ±

√
k2 + m2 ρ

2
ϕ̂ + ẑ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.1)

where
κ ≡ k/m (7.2)

is the ratio between the horizontal radial and vertical wavenumbers, and Jn(x) is the
Bessel function of the first kind and order n. The velocity solution u±

1 (ρ, z) is implicit
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A. Viúdez

in the recent work of Bělík et al. (2020). Solution (7.1) is the superposition of a radially
oscillating velocity field u±

1 (ρ, z) and a rigid motion u±
2 (ρ, z). These are cylindrical

counterparts to the corresponding spherical solutions (3.19). For simplicity we have
selected positive wavenumbers k, m > 0, and assumed the positive polarization solution
u+(ρ, z), so that henceforth we omit the superscript +. Unlike what happens with the
spherical vortex solutions, the cylindrical vortex (7.1), with m /= 0, does not admit an
azimuthal ϕ dependence based on the separation of cylindrical coordinate variables (see
Appendix C).

Vortex (7.1) has also a valid solution at the limit of vanishing radial wavenumber k → 0
given by the non-Beltrami flow with swirl

u±(ρ, z) = ĉ1
ρ

2
sin(mz)ρ̂ + (ĉ1 cos(mz) + ŵ2 m)

(
±ρ

2
ϕ̂ + ẑ

m

)
, (7.3)

where ĉ1 is an arbitrary constant. The vorticities of u1 and u2 are

ω1 ≡ ∇ × u1 =
√

k2 + m2 u1, ω2 ≡ ∇ × u2 =
√

k2 + m2 ŵ2ẑ, ω ≡ ω1 + ω2.
(7.4a–c)

Thus, as happens with the spherical vortex, u admits two superposable flow solutions, u1
is a Trkalian flow and u2 is a rigid motion, satisfying the steady-state vorticity equation
∇uω − ∇ω u = 0.

In cylindrical coordinates it is easy to analyse vorticity distributions displacing rigidly,
regardless of their stability, along the ẑ-axis. Since (7.1) is a steady-state solution, the
unsteady velocity field ũ(ρ, z, t), defined through a Galilean transformation

ũ(ρ, z, t) ≡ ũ1(ρ, z, t) + u2(ρ) + ŵ0ẑ, where ũ1(ρ, z, t) ≡ u1(ρ, z − ŵ0t), (7.5)

which is just a rigid translation of (7.1) along the ẑ-axis with an arbitrary constant vertical
speed ŵ0, is an unsteady solution satisfying the vorticity equation (1.1). The velocity
ũ(ρ, z, t) and the vorticity ω̃(ρ, z, t) are steady for an observer moving with velocity w0ẑ,
that is,

∂ũ
∂t

+ ŵ0ẑ · ∇ũ = 0,
∂ω̃

∂t
+ ŵ0ẑ · ∇ω̃ = 0. (7.6a,b)

In this non-steady case, the pressure field p(ρ, z, t), such that a = −∇p, is given by

p(ρ, z, t) = − ŵ2
1

4m2 {J1(kρ)2[k2 cos(2 m(z − ŵ0t)) + k2 + 2m2]

+ k2[2J0(kρ)2 cos2(m(z − ŵ0t)) − 1]}

+ ŵ2
2

8
ρ2(k2 + m2) − ŵ1ŵ2

k
m

J0(kρ) cos(m(z − ŵ0t)), (7.7)

and has three contributions, namely, one contribution due to the u±
1 flow alone, another

contribution due to the u±
2 flow alone and the contribution due to their interaction.

Since

∇2ũ = ∇2ũ1 = −(k2 + m2)ũ1, ∇2ω̃ = ∇2ω̃1 = −(k2 + m2)ω̃1, (7.8a,b)

the unsteady velocity field ũ1, and hence ũ, and therefore ω̃, satisfy the wave equations

1
c2

0

∂2ũ
∂t2

− ∇2ũ = 0,
1
c2

0

∂2ω̃

∂t2
− ∇2ω̃ = 0, (7.9a,b)
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Multipolar spherical and cylindrical vortices

where the phase velocity squared is

c2
0 ≡ ŵ2

0
κ2 + 1

. (7.10)

Thus, due to the slope of the velocity and vorticity vectors with respect to the direction
of displacement (ẑ-axis), the phase velocity c0, which is the velocity observable from the
changes of ũ and ω̃, differs from ŵ0. We note that the squared phase velocity c2

0 ≤ ŵ2
0.

The fact that both ũ and ω̃ satisfy the wave equations (7.9a,b), as well as the existence
of the circularly polarized solutions, makes it appealing to find an analogy between
the propagation of these fluid vortices and the propagation of electromagnetic waves in
vacuum. This analogy is explained in see Appendix D.

In the case k = 0 the pressure field p(ρ, z, t), such that a = −∇p, is given by

p(ρ, z, t) = − c1

4m2 [c1 cos(2 m(z − ŵ0t)) + 4 mŵ2 cos(m(z − ŵ0t))]

− ρ2

8
(c1 − mŵ2)(c1 + mŵ2), (7.11)

implying the acceleration

a = ρ

4
(ĉ1 − mŵ2)(ĉ1 + mŵ2)ρ̂

− ĉ1

m
sin(m(z − ŵ0t))[ĉ1 cos(m(z − ŵ0t)) + mŵ2]ẑ, (7.12)

which also satisfies the wave equation with a phase velocity ŵ0. In this case p(ρ, z, t)
satisfies the relation

∂2p
∂t2

− ŵ2
0∇2p = ŵ2

0
2

(ĉ1 − mŵ2)(ĉ1 + mŵ2). (7.13)

Therefore, when the amplitudes ĉ1 and ŵ2, and the vertical wavenumber m, satisfy the
relation ĉ1 = ±mŵ2, the pressure p(ρ, z, t) = p(z, t) (7.11) of this isochoric flow does not
depend on ρ, and also satisfies a wave equation with phase velocity ŵ0, which is identical
to the acoustic wave equation satisfied by the acoustic pressure with a sound speed ŵ0 in
compressible fluids.

The azimuthal acceleration vanishes, ã · ϕ̂ = 0, and fluid particles conserve the vertical
component of angular momentum, L̃ · ẑ = ((ρρ̂ + zẑ) × ũ) · ẑ = ρũ · ϕ̂, that is

d
dt

(ρũ · ϕ̂) = 0. (7.14)

For the steady vortex (ŵ0 = 0), the surfaces Lz(ρ, z) ≡ L̃ · ẑ = const. are torus-like
surfaces (figure 5a) with a major radius on the horizontal plane z = 0 at ρ = ρ0 where
the velocity is only azimuthal and therefore satisfies the equation

ŵ1κJ0(kρ0) + ŵ2 = 0. (7.15)

In the case ŵ2 = 0 the major radius is ρ0 = j0,1/k. It has been found numerically, in
the simple vortex with ŵ0 = ŵ2 = 0 (streamlines are also vortex lines) and k = m = 1,
that the vortex streamlines may be divided into two spatial domains separated by the
streamline surface of constant vertical angular momentum Lz(ρ, z) ≡ ρũ · ϕ̂ � 0.71641.
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Figure 5. (a) Cross-section of the vertical angular momentum Lz(ρ, z) for the vortex with ŵ2 = ŵ0 = 0,
ŵ1 = 1, k = m = 1, that is, Lz(ρ, z) = √

2ρJ1(ρ) cos(z). The dot indicates the major radius ρ0 = j0,1 � 2.40
and the red line is the contour Lz(ρ, z) � 0.71641. (b) 3-D view of the streamlines on the surface Lz(ρ, z) �
0.71641. Two streamline ribbons are highlighted in red and blue in order to shown the linking number 2.
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Figure 6. Top (a) and side (b) views of two streamlines with vertical angular momentum Lz � 0.71641 (case
w0 = ŵ2 = 0). The dashed circles are the intersection of the torus-like isosurface of constant vertical angular
momentum Lz(ρ, z) = √

2J1(ρ) cos z � 0.71641 with the horizontal plane z = 0. The thin outer circle has the
radius ρ = j1,1, while the thick inner circle is the radius of horizontal motion. The colour scale indicates
integration time.

On this torus-like streamline surface (figure 5b) all streamlines return to their origin after
a Δϕ = 2π revolution, or, in other words, they reach their maximum distance to the
origin after a circular sector Δϕ = π (figure 6). Streamlines inside this surface reach their
maximum distance at Δϕ > π and do not close at Δϕ = 2π (figure 7), while streamlines
outside this surface reach their maximum distance at Δϕ < π and therefore do not close
either (figure 8). It seems therefore that pairs of streamlines on this torus-like surface
Lz(ρ, z) � 0.71641 form links of linking number 2.

8. Concluding remarks

This work has provided multipolar spherical and dipolar cylindrical vortex solutions to
the 3-D vorticity equation. It shows a clear link between the 2-D Lamb–Chaplygin (LC)
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Figure 7. As in figure 6 but for a streamline starting at (ρ0, ϕ0, z0) = (3.3, π, 0), that is, with vertical angular
momentum Lz(ρ0, 0) = √

2ρ0J0(ρ0) � 1.03.
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Figure 8. As in figure 6 but for a streamline starting at (ρ0, ϕ0, z0) = (3.7, π, 0), that is, with vertical angular
momentum Lz(ρ0, 0) = √

2ρ0J0(ρ0) � 0.282.

dipole on the one hand and the 3-D Hill’s spherical vortex, Hicks–Moffatt swirling vortex
and a dipolar cylindrical vortex on the other. In the set of multipolar vortex solutions, the
Hicks–Moffatt swirling vortex is categorized as a vortex of degree � = 1 and therefore
as a dipole, becoming the 3-D dipole in spherical geometry equivalent to the 2-D LC
dipole in polar geometry. The 3-D dipole solution satisfying the vorticity equation, either
in spherical or cylindrical geometries, admits two linearly superposable solutions. The first
one is a Trkalian flow and the second one is a rigid motion which may be interpreted as the
family of rigid motions that leave invariant the steadiness condition of the total vorticity
field.

The higher � > 1 multipolar vortices found are either vortices with vanishing helicity or
Trkalian flow vortices. All the multipolar Trkalian flows admit two circular polarizations
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given by the sign of the wavenumber k. It has also been found that piecewise vortex
solutions, consisting of interior rotational and exterior potential flow domains, satisfying
velocity continuity conditions at the vortex boundary, are possible in the general multipolar
Trkalian spherical vortex.

The issue of vortex stability seems to be now an important problem to face. Preliminary,
and in the parametric space of vortex solutions very limited, numerical results show
that the piecewise swirling dipoles become unstable. However, it might be possible that
superpositions of vortex modes, such as those used to stabilize 2-D finite-energy Bessel
vortices with zero amount of vorticity (Viúdez 2021), may lead to stable 3-D vortices. This
line of research is left for future work.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.73.
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Appendix A. Vector spherical harmonics

We follow Barrera, Estevez & Giraldo (1985) in their definition of the vector spherical
harmonics basis,

Y m
� (θ, ϕ) ≡ Ym

� (θ, ϕ)r̂, (A1a)

Ψ m
� (θ, ϕ) ≡ r∇Ym

� (θ, ϕ), (A1b)

Φm
� (θ, ϕ) ≡ r × ∇Ym

� (θ, ϕ), (A1c)

where Ym
� (θ, ϕ) are the usual scalar spherical harmonic functions of degree � and order

m. For any function f (r) we reproduce the following properties associated with the
divergence,

∇ · ( f (r)Y m
� ) =

(
f ′(r) + 2

r
f (r)

)
Ym

� , (A2a)

∇ · ( f (r)Ψ m
� ) =

(
−�(� + 1)

f (r)
r

)
Ym

� , (A2b)

∇ · ( f (r)Φm
� ) = 0, (A2c)

rotational,

∇ × ( f (r)Y m
� ) = − f (r)

r
Φm

� , (A3a)

∇ × ( f (r)Ψ m
� ) =

(
f ′(r) + f (r)

r

)
Φm

� , (A3b)

∇ × ( f (r)Φm
� ) = −�(� + 1)

f (r)
r

Y m
� −

(
f ′(r) + f (r)

r

)
Ψ m

� , (A3c)
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and Laplacian,

r2∇2( f (r)Y m
� ) = ∂

∂r

(
r2 ∂f

∂r

)
Y m

� + f (r)[−(2 + �(� + 1))Y m
� + 2Ψ m

� ], (A4a)

r2∇2( f (r)Ψ m
� ) = ∂

∂r

(
r2 ∂f

∂r

)
Ψ m

� + f (r)[2�(� + 1)Y m
� − �(� + 1)Ψ m

� ], (A4b)

r2∇2( f (r)Φm
� ) = ∂

∂r

(
r2 ∂f

∂r

)
Φm

� − f (r)�(� + 1)Φm
� . (A4c)

Appendix B. Interpretation of (3.19) in terms of changes of reference frames

The most general change of frame is given by

x∗ = y(t) + Q(t)(x − x0), (B1)

which describes a change from the unstarred frame to the starred one (e.g. Truesdell &
Rajagopal 2000). Here Q(t) is a time-dependent orthogonal tensor representing a rotation
or a reflection, y(t) is a time-dependent point representing a change of origin (translation)
and x0 is a fixed point. The time derivative of (B1) is

u∗(x∗, t) = Q(t)u(x, t) + ẏ(t) + A(t)(x∗ − y(t)), (B2)

where A ≡ Q̇QT is the angular velocity or spin of the starred frame with respect to the
unstarred one. Relations (B1) and (B2) are used next to interpret (3.19) in terms of a
change of reference frame.

The steady velocity solution u1(r, θ) in (3.19) relative to the cylindrical basis vectors is

ū1(ρ, ϕ, z) = 3ŵ1

[
ρz
2r2 j2(kr)ρ̂ − ρ

2r
j1(kr)ϕ̂ +

(
j1(kr)

kr
− ρ2

2r2 j2(kr)
)

ẑ
]

, (B3)

where, to simplify the notation, we use r = r(ρ, z) = (ρ2 + z2)1/2, and the azimuthal
variable ϕ is included only for convenience since all the field solutions here are
independent of ϕ. In terms of the cylindrical components, the total steady velocity solution
u1 + u2 (3.19) is therefore

ū(ρ, ϕ, z) = ū1(ρ, ϕ, z) + ū2(ρ) = ū1(ρ, ϕ, z) + ŵ2

(
−kρ

2
ϕ̂ + ẑ

)
. (B4)

Now we define a new solution as a vertical displacement with constant velocity of
ū1(ρ, ϕ, z) plus a constant velocity

ũ1(ρ, ϕ, z, t) ≡ ū1(ρ, ϕ, z − ŵ2t) + ŵ2ẑ, (B5)

which can also be interpreted as the velocity field ū1(ρ, ϕ, z) relative to an inertial
reference frame moving with constant velocity −ŵ2ẑ relative to the frame in which
ū1 is steady (that is, relations (B1) and (B2) for Q = ρ̂ ⊗ ρ̂ + ϕ̂ ⊗ ϕ̂ + ẑ ⊗ ẑ, A = 0,
y(t) = ŵ2tẑ, z∗ = z + ŵ2t and {ρ̂∗, ϕ̂∗, ẑ∗} = {ρ̂, ϕ̂, ẑ}). Obviously, in the inertial frame in
which u1(ρ, ϕ, z) is steady, the velocity field ũ1(ρ, ϕ, z, t) is neither steady (∂ũ1/∂t /= 0)
nor its Lamb vector l̃ ≡ (∇ × ũ) × ũ is irrotational (∇ × l̃ /= 0), but ũ1(ρ, ϕ, z, t) satisfies
the vorticity equation (1.1) since this is valid in all inertial frames of reference.
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A. Viúdez

Now define, in a similar way, a new velocity field û(ρ, θ, z, t) as a rotation with constant
angular velocity, plus a vertical displacement with constant vertical velocity, of ū1(ρ, ϕ, z),
that is

û(ρ, ϕ, z, t) ≡ ū1(ρ, ϕ + (ŵ2k/2)t, z − ŵ2t) + ŵ2

(
−kρ

2
ϕ̂ + ẑ

)

= ū1(ρ, ϕ, z − ŵ2t) + ŵ2

(
−kρ

2
ϕ̂ + ẑ

)
= ū(ρ, ϕ, z − ŵ2t), (B6)

where the rigid velocity field ū2(ρ) = ŵ2(−(kρ/2)ϕ̂ + ẑ) is included to make
û(ρ, θ, z, t) consistent with its interpretation as the transformation of ū1(ρ, ϕ, z) from
an inertial to a non-inertial reference frame moving with velocity −ū2(ρ) relative
to the inertial frame. In this case the rotation tensor Q(t) in (B1) is of the form
Q(t) = cos(ωt)(ρ̂ ⊗ ρ̂ + ϕ̂ ⊗ ϕ̂) − sin(ωt)(ρ̂ ⊗ ϕ̂ − ϕ̂ ⊗ ρ̂) + ẑ ⊗ ẑ, with ω ≡ −ŵ2k/2,
so that the angular velocity A ≡ Q̇QT in (B1) is constant, A = ω(ϕ̂ ⊗ ρ̂ − ρ̂ ⊗ ϕ̂). We
note that û(ρ, ϕ, z, t) (the velocity ū1 in the non-inertial reference frame) differs, due to
its dependence on z, from ū(ρ, ϕ, z), so that the velocity ū is not the velocity ū1 observed
in the non-inertial reference frame, that is, the velocity fields ū1 and ū do not satisfy
the velocity transformation (B2). The total velocity solution ū(ρ, ϕ, z) may, however,
be interpreted as the velocity ū1(ρ, ϕ, z + ŵ2t) transformed to the non-inertial reference
frame.

Since the Lamb vector of ū(ρ, ϕ, z) is irrotational, the Lamb vector of û(ρ, ϕ, z, t) is
irrotational as well (∇ × ((∇ × û) × û) = 0). However, û(ρ, ϕ, z, t) is not steady, a fact
that does not contradict the vorticity equation (1.1) since this is valid only in inertial
reference frames and the velocity field û(ρ, ϕ, z, t) does not have to satisfy it. Equation
(B6) states that there is a family of observers, or reference frames, parametrized by the
amplitude ŵ2, relative to which the Lamb vector l1 of the velocity field u1 is irrotational.
Relative to these reference frames, the velocity field would seem to displace vertically as
ū(ρ, ϕ, z − ŵ2t) with a speed ŵ2. Only the observer with ŵ2 = 0 would measure a steady
velocity field, and therefore verify that the vorticity equation (1.1) is satisfied, and hence
conclude that the observer rests in an inertial frame of reference.

Appendix C. Azimuthal dependence of (7.1)

We consider the cylindrical components of the solution (7.1), assuming m /= 0, multiplied
by three unknown functions with only azimuthal dependence { f (ϕ), g(ϕ), h(ϕ)},

u1(ρ, ϕ, z) ≡ J1(kρ) sin(mz) f (ϕ)ρ̂ +
√

κ2 + 1 J1(kρ) cos(mz)g(ϕ)ϕ̂

+ κJ0(kρ) cos(mz)h(ϕ)ẑ. (C1)

The isochoric condition ∇ · u1 = 0 implies that f (ϕ) = h(ϕ) and g(ϕ) = ĝ0, a constant.
Then the steady vorticity condition ∇ × (ω1 × u1) = 0 implies f (ϕ) = ±ĝ0.

Appendix D. The electromagnetic wave analogy

We consider in this appendix a cylindrical vortex field with velocity ũ(ρ, z, t) given by
(7.5) moving rigidly along the ẑ-axis with displacement velocity ŵ0k̂, which is a solution
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Multipolar spherical and cylindrical vortices

to the vorticity equation (1.1). Defining the time-dependent fields

E ≡ 1
c

∂ũ
∂t

and B ≡ −∇ × ũ = −ω̃, (D1a,b)

where c is a constant, in principle independent of the phase velocity c0 (7.10), we
immediately see that E and B, are divergenceless and therefore satisfy Gauss’s laws for
the magnetic (∇ · B = 0) and electric (∇ · E = 0) fields in the absence of electric charges.
The definitions (D 1) are particular expressions of the electric field E = −∇φ − c−1∂A/∂t
and the magnetic field B = ∇ × A in terms of the electrical potential φ = 0 and
vector potential A = −ũ, which obviously satisfy the Lorenz gauge condition, ∇ · A +
c−1∂φ/∂t = 0. Fields E and B, in the Gaussian units convention, also satisfy Faraday’s
law of induction, ∇ × E + c−1∂B/∂t = 0. If the current density J is defined as

− 4π

c
J ≡

(
k2 + m2

(
1 − ŵ2

0
c2

))
ũ1, (D2)

then Ampère’s law,

∇ × B − 1
c

(
4πJ + ∂E

∂t

)
= 0, (D3)

is also satisfied. We note that, though the current density J /= 0, there is no charge density
since ∇ · J = 0. The fact that, up to this stage of the electromagnetic wave analogy, the
constant c is arbitrary may be more clearly understood by noticing that (D3) may be written
as the sum of two vanishing terms,

− ∇ × ω̃1 + (k2 + m2)ũ1 − 1
c2

(
m2w̃2

0ũ1 + ∂2ũ1

∂t2

)
= 0, (D4)

so that the constant c may take any constant value, except zero. The fulfilment of the
Maxwell equations in the absence of charge density does not suffice to obtain wave
equations for the electric and magnetic fields. The additional constraint that the density
current vanishes, J = 0, must be assumed in (D2), or equivalently set c = c0 in the
definition of E in (D 1). If this is done, then

c2 = ŵ2
0

κ2 + 1
, (D5)

which is the same phase velocity c0 (7.10). Therefore, in this case, both E and B, as defined
by (D 1), satisfy the wave equation with a phase velocity c,

1
c2

∂2E
∂t2

− ∇2E = 0,
1
c2

∂2B
∂t2

− ∇2B = 0, (D6a,b)

which are the Maxwell equations for electromagnetic waves in vacuum.
The phase velocity c in (D5) depends on κ and ŵ0; however, the presence in (D2) of the

Lorentz factor

γ ≡ 1√
1 − ŵ2

0/c2
(D7)

in the form k2 + m2/γ 2, though here due to (D5) we have c2 ≤ ŵ2
0, suggests that a constant

phase velocity may be obtained after assuming a particular dependence between ŵ0 and the
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A. Viúdez

wavenumber ratio m/k. In order to justify that dependence on physical grounds, and since a
Galilean transformation, such as that assumed in (7.5), does not modify the wavenumbers,
we may instead assume that the time-dependent velocity field ũ is not obtained by a simple
Galilean transformation of the steady velocity field u in (7.1), but that it corresponds
to a finite-size velocity distribution translating rigidly with velocity ŵ0ẑ relative to an
inertial reference frame in which the far-field velocity vanishes. A limit for the speed of
displacement of finite-size dipoles in an inertial reference frame is not unphysical. For
example, 3-D Bessel dipoles translating rigidly with constant speed of displacement in
non-hydrostatic rotating and stably stratified geophysical flows generate spontaneously,
when their speed of displacement increases (which depends on their potential vorticity
amplitude), a wavepacket of inertia-gravity waves that comoves with the dipoles but
opposes their motion, therefore imposing a limit for their maximum speed of displacement
(Viúdez 2007). To obtain a constant phase speed c, it suffices to assume that the speed ŵ0
depends on the ratio between wavenumbers m and k:

ŵ2
0

c2 = 1 + k2

m2 . (D8)

This dependence immediately implies J = 0 in (D2) and a constant phase speed c.
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