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Abstract

For any integer m , 0, we prove that f (x) = x9 + 9mx6 + 192m3 is irreducible over Q and that the Galois
group of f (x) over Q is the dihedral group of order 18. Moreover, we show that for infinitely many values
of m, the splitting fields for f (x) are distinct.
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1. Introduction

Unless stated otherwise, when we say a polynomial is irreducible or reducible, we
mean over Q, the rational numbers. In 1892, using his irreducibility theorem, Hilbert
showed that there exist infinitely many irreducible polynomials with Galois group G
for each G ∈ {S n, An}, where S n and An denote the symmetric and alternating groups
of order n, respectively. Since then, many authors have used additional techniques,
such as resolvents, class field theory, elliptic curves, factorisation over quadratic fields
and factorisation modulo a prime, to obtain similar results for other groups (see, for
example, [2, 5–7, 9–11]). In particular, Williamson [11] used a combination of such
methods to prove that there exist infinitely many t ∈ Q such that the polynomial

x9 − tx8 + (−4t + 378)x7 + (68t + 6804)x6 + (288t + 33048)x5 + (−1008t + 50544)x4

+ (−5184t + 7776)x3 + (−5184t + 139968)x2 + 279936x + 186624

has Galois group D9, the dihedral group of order 18. In this paper, using only
two theorems of Capelli and their generalisations due to Rédei, we find an explicit
infinite family of irreducible ninth degree polynomials having Galois group D9. More
precisely, we prove the following theorem.
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Theorem 1.1. Let m , 0 be an integer, and let

f (x) = x9 + 9mx6 + 192m3.

Then f (x) is irreducible and Gal( f ) ' D9, where Gal( f ) is the Galois group of f (x)
and D9 is the dihedral group of order 18. Moreover, there exist infinitely many values
of m such that the splitting fields of f (x) are distinct.

2. Preliminaries

Throughout this paper, ∆( f ) denotes the discriminant over Q of the polynomial
f (x) and, if f (x) is irreducible, Gal( f ) denotes its Galois group. We now present some
results of Capelli, without proof, that are needed to establish Theorem 1.1.

Theorem 2.1. Let K be a field and let g(x), h(x) ∈ K[x] with g(x) irreducible over K.
Suppose that g(α) = 0. Then g(h(x)) is reducible over K if and only if h(x) − α is
reducible over K(α). Furthermore, if

h(x) − α = c1u1(x)e1 · · · uk(x)ek ,

where c1 ∈ K(α) and the u j(x) are distinct monic irreducible polynomials in K(α)[x],
then

g(h(x)) = c2N(u1(x))e1 · · · N(uk(x))ek ,

where c2 ∈ Q and the norms N(u j(x)) are distinct monic irreducible polynomials in
K[x].

Theorem 2.2. Let K be a field and let n ≥ 2 be an integer. Let α ∈ K. Then xn − α is
reducible over K if and only if either there is a prime p dividing n such that α = βp for
some β ∈ K, or 4 | n and α = −4β4 for some β ∈ K.

Remark 2.3. When K ⊂ C, Theorems 2.1 and 2.2 are due to Capelli. Rédei extended
Theorem 2.2 to fields of positive characteristic, and also Theorem 2.1 to fields of
positive characteristic when g(x) is separable. Schinzel extended Theorem 2.1 further
to include the case when g(x) is purely inseparable. For more details, and a proof of
the general version of Theorem 2.1, see [8].

We also require the following well-known facts.

Theorem 2.4 [4]. Suppose that deg( f (x)) = n. If f (x) is irreducible, then Gal( f ) is
isomorphic to a subgroup of the alternating group An if and only if

√
∆( f ) ∈ Z.

Theorem 2.5 [1]. Let f (x) ∈ Z[x] be monic of degree n and let Gal( f ) be the Galois
group of f (x) over Q. Let p be a prime such that ∆( f ) . 0 (mod p). If f (x) factors
in Fp[x] as a product of irreducible factors of degrees n1, n2, . . . , nt, then Gal( f ), when
viewed as isomorphic to a subgroup of the symmetric group S n, contains a permutation
σ1σ2 · · ·σt, where σi is a cycle of length ni.

Remark 2.6. Theorem 2.5 is due to Dedekind.
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3. The Proof of Theorem 1.1

Proof of Theorem 1.1. Let m , 0 be an integer and define the polynomials:

h1(x) := x2

h2(x) := x3

g(x) := x3 + 9mx2 + 192m3

G1(x) := x3 + 486m2x2 + 121257m4x + 995328m6

f (x) := g(h2(x)) = x9 + 9mx6 + 192m3

G(x) := G1(h1(x)) = x6 + 486m2x4 + 121257m4x2 + 995328m6

F(x) := G(h2(x)) = x18 + 486m2x12 + 121257m4x6 + 995328m6.

We claim that the polynomials g(x), G1(x), f (x), G(x) and F(x) are all irreducible.
Although the arguments are similar, we provide at least a sketch of the details in each
case.

Consider first g(x) = x3 + 9mx2 + 192m3. Since

∆(g) = −283552m6 < 0,

if follows that g(x) has exactly one real zero. An easy computation in Maple shows
that this zero is

(−3 · 32/3 − 31/3 − 3)m < Z.

Hence, g(x) is irreducible.
Similarly, since

∆(G1) = −21031356112m12 < 0,

we conclude that G1(x) has exactly one real zero

3(35 · 32/3 − 15 · 31/3 − 54)m2 < Z,

so that G1(x) is irreducible.
To establish the irreducibility of f (x), G(x) and F(x), the strategy is the same in each

of these cases. We assume reducibility and achieve a contradiction using Theorems 2.1
and 2.2.

Suppose that f (x) is reducible and g(α) = 0. Then

f (x) = N(x − β) · N(x2 + βx + β2),

where α = β3 for some β ∈ Q(α), andN(x − β) ∈ Z[x] andN(x2 + βx + β2) ∈ Z[x] have
respective degrees of three and six. Let n0 be the constant term of N(x − β). If β2, β3
are the conjugates of β := β1 and α2, α3 are the conjugates of α := α1, it follows that

n0 = −β1β2β3 = −α1/3
1 α1/3

2 α1/3
3 = −(α1α2α3)1/3 = −(−192m3)1/3 < Z,

which contradicts the fact that n0 ∈ Z. Thus, f (x) is irreducible.
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Suppose that G(x) is reducible and that G1(α) = 0. Arguing as before,

G(x) = N(x − β) · N(x + β),

where α = β2 for some β ∈ Q(α), and N(x − β) ∈ Z[x], N(x − β) ∈ Z[x] both have
degree three. Let n0 be the constant term of N(x − β). Then, calculating n0 as before,
we arrive at the contradiction

n0 = −(−192m3)1/3 < Z.

Hence, G(x) is irreducible.
Finally, suppose that F(x) is reducible and that G(α) = 0. Then

F(x) = N(x − β) · N(x2 + βx + β2),

where α = β3 for some β ∈ Q(α) and N(x − β) and N(x2 + βx + β2) are monic
polynomials in Z[x] of respective degrees six and 12. If n0 is the constant term of
N(x − β), we arrive at the contradiction

n0 = −(−995328m6)1/3 < Z

since 995328 = 21235. Therefore, F(x) is irreducible.
Let L be the splitting field of f (x) over Q. By Descartes’ rule of signs, f (x) has

exactly one real zero θ. Clearly, Q(θ) ⊂ L and, since f (x) is irreducible, [Q (θ) : Q] = 9.
But Q(θ) ⊂ R, so Q(θ) , L and thus [L : Q] ≥ 18. Let θ1, θ2, . . . , θ9 be the zeros of
f (x) and let γ be such that F(γ) = 0. Then, using a computer algebra system, it is
straightforward to check that

θ1 =
γ16 + 60mγ13 + 234m2γ10 + 31860m3γ7 − 145611m4γ4 + 6713280m5γ

5702400m5

θ2 =
9γ16 + 32mγ13 + 4086m2γ10 + 23328m3γ7 + 1039761m4γ4 + 5272128m5γ

3801600m5

θ3 =
−17γ16 + 60mγ13 − 7938m2γ10 + 31860m3γ7 − 1908333m4γ4 + 3862080m5γ

5702400m5

θ4 =
2γ16 + 963m2γ10 + 256743m4γ4 − 356400m5γ

712800m5

θ5 =
−γ16 − 454m2γ10 − 115529m4γ4

211200m5

θ6 =
9γ16 − 32mγ13 + 4086m2γ10 − 23328m3γ7 + 1039761m4γ4 − 5272128m5γ

3801600m5

θ7 =
2γ16 + 963m2γ10 + 256743m4γ4 + 356400m5γ

712800m5

θ8 =
−17γ16 − 60mγ13 − 7938m2γ10 − 31860m3γ7 − 1908333m4γ4 − 3862080m5γ

5702400m5

θ9 =
γ16 − 60mγ13 + 234m2γ10 − 31860m3γ7 − 145611m4γ4 − 6713280m5γ

5702400m5 .
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Thus, L ⊆ Q (γ). Since F(x) is irreducible,
[
Q (γ) : Q

]
= 18, which implies that

[L : Q] ≤ 18. Hence, [L : Q] = 18 and L = Q (γ). Since

∆( f ) = 23632656m24,

it follows from Theorem 2.4 that

Gal( f ) ' Z9 o Z2 ' D9 or Gal( f ) ' (Z3 × Z3) o Z2,

because D9 and (Z3 × Z3) o Z2 are the only transitive subgroups of A9 of order 18
[3]. To see that Gal( f ) ' D9, let p be a prime such that ∆( f ) . 0 (mod p) and
y3 ≡ 3 (mod p) has no solutions. Suppose that f (x) is reducible over Fp. Then, by
Theorems 2.1 and 2.2, we argue as before to deduce that

−(−192m6)1/3 = 2231/3m2 ∈ Fp,

which contradicts the fact that 3 is not a cube in Fp. Hence, f (x) is irreducible over
Fp and thus, by Theorem 2.5, we conclude that Gal( f ) contains an element of order 9.
Since (Z3 × Z3) o Z2 contains no element of order 9, it follows that Gal( f ) ' D9.

We now show that there exist infinitely many values of m for which the splitting
fields of f (x) are distinct. Let p , q be primes, and let

fp(x) = x9 + 9px6 + 192p3 and fq(x) = x9 + 9qx6 + 192q3,

with respective splitting fields Lp and Lq. Let r = −(35/3 + 31/3 + 3). As we have seen,

gp(pr) = 0 = gq(qr).

Thus,
fp(p1/3r1/3) = 0 = fq(q1/3r1/3),

since fp(x) = gp(x3) and fq(x) = gq(x3). Suppose that Lp = Lq. Then

M := Q(r, (p/q)1/3) ⊂ Lp,

where M is a totally real field with [M : Q] = 9. Since Lp contains a unique totally real
subfield of degree nine, it follows that

Q(p1/3r1/3) = M = Q(q1/3r1/3).

Since Gal( f ) ' D9, we know that M contains a unique subfield K with [K : Q] = 3.
Consequently,

Q((p/q)1/3) = Q(r) = Q(31/3).

Therefore, there exist c1, c2, c3 ∈ Q such that

(p/q)1/3 = c1 + c231/3 + c332/3. (3.1)

Raising both sides of (3.1) to the third power and equating coefficients, we get the
system of equations

3c2
1c2 + 9c1c2

3 + 9c2
2c3 = 0

3c2
1c3 + 3c1c2

2 + 9c2c2
3 = 0

c3
1 + 18c1c2c3 + 3c3

2 + 9c3
3 = p/q,
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to which Maple provides the three solutions:

{c2 = 0, c3 = c3, p = 9c3
3q, c1 = 0, q = q},

{c3 = 0, c2 = c2, p = 3c3
2q, c1 = 0, q = q},

{p = c3
1q, c2 = 0, c3 = 0, q = q, c1 = c1}.

Each of these possibilities results in a contradiction. For example, consider the second
solution and let c2 = u/v, where u, v ∈ Z with gcd(u, v) = 1. Then

pv3 = 3u3q.

If p = 3, then q1/3 = v/u ∈ Q, which is impossible. If p , 3, then u = pu1, for some
u1 ∈ Z, so that

v3 = 3p2u3
1q,

which implies that (3p2q)1/3 = v/u1 ∈ Q, another contradiction. The other possibilities
can be handled in a similar manner. Hence, Lp , Lq, and the proof is complete. �
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