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TWO-WEIGHTED INEQUALITIES FOR THE

DERIVATIVES OF HOLOMORPHIC FUNCTIONS AND

CARLESON MEASURES ON THE UNIT BALL

HYEONBAE KANG and HYUNGWOON KOO

Abstract. We characterize those positive measure µ’s on the higher dimen-
sional unit ball such that “two-weighted inequalities” hold for holomorphic
functions and their derivatives. Characterizations are given in terms of the
Carleson measure conditions. The results of this paper also distinguish between
the fractional and the tangential derivatives.

§1. Introduction and statements of results

Let U be the open unit disc in C with the boundary ∂U . In relation to

the embedding of Hardy spaces into various Sobolev spaces of holomorphic

functions, the following problem has been extensively studied and com-

pletely resolved [C], [D], [L1], [L2], [Sh1], [Sh2]: Characterize those positive

measures µ on U such that the inequality

(∫

U
|f (k)(z)|q dµ(z)

)1/q

. ‖f‖Hp for any f ∈ Hp(1.1)

holds. Such characterizations of the measure µ are given in terms of the

Carleson measure type criterion: If either p = q ≥ 2 or 0 < p < q < ∞,

then the inequality (1.1) holds if and only if

µ(Î) . `(I)(1+kp)q/p(1.2)

for any arc I ⊂ ∂U . Here Î is the tent over I, i.e.,

Î = {reiθ : |1 − l(I)/2| ≤ r < 1, eiθ ∈ I}
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and l(I) denotes the length of I. In the other cases, namely, 0 < p = q <

2 or 0 < q < p, the characterization is given in terms of the so-called

“balayées” [L2].

This paper is concerned with the problem of characterizing those µ’s

such that the two-weighted inequality holds, namely,

(∫

U
|f (k)(z)|q dµ(z)

)1/q

. ‖f‖Hp(ω) for any f ∈ Hp(ω)(1.3)

where ω is an Ap-weight of Muckenhoupt and Hp(ω) is the Hardy space

weighted by ω. As far as we are aware of, [G] was the first paper where this

problem was considered. If k = 0 and either p = q ≥ 2 or 1 < p < q < ∞,

Gu showed that the inequality (1.3) holds if and only if

µ(Î) . ω(I)q/p(1.4)

for any arc I ⊂ ∂U . Here ω(I) =
∫
I dω. When k ≥ 1, only partial results are

known. Girela, Lorente, and Sarrion found a necessary condition for (1.3)

to hold when p = q ≥ 1. When p = q ≥ 2, they also found a sufficient

condition for (1.3) to hold when ω(θ) = |θ|α (−1 < α < p − 1) which is an

Ap-weight on ∂U [GLS].

In this paper we give a complete characterization of a positive measure

µ such that the inequality (1.3) holds when k ≥ 0 and either p = q ≥ 2 or

1 < p < q < ∞. Moreover we consider the problem on the higher dimen-

sional balls. In the higher dimensional balls, the tangential derivative and

the normal derivative of holomorphic functions behave differently. In fact,

the tangential derivative is half order better than the normal derivative.

The results of this paper comply with this phenomenon and distinguish be-

tween the normal and the tangential derivatives. Let Rαf be the fractional

derivative of order α and Ok
T f be the tangential derivative of order k. Main

results of this paper are as follows.

Theorem A. Let µ be a positive Borel measure on the unit ball Bn ⊂
C

n and ω ∈ Ap on ∂Bn. Assume either p = q ≥ 2 or 1 < p < q < ∞ and

α ≥ 0. Then

(∫

Bn

|Rαf(z)|q dµ(z)

)1/q

. ‖f‖Hp(ω) for all f ∈ Hp(ω)(1.5)

if and only if

µ(B̂) . ω(B)q/pσ(B)qα/n for all Koranyi ball B ⊂ ∂Bn,(1.6)
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where σ denotes the surface measure on ∂Bn.

For the tangential derivative, we have the following theorem:

Theorem B. Let µ and ω be as above. Assume either p = q ≥ 2 or

1 < p < q < ∞ and k is a nonnegative integer. Then,

(∫

Bn

|Ok
T f(z)|q dµ(z)

)1/q

. ‖f‖Hp(ω) for all f ∈ Hp(ω)(1.7)

if and only if

µ(B̂) . ω(B)q/pσ(B)qk/2n for all Koranyi ball B ⊂ ∂Bn.(1.8)

This paper organizes as follows: In Section 2, we define necessary ter-

minologies and prove some preliminary lemmas. In Section 3, we prove an

integral inequality with weights on fractional derivatives. With help of this

inequality we are able to reduce Theorem A to the radial derivative case.

In Section 4, we give pointwise estimates for the gradient and the tan-

gential derivatives of holomorphic functions which are necessary to prove

Theorem B. Proofs of Theorems A and B are given in Section 5. For the con-

venience of readers, we include a proof of the Lp boundedness with weight

of the area integrals in Section 6.

Throughout this paper “α . β” implies that there exists a constant C

such that α ≤ Cβ. Also we write “α ≈ β” if α . β and β . α. The constant

C may depend on some parameters such as p, q and k, but it will be always

independent of the particular functions, measures, or points, etc.

We wish to thank the referee for several helpful comments on this paper.

§2. Preliminary lemmas

Let us fix some notations. Bn denotes the unit ball in C
n and ∂Bn

its boundary. For z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Bn, let 〈z,w〉 :=

z1w1 + · · · + znwn, |z| := 〈z, z〉1/2, r(z) := 1 − |z|2, and π(z) := z/|z| the

normal projection from Bn \ {0} onto ∂Bn. For ζ ∈ ∂Bn and δ > 0, the

Koranyi ball B(ζ, δ) is defined by

B(ζ, δ) := {η ∈ ∂Bn : |1 − 〈ζ, η〉| < δ}.

Note that the distance |1−〈ζ, η〉| satisfies the pseudo-triangular inequality:

|1 − 〈ζ, η〉| ≤ 2
(
|1 − 〈ζ, ξ〉| + |1 − 〈ξ, η〉|

)
for ζ, η, ξ ∈ ∂Bn.
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The tent space B̂(ζ, δ) over B(ζ, δ) is defined by

B̂(ζ, δ) := {z ∈ Bn \ {0} : π(z) ∈ B(ζ, δ), r(z) < δ}.
For z ∈ Bn \ {0} and c > 0, let B(z) = B(π(z), r(z)) and cB(z) =

B(π(z), cr(z)). For |z| > 1/2 and a small positive number ε which is fixed

once and for all, we define

Pε(z) := {w ∈ Bn : π(w) ∈ B(π(z), εr(z)), |r(z) − r(w)| ≤ εr(z)}.
And for |z| ≤ 1/2, let Pε(z) = {w ∈ Bn : |z − w| < ε}. Then for |z| > 1/2,

Pε(z) is a twisted polydisc in Bn centered at z and of size εr(z) in the normal

direction and
√

εr(z) in the complex tangential direction. The following

lemma collects some relevant facts on the Koranyi ball and polydiscs. They

are probably well known. However, we include brief proofs of them for

readers’ convenience.

Lemma 2.1. For z ∈ C
n \ {0}, let T (z) := {η ∈ C

n : |η| = 1, 〈z, η〉 =

0}, the set of unit vectors normal to z. Let 0 < δ < 1/2 and ε be a small

positive number.

(i) For ζ ∈ ∂Bn,

B(ζ, δ) = {w = (1 + t)ζ + sη :(2.1)

|t| < δ, 1 = |1 + t|2 + |s|2, t, s ∈ C, η ∈ T (ζ)}.

(ii) If w ∈ Pε(z) for |z| > 1/2, then B(π(w), r(w)) ⊂ B(π(z), 3r(z)).

(iii) B̂(ζ, δ) ⊂ {w = (1 + t)ζ + sη ∈ Bn : η ∈ T (ζ), |t| < 2δ, |s| <
√

2δ}.
(iv) Let Qε(z) := {w = (1 + t)z + sη ∈ Bn : η ∈ T (z), |t| < εr(z), |s| <√

εr(z)}. There exists a constant c > 0 and C > 0 such that for all

z ∈ Bn

Pε(z) ⊂ Qcε(z) ⊂ PCε(z),(2.2)

and for all w ∈ Pε(z)

Pε(z) ⊂ PCε(w).(2.3)

(v) For any holomorphic function f in Bn,

|f(z)| .
1

|Pε(z)|

∫

Pε(z)
|f(w)| dm(w),(2.4)

where m is the Lebesgue measure on C
n and |Pε(z)| = m(Pε(z)).
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Proof. Let w ∈ B(ζ, δ) and write w = (1 + t)ζ + sη where t, s ∈ C and

η ∈ T (ζ). Then,

1 = |w|2 = |1 + t|2 + |s|2 and |t| = |1 − 〈ζ, w〉| < δ.

Hence, we have (2.1). It is easy to see (ii).

To prove (iii), note that in (i)

|s|2 = 1 − |1 + t|2 < 2|t| < 2δ.

If z ∈ B̂(ζ, δ), then z/|z| ∈ B(ζ, δ) and 1−|z| < δ. Hence, by (i) there exists

η ∈ T (ζ) and t, s ∈ C with |t| < δ and |s| <
√

2δ such that

z = |z|(1 + t)ζ + |z|sη = (1 + (|z| − 1 + |z|t))ζ + |z|sη.

Since |(|z| − 1 + |z|t)| < δ + |t| < 2δ and |z||s| <
√

2δ, we have (iii).

If |z| ≤ 1/2, then (2.2) is trivial. If |z| > 1/2 and w ∈ Pε(z), then by

the definition of Pε(z) and (2.1) we have

Pε(z) =

{
w =

|w|(1 + t)

|z| z + s|w|η : |t| < εr(z), 1 = |1 + t|2 + |s|2,

|r(z) − r(w)| ≤ εr(z), t, s ∈ C, η ∈ T (z)

}

Now let w ∈ Pε(z), a =
(
−1 + |w|

|z| + t|w|
|z|

)
, and b = s|w|, then

w =
|w|(1 + t)

|z| z + s|w|η = (1 + a)z + bη.

Since |r(w) − r(z)| ≤ εr(z), we have
∣∣∣∣1 − |w|

|z|

∣∣∣∣ =
|r(z) − r(w)|
|z|(|z| + |w|) ≤ εr(z)

|z|(|z| + |w|) < 4εr(z).

Hence, there exists a constant c > 0 such that |a| < cεr(z) and |b| <√
cεr(z). Thus we have

Pε(z) ⊂ Qcε(z).

Now let w = (1 + a)z + bη ∈ Qcε(z) with 〈z, η〉 = 0. Define t and s

by a =
(
−1 + |w|

|z| + t|w|
|z|

)
and b = s|w|. Then for some constant C > 0,

|t| < Cεr(z) and |r(z) − r(w)| ≤ Cεr(z). Since w = |w|
|z| (1 + t)z + s|w|η, it

follows that w ∈ PCε(z). Hence Qcε(z) ⊂ PCε(z).
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(2.3) for |z| ≤ 1/2 is also trivial. If |z| > 1/2, it follows from the pseudo-

triangular inequality of the distance |1 − 〈ζ, η〉|.
For the submean value property (v), we may assume that z = (

√
1 − δ,

0, . . . , 0) after a unitary change of coordinates if necessary. Choose a small

constant c1 so that Qc1ε(z) ⊂ Pε(z). It then follows from (2.2) and the

submean value property of holomorphic functions over balls that

|f(z)| .
1

(εδ)2

∫

|w1−z1|<c1εδ
|f(w1, 0, . . . , 0)|dm(w1)

.
1

(εδ)n+1

∫

Qc1ε(z)
|f(w)| dm(w)

.
1

|Pε(z)|

∫

Pε(z)
|f(w)| dm(w).

This completes the proof.

Throughout this paper, ω is an Ap-weight of Muckenhoupt. Note that

an Ap-weight ω has the doubling property, i.e., there exists a constant Cω

such that

ω(B(ζ, 2δ)) ≤ Cωω(B(ζ, δ))

for all Koranyi ball B(ζ, δ) where ω(B(ζ, δ)) =
∫
B(ζ,δ) ω(η) dσ(η).

Lemma 2.2. For 1 ≤ A and −n − 1 < B let dν(z) = ω(B(z))Ar(z)B

dm(z), then

ν(B̂(ζ, δ)) . ω(B(ζ, δ))AδB+n+1.

Proof. Fix ζ ∈ ∂Bn and δ > 0. For ηk,m ∈ ∂Bn let Bk
m := {w ∈

Bn \ {0} : δ/2k+1 ≤ r(w) < δ/2k, π(w) ∈ B(ηk,m, δ/2k)}. One can find

points ηk,m ∈ B(ζ, δ) such that

B̂(ζ, δ) ⊂
∞⋃

k=0

Nk⋃

m=1

Bk
m

and
Nk∑

m=1

ω
(
B
(
ηk,m,

δ

2k

))
. ω(B(ζ, δ)), k = 0, 1, 2, . . .
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where {Nk} are some positive integers. Then

∫

B̂(ζ,δ)
dν ≤

∞∑

k=0

Nk∑

m=1

∫

Bk
m

ω(B(z))Ar(z)B dm(z)

.

∞∑

k=0

Nk∑

m=1

∫

Bk
m

ω
(
B
(
ηk,m,

δ

2k−2

))A
r(z)B dm(z)

.

∞∑

k=0

Nk∑

m=1

ω
(
B
(
ηk,m,

δ

2k

))A
(δ/2k)B+1σ(π(Bk

m))

.

∞∑

k=0

(δ/2k)B+1+n

(
Nk∑

m=1

ω(π(Bk
m))A

)
.

From the fact 1 ≤ A and the doubling property of ω we have

Nk∑

m=1

(
ω(π(Bk

m))

ω(B(ζ, δ))

)A

.

Nk∑

m=1

ω(π(Bk
m))

ω(B(ζ, δ))
. 1.

This completes the proof.

Lemma 2.3. Let 1 ≤ A and −n − 1 < B. If a constant q satisfies

CA
ω < 2q−B−n−1, then we have, for z ∈ Bn \ {0}

∫

Bn

ω(B(w))Ar(w)B

|1 − 〈z,w〉|q dm(w) . r(z)−q+B+n+1ω(B(z))A.

Proof. Fix z ∈ Bn \ {0}. Note that for w ∈ ̂2kB(z) \ ̂2k−1B(z), |1 −
〈z,w〉| ≈ 2kr(z) for k = 1, 2, . . . and for w ∈ B̂(z), |1 − 〈z,w〉| ≈ r(z).

Hence, we get

∫

Bn

ω(B(w))Ar(w)B

|1 − 〈z,w〉|q dm(w)

.

∫

B̂(z)
r(z)−qω(B(w))Ar(w)B dm(w)

+
∞∑

k=1

∫

̂2kB(z)\ ̂2k−1B(z)
(2kr(z))−qω(B(w))Ar(w)B dm(w)

.

∞∑

k=0

(2kr(z))−q

∫

̂2kB(z)
ω(B(w))Ar(w)B dm(w).
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Hence, from Lemma 2.2 we have

∫

Bn

ω(B(w))Ar(w)B

|1 − 〈z,w〉|q dm(w) .

∞∑

k=0

(2kr(z))−qω(2kB(z))A(2kr(z))B+n+1

. r(z)−q+B+n+1ω(B(z))A
∞∑

k=0

CAk
ω

2k(q−B−n−1)

. r(z)−q+B+n+1ω(B(z))A.

This completes the proof.

Lemma 2.4. For 1 < A, let dνA(z) = ω(B(z))Ar(z)−n−1 dm(z), then

νA(B̂(ζ, δ)) . ω(B(ζ, δ))A.

Proof. Note that from the doubling property of ω, we have

ω(B(z))

ω(B(ζ, δ))
. 1

for all z ∈ B̂(ζ, δ). Thus if A ≥ α, we have

ω(B(ζ, δ))−AνA( ̂B(ζ, δ)) =

∫

B̂(ζ,δ)

ω(B(z))A

ω(B(ζ, δ))A
r(z)−n−1 dm(z)

. ω(B(ζ, δ))−ανα( ̂B(ζ, δ)).

Thus if Lemma 2.4 holds for some α, then it holds for all A ≥ α. Since

ω ∈ Ap, there is a constant β > 1 such that the following reverse Hölder

inequality holds for all 1 ≤ α ≤ β;

|B(ζ, δ)|α−1

∫

B(ζ,δ)
ω(η)α dσ(η) .

(∫

B(ζ,δ)
ω(η) dσ(η)

)α

.

Here |B(ζ, δ)| = σ(B(ζ, δ)). Note that |B(ζ, δ)| ≈ δn. Then if 1 < α < β,

we have from Hölder and reverse Hölder inequalities

∫

B̂(ζ,δ)
dνα(z)

.

∫ δ

0

∫

B(ζ,δ)

(
|B(η, r)|α−1

∫

B(η,r)
ω(x)α dσ(x)

)
r−n−1 dσ(η)dr
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=

∫ δ

0

(∫

B(ζ,δ)

∫

B(ζ,2δ)
|B(η, r)|α−1ω(x)αXB(η,r)(x) dσ(η)dσ(x)

)
dr

rn+1

.

∫ δ

0

(∫

B(ζ,2δ)
ω(x)α dσ(x)

)
rnα−n−1 dr

. |B(ζ, δ)|α−1

∫

B(ζ,2δ)
ω(x)α dσ(x)

.

(∫

B(ζ,δ)
ω(x) dσ(x)

)α

.

This completes the proof.

§3. Fractional derivatives

Let α be a real number. For a holomorphic function f on Bn with the

homogeneous expansion f(z) =
∑∞

k=0 fk(z), we define

Rαf(z) =
∞∑

k=0

(1 + k)αfk(z).

When α = 1, R = R1 = I +
∑n

j=1 zj(∂/∂zj). Notice that
∑n

j=1 zj(∂/∂zj) is

the normal differentiation operator. When α ≥ 0, Rαf is called the radial

fractional derivative of order α of the function f . From Lemma 2.3 we have

the following weighted inequality for fractional derivatives. Its proof uses

the ideas of that of the unweighted case in [BB].

Lemma 3.1. Let α > 0, A ≥ 1 and p ≥ 1, then for a holomorphic

function f on Bn

∫

Bn

|Rαf(z)|pω(B(z))Ar(z)pα−n−1 dm(z)

.

∫

Bn

|Rf(z)|pω(B(z))Ar(z)p−n−1 dm(z).

Proof. We quote some facts from [BB]. For real numbers a, b and

z ∈ U , let

Ga,b(z) =
∞∑

m=0

1

m!

a(a + 1) · · · (a + m − 1)

(m + 1)b
zm.(3.1)

If a > b, then

|Ga,b(z)| . |1 − z|−(a−b).(3.2)
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For q > 0, let dVq(w) = 1
πn

Γ(n+q)
Γ(q) (1 − |w|2)q−1 dm(w). Then for a real

number s and a homomorphic function f on Bn, we have

f(z) =

∫

Bn

Rsf(w)Gn+q,s(〈w, z〉) dVq(w)(3.3)

if
∫
Bn |Rsf(w)|2 dVn+q(w) < ∞. If s > n + q and q ≥ 0, then

∫

Bn

|1 − 〈z,w〉|−s dVq(w) ≈ (1 − |z|2)n+q−s.(3.4)

Proofs of (3.2), (3.3), and (3.4) can be found in [BB].

Let z ∈ Bn \{0} and k be an integer so that 2−k ≤ r(z) < 2−k+1. Then

ω(B(z)) ≥ 1

Ck
ω

ω(2kB(z)) &
1

Ck+4
ω

ω(∂Bn) &
1

Ck
ω

.

Hence, if q1 > 0 is sufficiently large so that 2q1 > Cω, then for z ∈ Bn \ {0}

ω(B(z)) & r(z)q1

and thus
∫

Bn

|Rf(z)|pr(z)q1A+p−n−1 dm(z)

.

∫

Bn

|Rf(z)|pω(B(z))Ar(z)p−n−1 dm(z).

Note that for w ∈ Pε(z), r(z) ≈ r(w). Hence we have

|Rf(z)|p .
1

|Pε(z)|

∫

Pε(z)
|Rf(w)|p dm(w)

.
1

r(z)q1A+p

∫

Bn

|Rf(w)|pr(w)q1A+p−n−1 dm(w)

.
1

r(z)q1A+p

∫

Bn

|Rf(w)|pω(B(w))Ar(w)p−n−1 dm(w).

Suppose that M :=
∫
Bn |Rf(z)|pω(B(z))Ar(z)p−n−1 dm(z) < ∞. If q >

2(q1A + p)/p, then

∫

Bn

|Rf(z)|2r(z)q dm(z) . M2/p

∫

Bn

r(z)q−2(q1A+p)/p dm(z) < ∞.
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Thus for s = 1 − α it follows from (3.3) that

Rαf(w) =

∫

Bn

Rs(Rαf)(z)Gn+q,1−α(〈z,w〉) dVq(z)

=

∫

Bn

Rf(z)Gn+q,1−α(〈z,w〉) dVq(z).

For the remainder of the proof we will choose q sufficiently large if neces-

sary. Let p′ be the conjugate exponent to p. Then it follows from Hölder’s

inequality that

∫

Bn

|Rαf(w)|p ω(B(w))A

r(w)−αp+n+1
dm(w)

=

∫

Bn

∣∣∣∣
∫

Bn

Rf(z)Gn+q,1−α(〈z,w〉) dVq(z)

∣∣∣∣
p ω(B(w))A

r(w)−αp+n+1
dm(w)

.

∫

Bn

(∫

Bn

∣∣Rf(z)pGn+q,1−α(〈z,w〉)
∣∣r(z)δ(p−1) dVq(z)

)

×
(∫

Bn

∣∣Gn+q,1−α(〈z,w〉)
∣∣r(z)−δ dVq(z)

)p/p′ ω(B(w))A

r(w)−αp+n+1
dm(w)

where δ is a number to be chosen. Note that we can not use Hölder’s

inequality if p = 1. However, when p = 1, we may use Fubini’s theo-

rem instead, then Lemma 3.1 follows from the inequality (3.5) below with

B = α − n − 1. Thus we assume p > 1. Choose δ so that 1 − α < δ < 1.

Since n + q − δ < n + q − 1 + α, it follows from (3.2) and (3.4) that

∫

Bn

∣∣Gn+q,1−α(〈z,w〉)
∣∣r(z)−δ dVq(z)

.

∫

Bn

|1 − 〈z,w〉|−(n+q−1+α) dVq−δ(z)

. r(w)1−α−δ.

Set B = αp−n− 1 + (1−α− δ)p/p′, then B > −n− 1 since δ < 1. It then

follows that

∫

Bn

|Rαf(w)|p ω(B(w))A

r(w)−αp+n+1
dm(w)

.

∫

Bn

(∫

Bn

∣∣Rf(z)pGn+q,1−α(〈z,w〉)
∣∣r(z)δ(p−1) dVq(z)

)
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×ω(B(w))Ar(w)B dm(w)

=

∫

Bn

(∫

Bn

∣∣Gn+q,1−α(〈z,w〉)
∣∣ω(B(w))Ar(w)B dm(w)

)

×|Rf (z)|pr(z)δ(p−1) dVq(z).

Now, choose q sufficiently large, then from (3.2) and Lemma 2.3 we have
∫

Bn

∣∣Gn+q,1−α(〈z,w〉)
∣∣ω(B(w))Ar(w)B dm(w)(3.5)

.

∫

Bn

|1 − 〈z,w〉|(1−α−n−q)ω(B(w))Ar(w)B dm(w)

. r(z)(1−α−n−q)+B+n+1ω(B(z))A.

Thus we have
∫

Bn

|Rαf(z)|p ω(B(w))A

r(w)−αp+n+1
dm(w)

.

∫

Bn

|Rf(z)|pr(z)(1−α−n−q)+B+n+1+δ(p−1)+q−1ω(B(z))A dm(z)

.

∫

Bn

|Rf(z)|pr(z)p−n−1ω(B(z))A dm(z).

This completes the proof.

§4. Derivative estimates

Let Q(δ) = {z ∈ C
n : |z1| < δ, |zj | <

√
δ, j = 2, . . . , n}. The following

lemma follows from Corollary 3.3 of [B].

Lemma 4.1. If f is holomorphic in a neighborhood of Q(δ), then for

p ≥ 2 we have

∣∣∣∣δ
∂f

∂z1
(0)

∣∣∣∣
p

.
δ2

|Q(δ)|

∫

Q(δ)
|f |p−2

∣∣∣∣
∂f

∂z1

∣∣∣∣
2

dm,

∣∣∣∣δ1/2 ∂f

∂zj
(0)

∣∣∣∣
p

.
δ

|Q(δ)|

∫

Q(δ)
|f |p−2

∣∣∣∣
∂f

∂zj

∣∣∣∣
2

dm for j = 2, . . . , n.

Define the complex-tangential vector fields Tij by

Tij = zi
∂

∂zj
− zj

∂

∂zi
, i, j = 1, . . . , n, i 6= j.
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And define the complex-tangential derivative of order k by

|Ok
Tf(z)| =

∑
|Ti1j1 · · ·Tikjk

f(z)|

where the sum is over all possible combinations of indices.

Lemma 4.2. If f is holomorphic in Bn, then for p ≥ 2, k ≥ 1, and

z ∈ Bn with |z| > 1/2, we have

|r(z)kOkf(z)|p .
r(z)2

|Pε(z)|

∫

Pε(z)
|f |p−2|Of |2 dm

|r(z)k/2Ok
T f(z)|p .

r(z)2

|Pε(z)|

∫

Pε(z)
|f |p−2|Of |2 dm

+
r(z)

|Pε(z)|

∫

Pε(z)
|f |p−2|OT f |2 dm.

Proof. Let z ∈ Bn and |z| > 1/2. Choose c > 0 so that Qcε(z) ⊂ Pε(z)

as in Lemma 2.1 (iv). Then by Lemma 4.1, we have

|r(z)Of (z)|p .
r(z)2

|Qcε(z)|

∫

Qcε(z)
|f |p−2|Of |2 dm.

It also follows from the Cauchy estimates over polydisc Qcε(z) that

|r(z)kOkf(z)|p .
r(z)p

|Qcε(z)|

∫

Qcε(z)
|Of (w)|p dm(w).

Note that if w ∈ Pε(z), then r(w) ≈ r(z) and Qcε(w) ⊂ PCε(z) by Lem-

ma 2.1 (iv). Therefore,

|r(z)kOkf(z)|p

.
r(z)2

|Qcε(z)|

∫

Qcε(z)

1

|Qcε(w)|

∫

Qcε(w)
|f(ζ)|p−2|Of (ζ)|2 dm(ζ)dm(w)

.
r(z)2

|Pε(z)|

∫

PCε(z)
|f(ζ)|p−2|Of (ζ)|2 dm(ζ).

This completes the proof for the first inequality.

For the second inequality, by Lemma 3.2 of [KK] we have

|r(z)k/2Ok
Tf(z)|p(4.1)

.
1

|Pε(z)|

∫

Pε(z)

(
|r(w)Of (w)|p + |r(w)1/2OT f(w)|p

)
dm(w).
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Now fix w ∈ Pε(z) and by unitary change of coordinates, we may assume

that w = (w1, 0, . . . , 0). Then we have

|OT f(w)| .

n∑

j=2

∣∣∣∣
∂f

∂zj
(w)

∣∣∣∣.(4.2)

And for η ∈ Pε(w) ⊂ PCε(z) we have
∣∣∣∣1 − η1

|η|

∣∣∣∣ . r(z), |ηj | . r(z)1/2 for j = 2, . . . , n.

Thus we have
∣∣∣∣
∂f

∂zj
(η)

∣∣∣∣ ≤
1

|η|

∣∣∣∣η1
∂f

∂zj
(η) − ηj

∂f

∂z1
(η)

∣∣∣∣+
1

|η|

∣∣∣∣ηj
∂f

∂z1
(η)

∣∣∣∣(4.3)

+

∣∣∣∣1 − η1

|η|

∣∣∣∣
∣∣∣∣
∂f

∂zj
(η)

∣∣∣∣

. |OT f(η)| + r(z)1/2|Of (η)|.

Then from (4.3) and Lemma 4.1, we have

|r(w)|p/2

∣∣∣∣
∂f

∂zj
(w)

∣∣∣∣
p

(4.4)

.
r(w)

|Pε(w)|

∫

Pε(w)
|f(η)|p−2

∣∣∣∣
∂f

∂zj
(η)

∣∣∣∣
2

dm(η)

.
r(w)

|Pε(w)|

∫

P5ε(w)
|f(η)|p−2

(
|OT f(η)|2 + r(z)|Of(η)|2

)
dm(η).

By substituting (4.4) into (4.1) and using Fubini’s theorem together with

the first inequality, we obtain the second inequality.

§5. Proofs of Theorems

We now prove Theorems A and B in this section. We first prove the

sufficiency in them and then prove the necessity. We begin by defining a

maximal function and an area integral. For ζ ∈ ∂Bn and a positive number

a, we define a nontangential admissible approach region by Γa(ζ) = {z ∈
Bn : |1 − 〈z, ζ〉| < ar(z)}. Then the area integral Sa(f) of a function f

holomorphic on Bn is defined by

(
Sa(f)(ζ)

)2
=

∫

Γa(ζ)

(
|r(z)Of (z)| + |r1/2(z)OT f(z)|

)2 dm(z)

r(z)n+1
.
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For ζ ∈ ∂Bn the nontangential maximal function is defined by

Na(f)(ζ) = sup
Γa(ζ)

(
|f(z)| + r(z)|Of(z)| + r1/2(z)|OT f(z)|

)
.

The Lp-boundedness of these operators are well-known [S1]. Using the ar-

guments in [ST], one can derive the following weighted version whose proof

is given at the end of this paper.

Theorem 5.1. If 1 < p < ∞ and ω ∈ Ap, then for any holomorphic

function f ∈ Hp(ω), we have

‖Na(f)‖Lp(ω dσ) . ‖f‖Hp(ω)

and

‖Sa(f)‖Lp(ω dσ) . ‖f‖Hp(ω).

We also need the following theorem of Gu [G].

Theorem 5.2. Let p = q ≥ 2 or 1 < p < q < ∞. Then µ(B̂) .

ω(B)q/p if and only if

(∫

Bn

|f |q dµ

)1/q

. ‖f‖Hp(ω) for all f ∈ Hp(ω).

In fact, Gu proved this theorem when n = 1. However, the exactly same

arguments work for the higher dimensions.

Sufficiency in Theorem A. Suppose that µ is a positive measure

satisfying

µ(B̂) . ω(B)q/pσ(B)qα/n.

We first deal with the case when p = q ≥ 2. By the mean value property of

a holomorphic function Rαf , we have
∫

Bn

|Rαf(z)|p dµ(z)

.

∫

Bn

1

|Pε(z)|

∫

Pε(z)
|Rαf(w)|p dm(w)dµ(z)

.

∫

Bn

|Rαf(w)|p
∫

Bn

1

|Pε(z)|XPε(z)(w) dµ(z)dm(w)

.

∫

Bn

|Rαf(w)|pµ(PCε(w))|PCε(w)|−1 dm(w)

.

∫

Bn

|Rαf(w)|pω(B(w))r(w)pα−n−1 dm(w).
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It then follows from Lemma 3.1 that
∫

Bn

|Rαf(z)|p dµ(z)(5.1)

.

∫

Bn

|Rf(w)|pω(B(w))r(w)p−n−1 dm(w)

.

∫

Bn

(
|f(w)|p + |Of (w)|p

)
ω(B(w))r(w)p−n−1 dm(w).

From Lemma 4.2 and Theorem 5.1, we have

∫

Bn

|Of (w)|pω(B(w))r(w)p−n−1 dm(w)

.

∫

Bn

|f(z)|p−2(r(z)|Of(z)|)2ω(B(z))r(z)−n−1 dm(z)

=

∫

Bn

(∫

∂Bn

XB(z)(ζ)ω(ζ) dσ(ζ)

)
|f(z)|p−2

×(r(z)|Of(z)|)2r(z)−n−1 dm(z)

.

∫

∂Bn

(N2f)p−2(ζ)(S2f)2(ζ)ω(ζ) dσ(ζ)

. ‖N2f‖p−2
Lp(ω)‖S2f‖2

Lp(ω)

. ‖f‖p
Hp(ω).

For the first part in the last quantity of the inequalities (5.1), we have from

Lemma 2.2
∫

B̂(ζ,δ)
ω(B(z))r(z)p−n−1dm(z) . ω(B(ζ, δ))δp . ω(B(ζ, δ)).

Thus by Theorem 5.2

∫

Bn

|f(z)|pω(B(z))r(z)p−n−1 dm(z) .

∫

∂Bn

|f(ζ)|pω(ζ) dσ(ζ).

This completes the proof for the case p = q ≥ 2.

Suppose now that 1 < p < q < ∞. For this case we use Theorem 5.2.

As before,

∫

Bn

|Rαf(z)|q dµ(z) .

∫

Bn

|Rαf(z)|qω(B(z))q/pr(z)αq−n−1 dm(z).
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Thus by Lemma 3.1 and the mean value property of Rf ,
∫

Bn

|Rαf(z)|q dµ(z) .

∫

Bn

|Rf(z)|qω(B(z))q/pr(z)q−n−1 dm(z)

.

∫

Bn

|f(z)|qω(B(z))q/pr(z)−n−1 dm(z).

Thus from Lemma 2.4 and Theorem 5.2, we have the inequality (1.5).

Sufficiency in Theorem B. Suppose that µ is a positive measure

satisfying

µ(B̂) . ω(B)q/pσ(B)qk/2n.

When p = q ≥ 2, by Lemma 4.2 and the same argument as in the previous

proof, we have
∫

Bn

|Ok
T f(z)|p dµ(z)

.

∫

Bn

|f(z)|p−2
(
|r(z)Of (z)|2 + |r(z)1/2OT f(z)|2

)
ω(B(z))r(z)−n−1 dm(z).

Thus
∫

Bn

|Ok
T f(z)|p dµ(z) .

∫

∂Bn

(Naf)p−2(z)(Saf)2(z)ω(ζ) dσ(ζ) . ‖f‖p
Hp(ω).

If 1 < p < q < ∞, we again use Theorem 5.2. Note that from [KK,

Lemma 3.1] we have

|r(z)k/2Ok
Tf(z)|q .

1

|Pε(z)|

∫

Pε(z)
|f(w)|q dm(w).

Thus by Fubini’s theorem and the given condition, we have
∫

Bn

|Ok
T f(z)|q dµ(z) .

∫

Bn

|f(z)|qω(B(z))q/pr(z)−n−1 dm(z).

Thus by Lemma 2.4 and Theorem 5.2, the proof is complete.

Necessity in Theorem A and B. Let B be a Koranyi ball in ∂Bn.

By a unitary change of coordinates, we may assume that B = B(ζ0, δ)

where ζ0 = (1, 0, . . . , 0). Suppose that µ is a positive measure satisfying

either (1.5) or (1.7). Then one can easily see that µ is a finite measure by

taking f ≡ 1 in (1.5) or f(z) = zk
j with j = 1, . . . , n in (1.7). Thus we may
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assume δ is sufficiently small. Let C1 > 1 be a number independent of δ

satisfying

(1 − C1δ)
1/δ < e−C1/2.(5.2)

We will specify C1 later. Let Cω be the doubling constant of ω and N be

an integer such that Cω < 2pN . Now define f by

f(z) :=
1

(1 − (1 − C1δ)z1)N
=

1

(1 − 〈z, (1 − C1δ)ζ0〉)N
.(5.3)

Then for ζ ∈ B(ζ0, 2
k+1C1δ) \ B(ζ0, 2

kC1δ), we have

|f(ζ)| ≈ (2kC1δ)
−N ,(5.4)

and for ζ ∈ B(ζ0, C1δ), (5.4) holds with k = 0. Now let z = (z1, . . . , zn) ∈ B̂

and z1 = reiθ. Then |1 − z1| < 2δ and hence

1 − 2δ < r < 1, |θ| < sin−1(2δ) ≤ C2δ(5.5)

for some constant C2. Let M be the integral part of π/(8|θ|) when θ 6= 0.

Then

M ≥ C3

δ
(5.6)

for some constant C3 independent of δ. Now we choose C1 so that C1C3 >

2(N + α + 2). Let

A(k) =
(1 + k)α(k + N − 1)!

k!(N − 1)!
(1 − C1δ)

krk.

Then from (5.2) and (5.6), when k ≥ M we get

A(k + M)

A(k)
≤ rM(1 − C1δ)

M2α
(
1 +

N

M

)M

≤ 2αeN−C1C3/2

≤ 1/4.

Thus, for k ≥ M and j = 1, 2, . . . we have

A(k + jM) ≤ 1

4j
A(k)

and hence
∞∑

k=2M

A(k) ≤ 1

3

2M∑

k=M

A(k).(5.7)
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Now for z = (z1, . . . , zn) ∈ B̂, we have

|Rαf(z)| =

∣∣∣∣
∞∑

k=0

(1 + k)αfk(z)

∣∣∣∣

=

∣∣∣∣
∞∑

k=0

(1 + k)α
(k + N − 1)!

k!(N − 1)!
((1 − C1δ)z1)

k

∣∣∣∣

≥
∞∑

k=0

A(k) cos(kθ).

If k ≤ 2M , then k|θ| ≤ π/4 by the definition of M and hence

|Rαf(z)| ≥ 1

2

2M∑

k=0

A(k) −
∞∑

k=2M

A(k).

Thus it follows from (5.7) that

|Rαf(z)| ≥ 1

12

∞∑

k=0

A(k).(5.8)

Note that (5.8) holds trivially when θ = 0. Since by Stirling’s formula

(1 + k)αΓ(k + N)Γ(N + α)

Γ(k + N + α)Γ(N)
& 1,

we have

A(k) &
Γ(k + N + α)

Γ(k + 1)Γ(N + α)
rk(1 − C1δ)

k.

Thus it follows from (5.5) and (5.8) that, for z ∈ B̂,

|Rαf(z)| &

∞∑

k=0

Γ(k + N + α)

Γ(k + 1)Γ(N + α)
rk(1 − C1δ)

k(5.9)

= (1 − r(1 − C1δ))
−(N+α)

≥ (1 − (1 − 2δ)(1 − C1δ))
−(N+α)

& δ−(N+α).

For OTf , let ζ ′0 = (
√

1 − 16(n − 1)C2
1δ, 4C1

√
δ, . . . , 4C1

√
δ ) ∈ ∂Bn.

Then by (iii) of Lemma 2.1, if z ∈ B̂(ζ ′0, C1δ), z = (1 + t)ζ ′0 + sη where
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|t| < 2C1δ, |s| <
√

2C1δ and η ∈ T (ζ ′0). Hence, for j = 2, . . . , n, zj =

(1 + t)4C1

√
δ + sηj. Since C1 > 1, |zj | ≈ δ1/2 for j = 2, . . . , n. Also note

that by definition of Ti,j , for i, j ∈ {2, . . . , n}

T1,jf(z) =
N(1 − C1δ)zj

(1 − (1 − C1δ)z1)N+1
, Ti,1f(z) =

−N(1 − C1δ)zi

(1 − (1 − C1δ)z1)N+1

and Ti,jf(z) = 0 if i, j ∈ {2, . . . , n}. Hence, for z ∈ B̂(ζ ′0, C1δ), we have

|Ok
T f(z)| ≈

∑

2≤nj≤n

|zn1
· · · znk

|
|1 − (1 − C1δ)z1|N+k

≈ δ−(N+k/2).(5.10)

We will only prove the necessity for the fractional derivative case with

p = q ≥ 2. The fractional derivative case with 1 < p < q < ∞ is similar

to this case if one uses (5.4) and (5.9). And for the tangential derivative

cases, if we use B̂(ζ ′0, C1δ) instead of B̂(ζ0, C1δ), then proof follows with the

same arguments using from (5.4) and (5.10). Recall that we defined N so

that Cω < 2pN where Cω is the doubling constant of ω dσ. Then, from (5.4)

and (5.9), we have

µ(B̂) . δ(N+α)p

∫

Bn

|Rαf(z)|p dµ(z)

. δ(N+α)p

∫

∂Bn

|f |pω dσ

. δ(N+α)p

(∫

B(ζ0,C1δ)
|f |pω dσ +

∞∑

k=0

∫

B(ζ0,2k+1C1δ)\B(ζ0 ,2kC1δ)
|f |pω dσ

)

. δ(N+α)p
∞∑

k=0

ω(B(ζ0, 2
kC1δ))/(2kC1δ)

Np

. δαp
∞∑

k=0

Ck
ωω(B(ζ0, C1δ))/2Npk

. δpαω(B(ζ0, C1δ))

≈ ω(B(ζ0, C1δ))σ(B(ζ0, C1δ))
pα/n

This completes the proof.

§6. Appendix – Proof of Theorem 5.1

Here we give a proof of Theorem 5.1. The proof uses the arguments

in [S1] and [ST] and their variants.
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For f ∈ Hp(ω) define the classical maximal function N#
a (f)(ζ) at ζ ∈

∂Bn by

N#
a (f)(ζ) := sup

w∈Γa(ζ)
|f(w)|.

Then it is well known that N#
a (f)(ζ) . Mf(ζ) where Mf is the Hardy-

Littlewood maximal function on ∂Bn and hence ‖N#
a (f)‖Lp(ω) . ‖f‖Hp(ω).

(See [S2].) Thus the following lemma leads us to the first inequality of

Theorem 5.1. To make notations short, put

|Df(z)|2 = r(z)2|Of (z)|2 + r(z)|OT f(z)|2.

Lemma 6.1. Let f be a holomorphic function on Bn and ζ ∈ ∂Bn.

Then there exists a constant C independent of f and ζ such that

Na(f)(ζ) . N#
Ca(f)(ζ).

Proof. Note that there are constants C and ε such that if z ∈ Γa(ζ),

then Pε(z) ⊂ ΓCa(ζ). By Theorem A and Theorem B of [Gr], we have

|Df(z)|2 .
1

|Pε(z)|

∫

Pε(z)
|f(w)|2 dm(w) . N#

Ca(f)(ζ).(6.1)

Hence Lemma 6.1 follows.

To derive the second inequality we need a lemma.

Lemma 6.2. Let f be a holomorphic function in a neighborhood of Bn.

Let B(η, δ) be a Koranyi ball in ∂Bn and λ a positive number. Assume that

there is ζ0 ∈ B(η, δ) such that Sa(f)(ζ0) ≤ λ. For each 0 < t < 1, there

exists ε > 0 independent of λ, η, and δ such that

|{ζ ∈ B(η, δ) : Sa(f)(ζ) ≥ 2λ, N#
Ca(f)(ζ) ≤ ελ}| ≤ t|B(η, δ)|

where C is the constant in Lemma 6.1.

Proof. Let B = B(η, δ) and D = {ζ ∈ B : Sa(f)(ζ) ≥ 2λ, N#
Ca(f)(ζ) ≤

ελ}. If ζ ∈ B, then

Γa(ζ) ⊂ Γa(ζ0)∪ {z ∈ Γa(ζ) \ Γa(ζ0) : δ < ar(z)} ∪ {z ∈ Γa(ζ) : ar(z) ≤ δ}
:= Γa(ζ0) ∪ E1(ζ) ∪ E2(ζ).
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Note that since |1 − 〈ζ, η〉| ≤ δ, |E1(ζ) ∩ {r(z) = c}| . δn for all 0 < c < 1.

If ζ ∈ D, we have from (6.1)

Sa(f)2(ζ) ≤ Sa(f)2(ζ0) + C1N#
Ca(f)2(ζ)

∫

E1(ζ)

dm(z)

r(z)n+1

+

∫

E2(ζ)
|Df(z)|2 dm(z)

r(z)n+1

≤ λ2 + C1(ελ)2 + C1

∫

E2(ζ)
|Df(z)|2 dm(z)

r(z)n+1

for some constant C1. Thus

(2λ)2|D| ≤
∫

D
Sa(f)2(ζ) dσ(ζ)

≤ λ2|D| + C1ε
2λ2|B| + C1

∫

D

∫

E2(ζ)
|Df(z)|2 dm(z)

r(z)n+1
dσ(ζ).

Let Ω := {z ∈ Bn : z ∈ Γa(ζ) for some ζ ∈ D, r(z) ≤ δ/a} =
⋃

ζ∈D E2(ζ).

If z ∈ E2(ζ), then ζ ∈ B(π(z), αr(z)) for some α independent of z. It thus

follows that

I :=

∫

D

∫

E2(ζ)
|Df(z)|2 dm(z)

r(z)n+1
dσ(ζ)

≤
∫

Ω

∫

B(π(z),αr(z))
dσ(ζ)|Df(z)|2 dm(z)

r(z)n+1

.

∫

Ω
r(z)n|Df(z)|2 dm(z)

r(z)n+1
.

It is known that |Df(z)|2 ≈ |∇̃f (z)|2 and dm(z)/r(z)n+1 ≈ dV (z) where

∇̃f (z) and dV (z) are the gradient and the volume element induced by the

Bergman metric on Bn. See Chapter 3 of [S1] for the proof of these facts.

If we follow the argument in pp. 65–68 of [S1], we can see that

∫

Ω
r(z)n|Df(z)|2 dm(z)

r(z)n+1
. (ελ)2

∫

D
dσ.

In fact, it is proved in [S1] that the left-hand side of above inequality is

finite when |f | is bounded in Ω. However, the exactly same proof gives the

above inequality.
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It thus follows that

I . (ελ)2|D| ≤ (ελ)2|B|.

Combining all the relevant inequalities together, we have for some constant

C2,

|D| ≤ C2ε
2|B|.

For a given t, choose ε so that t = C2ε
2. This completes the proof.

We now continue to prove Theorem 5.1.

We first assume that f is holomorphic in a neighborhood of B. Note

that

‖Sa(f)‖p
Lp(ω dσ) = p

∫ ∞

0
λp−1ω({Sa(f) > λ}) dλ.

By a covering lemma, we can find a mutually disjoint sequence (finite or

infinite) {B(ζj , δj)} of Koranyi balls maximal with respect to inclusion such

that B(ζj, δj) ⊂ {Sa(f) > λ} and {Sa(f) > λ} ⊂ ⋃∞
j=1 B(ζj, Cδj) for some

constant C. Since B(ζj, δj) is maximal, there exists ζ0 ∈ ∂B(ζj , δj) such

that Sa(f) ≤ λ. For given t, choose ε as in Lemma 6.2. Then

{Sa(f) > 2λ}

⊂
∞⋃

j=1

[
{Sa(f) > 2λ, N#

Ca(f) ≤ ελ} ∩ B(ζj, Cδj)
]
∪ {N#

Ca(f) > ελ}.

Since w ∈ Ap, there exists a constant β such that

( |D|
|B|

)p

≤ β
ω(D)

ω(B)
for any D ⊂ B and for any ball B.

See [S2] for this fact. Set B = B(ζj, Cδj) and D = B \ {ζ ∈ B(ζj, Cδj) :

Sa(f) > 2λ, N#
Ca(f) ≤ ελ}. Then it follows from Lemma 6.2 and the dou-

bling property of ω that

ω({ζ ∈ B(ζj, Cδj) : Sa(f) > 2λ, N#
Ca(f) ≤ ελ}) ≤ C(t)ω(B(ζj , δj))

where C(t) → 0 as t → 0. Since {B(ζj , δj)} is mutually disjoint and⋃∞
j=1 B(ζj, δj) ⊂ {Sa(f) > λ}, we have

ω({Sa(f) > 2λ}) ≤ C(t)ω({Sa(f) > λ}) + ω({N#
Ca(f) > ελ}).
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Then

2−p‖Sa(f)‖p
Lp(ω dσ) ≤ C(t)‖Sa(f)‖p

Lp(ωdσ) + ε−p|N#
Ca(f)‖p

Lp(ω dσ).

By taking t small enough, we have

‖Sa(f)‖p
Lp(ω dσ)

. ‖N#
Ca(f)‖p

Lp(ω dσ)
. ‖f‖p

Lp(ω dσ)
.

If f ∈ Hp(ω), one can consider the function fr(z) := f(rz) (0 < r < 1)

and pass to the limit r → 1.
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