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A GENERAL DENSENESS RESULT
FOR RELAXED CONTROL THEORY

E.J. BALDER

A result by the author on the elimination of randomization (or

relaxation) for variational problems is partially extended and

then used to obtain a very general result on the denseness of the

set of original control functions in the set of relaxed control

functions. Also, a slight extension of Aumann's theorem on the

integrals of multifunctions is shown to follow directly from the

elimination result.

1. Introduction

It is well-known that the set of al l original (or nonrandomized)

control functions is a dense subset - for the usual topology - of the set

of all relaxed (or randomized) control functions, in case the underlying

measure space is nonatomic and the control space is metrizable and compact

[76, IV.2.6], [72], [75, V]; see also 18, V.12 (Remark)] for a more

abstract result of this kind and [9] for a vector version in the same

spir i t . Using the device of an Alexandrov (one point) compactification,

Berliocchi and Lasry gave a density result for the noncompact case [6,

Proposition I I . 7 ] . Inspired by their approach to the subject, the present

author has recently expanded the domain of relaxed control theory, basing

himself on a Hilbert cube compactification of the control space - which has

to be a metrizable Lusin space as a rule - and a notion of tightness for

Received 2 August 1981*.

Copyright Clearance Centre, Inc. Serial-fee code: OOOU-9727/81*
$A2.00 + 0.00.

463

https://doi.org/10.1017/S0004972700002185 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002185


464 E . J . B a l d e r

sets of relaxed control functions. The lat ter notion extends the classical

tightness concept in topological measure theory, and the main (relative)

compactness results for sets of relaxed control functions are thus seen to

follow from a generalization of Prohorov's theorem; for example, see [2],

[3] . The main purpose of this note is to show how this work also leads to

an extremely general version of the above denseness result, which merely

requires the control space to be completely regular and Suslin.

Our starting point will be a result on the elimination of random-

ization, which was obtained in [3, Lemma I I I ] . This result generalizes

similar results obtained in [6, I I ] and is of some interest in i ts own

right , since i t forms a one-sided analog - and a generalization - of a

similar result by Dvoretzky, Wald and Wolfowitz [JJ] (see [4]) as well as a

generalization of Aumann's important result on the integrals of multi-

functions [/, Theorem 3], [73], as we shall show below. The elimination

result of [3], which requires the control space to be metrizable Lusin, is

here partially extended to the case where the control space is a completely

regular Suslin space (nonmetrizable), and then used to obtain the announced

denseness result.

2. Main results

Let (T, T, u) be a nonatomic finite measure space and S a

completely regular Suslin space (Appendix A), equipped with the Borel

o-algebra B(5) . An original control function is a (T, B(S))-measurable

function from T into S . A relaxed control function is a transition

probability with respect to (T, T) and (5, 8(S)) [14, I I I ] . The set of

a l l original [relaxed] control functions is denoted by M( T; S) [R(T; S)] .

For any u £ M(T; S) we define the relaxation e 6 R(T; S) of u by

e (t) = Dirac probability measure at u(t) .

A normal integrand on T x S is a T x 8(S)-measurable function

g : T x S -*• (-°°, +°°] such that the function g{t, •) is lower semi-

continuous on S for every t € T [S]; the set of al l [nonnegative]

normal integrands on T x S is denoted by G(T; S) [G+(T; S) ] . A

Caratheodory integrand on T * S is a function g € G(T; S) for which

git, •) is continuous on S for every t € T , such that there exists a
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function <j> € L (T, T, \i) , the se t of a l l y-integrable functions from T

into IR , with

\g{t, s)\ < ()>(*) for a l l t € T , s € S .

We denote the se t of a l l Caratheodory integrands on T x 5 by G (T; 5) .

An inf-eompaet normal integrand on T x S i s a function 7i € G (2"; S)

such that for every t € 1 the function M t , •) i s inf-compact on S .

The set of a l l inf-compact normal integrands on T x 5 w i l l be denoted by

H(T; S) .

For any g € G(T; S) , 6 € R(T; 5) we define

g(t, s)6(t)(ds)\\i(dt) ,
T [±S J

provided that the integral makes sense at least as a quasi-integral [14].

As a consequence of this definition we find for relaxations

I (u) =Ia{e) = f g[t, u(t))v(dt) ,

for any g (. G(T; S) and u € M(T; 5) , again with the provision that the

integral makes sense. The weak topology on R(T; 5) is defined as the

weakest topology for which all functionals J : R( T; S) -»• IR ,
y

g i. GQ(T; S) , are continuous. Note that in case S is a metrizable

compact space, this topology coincides with the usual one of relaxed

control theory [76]. Note also that if T is a singleton the set R(.T; S)

coincides with the set P(S) of all probability measures on [S, B(S)) .

In that case 6̂ (2"; S) coincides with the set C, (5) of all bounded

continuous functions from S into IR , and the weak topology coincides

with its classical namesake [7], [70], as does the following notion: a

subset R of R(T; 5) is defined to be tight if there exists

h € W(T; S) with

sup JY(<5) < +°°

(see [ 3 ] ) . Only a passing role wi l l be played by the following growth

re l a t i on : for any g € G{T; S) and h € H(T; S) we write g~ « h ,
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where g~ = max(-<7, 0) if for every e > 0 there exists <j> € LAT, T, u)

such that

(1) g~{t, s) 5 th(t, s) + <j>E(t) for a l l t € T , s € 5 .

Let us observe that this growth relation holds automatically for h and g

i f there exists <j> € L (T, T, y) with

g(t, s) > <t>(t) for a l l t i T , s € 5 .

The following result [3, Lemma I I I ] , is our starting point. In [3] i t

was derived from Prohorov's theorem in R(2"; S) , Lyapunov's theorem and

certain extreme point considerations for relaxed control functions.

THEOREM 1. Suppose that S is a metrizable Lusin space. If for

6, € R(r; S) , h € H{T; S) and {g^, . . . , gj c G(T; S) , m € N , the

following conditions hold:

(2) y S J < •» ,

(3) ^ « ^ , j = 1, . . . , m ,

then there exists an original control function u$ € M(T; 5) such that

I (wj < I (6J , j = 1, . . . , m .

We shall now partial ly extend this result to the general situation

where S is a completely regular Suslin space.

THEOREM T . If for {gx gj c G{T; S) , m € N , there exists

<|> € L^T, T, u) u i t / i

(1+) gAt, s) > 4>(t) for all t Z T , s € S , j = 1, . . . , m ,
J

then there exists for every 6* € R(T; S) an original control function

u* € M(T; S) such that

(5) J (wj < I (6«) , j = 1, . . . . n .

In deriving Theorem I1 from Theorem 1 we shall need the following

resul t on "automatic tightness" of singletons in R(T; S) .

LEMMA 2. For every 6* € R(T; S) tfiere exists 7i 6 H(T; S) swe/i
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that

as a matter of faot, h can be chosen so as to depend only on the variable

s .

Proof. Let V be the finite measure on [S, 8(5)) , defined as

follows:

v(S) = ( &A(t)(B)v(dt) , B € 8(5) ;

see [14, I I I . 2 ] . Since 5 i s Sus l in , the measure V i s t i g h t [70,

I I I . 6 9 ] . As was shown in [ 3 , Example 2 .53 , t h i s implies the existence of

an inf-compact function h : S -*• [0, +°°] with

h(s)v(ds) < +«> . D
J 5

Proof of Theorem I1. As a first step, we prove (5) in case 5 is a

metrizable Lusin space. The result then follows a fortiori from Theorem 1,

since (2) holds by Lemma 2 and (3) by condition (U); see our comments

following (l). As our second step, we now consider the general case and

show how it can be reduced to the situation of the first step. By Appendix

A there exist a Polish space P (which is certainly metrizable Lusin) and

a continuous surjection TT : P -*• 5 . We define ig\ ..., g"\ c G(T; P)

(6) g^t, p) Eg At, TF(P)) .

Our claim i s tha t there ex is t s &* € R(T; P) such that for \i almost

everywhere, t € T ,

(7) <5*(£) i s the image under IT of the measure 6Jt(t) ;

see 110, 11.11] . Suppose for a moment that (7) holds; then i t i s easy to

finish the proof: by Lemma 2 there ex i s t s h ( ( / (T ; P) such tha t

1.(6*) < +°° . By (U) and (6) we see that the s i tua t ion considered in the

f i r s t s tep obta ins ; as a consequence, there ex i s t s a function

u* € M(3'; P) with
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I (u*) 5 I (6«) , j = i, ..., m

9 9

By a well-known formula on integration under a change of variables [10,

11.12] we have for every t € T , J = 1, . . . , m ,

f 9*At, p)6*(t)(dp) = f g (t, s)6,(t)(ds) ,

by virtue of (6)-(T). Setting uA = TT O U* , we obtain (5). Hence, the

crux of the proof l i e s in showing the validity of (7)- Let T be the

multifunction from T into the set ?{P) of a l l probability measures on

(p, 8(p)) , defined by

T(t) = {v € P(P) : the image of V under v is 6Jl(t)} .

By applying [?" , IU.U5] in the same way as was done in the proof of [70,

I I I . 6 9 ] , we see that the values of T are nonempty. Also, since P(S) ,

equipped with the weak topology, is a Suslln space (Appendix A) and the set

CAS) separates the elements of ?(S) [70, 111.51*] (here we use the fact

tha t S i s completely regular) , there exists by [S, I I I .31] a countable

subset D of CAS) which also separates the elements of P(5) . Hence,

the desired measurability of the graph of T follows directly by [74,

I I I . 2 ] and [8, I I I . l i t ] , since now

T{t) = jv € ?{P) : [ cd&^t) = [ a o -ndv for a l l c € D\
V Js }P J

for every t € T , and V •—>• f e o irdv , e € 0 , is clearly continuous on
JP

the Polish (by ['0, III.60]) space P(P) . Thus, the stage has been set

for an application of the von Neumann-Aumann measurable selection theorem

[S, III.22]: there exists a (T, B(P(p)))-measurable function

6* : T •* P(P) such that 6it(t) € T(t) for y almost everywhere t d T

(here we use a standard y almost everywhere modification argument to

convert the result of IS, III.22]). This shows that (7) is true, which is

all that remained to be done. D

It is perhaps illuminating to point out why the approach follows here

in proving Theorem 1' is bound to fail if one tries to extend other results

of [3] to the present situation with a completely regular Suslin control
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space. Here we had an automatic tightness result at our disposal (Lemma

2). In general, this is not so: if we set out with a tightness condition

for a general subset 1L of R(T; S) (not finite) - to be more precise,

the condition that

sup IA 6̂ ) < +°°

for some h € H( T; S) , then we do not have that the function h , defined

h (t, p) = h[t, Ti(p))

belongs to H( T; P) . Hence the original tightness of the transition

probabilities 6̂  does not carry over to the transition probabilities 6*

which correspond in the sense of (T).

An argument, similar to the proof of Theorem I1, can also be found in

the Appendix to [5].

As an immediate consequence of Theorem 1', we have the following

denseness result for original control functions.

COROLLARY 3. If {g , ..., g } c G(T; S) , m € N , satisfies (h),

then we have, for every {a , ..., a } c R ,

RQ = weak closure of {e : u € M(T; S), I (u) S a., j = 1, ..., m\ ,

where

RQ = \6 € R(T; S) : I (6) 5 a., j = 1 m\ .

In particular, we have

R{T; S) = weak closure of {e -. u € M(2"; S)}

and for every multifunction A from T into S , having T x 8(5)-

measurable graph and closed values

R. = weak closure of

{e : u i M(T; S), u{t) € A(t) for u almost every t € T} ,

where
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R = {6 € R(T; S) : 6 ( i ) (A( t ) ) = 1 for y almost every t i T) .

Proof. Let &* € R be arbitrary, and let N be an arbitrary

neighborhood of <$* . By definition of the weak topology, there exist

{lx, . . . , ln] <= GC(T; S) , n € N , such that , for every 6 € R(T; S) ,

(8) | J 7 (6)~T7 (6*) | < l , i = 1, ..., n , implies 6 € W .

Now apply Theorem 1 ' t o

{g±, -.., 9m, \ , . . . . *n , - J r . . . , -

I t follows tha t t he re ex i s t s w* € M(r; 5) with

(9) It («*) = J j («*) , * = 1 , - . . ,

By (8)-(9) we have e € N , which proves the main statement. The

specializations follow by taking m = 1 , a = 0 and g = 0 for the

f i rs t case, and for the second one

0 if s € A(t) ,

g±(t, s) = •

l+°° i f s $ A(t) . O

This denseness r e s u l t generalizes s imilar r e su l t s by Warga [76,

IV .2 .6 , IV.3.10 (second p a r t ) ] and Sainte-Beuve [75, V] (her r e s u l t s cover

more than jus t denseness) . These resu l t s apply only to a metrizable

compact control space S . Further , Corollary 3 also generalizes a

denseness r e su l t by Berliocchi and Lasry [6, Proposition I I . 7 ] , which

requ i res the control space to be local ly compact and countable at i n f i n i t y .

Note that (9) proves our ea r l i e r claim that Theorems 1 , 1 ' form one-

s ided general izat ions of a well-known r e s u l t by Dvoretzky, Wald and

Wolfowitz [ I I , §U] on the elimination of randomization (they also require

the control (or action) space to be metrizable and compact).

We f inish by showing how Theorem 1 (or I 1 ) d i rec t ly implies a s l i gh t

extension of Aumann's theorem on the in tegra l s of multifunctions [ I ,

Theorem 3 ] .
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COROLLARY 4. If for {gv ..., gj c G(T; I?) , m, n € N , and the

multifunction F from T into F< t

(10) g-it, ') is concave on co Fit) for every t € T , j = 1 , ...,m,
3

and if there exist <t>, »|> € LAT, T, y) such that

(11) g.(t, s) > (j>(£) for all t <i T , s € F( t ) ,
J

(12) s - ip{t) Icoordinatewise) for all t € T , s € F(t) .,

then, denoting by !„ the set of all V-integrable selectors of F , that

is

I f i | / ( LnAT, T, y ) , f(t) d Fit) for -y aZmost euery t € TJ ,

we have for every {a^., . . . , a } c IR ,

(13) {( fdv : / € I , J ( /) ^ a . , j = 1 , . . . , m\

where I denotes the set of all \i-integrable selectors of the multi-

function t i—«- co Fit) = [convex hull of Fit)] .

Proof. One inclusion i s t r i v i a l . Thus, i f the se t following the

equal i ty sign in (13) i s empty, the proof i s f inished. Otherwise, l e t

q € IR be such t h a t , for some f € I f ,

(111) J ( /) < a . , Q = 1 , . . . , m , and f /dy = q .
gj ° >T

By a standard application of Caratheodory's theorem and the von Neumann-

Aumann theorem (see IS, pp. 101-102]) there exist (T, 8 (R ))-measurable

selectors / , . . . , / of F and (T, 8(IR))-measurable functions

a , . . . , a : T -*• [0, l ] such that
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(15)

M + l

fit) = I ^

M+l
a . ( t ) = 1 for y almost everywhere £ € T

By y- in tegrab i l i ty of / and (12), (15) the functions / , . . . , /

must also be y-integrable. Now for 6^ € R(T; f?) , defined by

n+1

we have by (10), {lk) and (15),

n+1
[ a (t)g.{t, f.(t))\i(dt) < a j = 1, . . . , m ,

V(dt) = q .

(16) I ( 6 J

(IT)

Let s denote the £th component and \s\ the Euclidean norm of any

s € IFf1 . Denote by (\> € LAT, T, y) the function t

and define

0 i f s € {/

+°° otherwise,

l.{t, s) Emax(s , - $ ( t ) |
If

ln+iit, S) EmfV, - "

We may apply Theorem 1 (or 1') to

, i = 1, . . . , n ,

, i = 1, . . . , n

I t follows that there exists uA € Mfl7; FT1) with

Ujl) 5 J ( 6 J = 0 , J («„) £ J 5 a ,

https://doi.org/10.1017/S0004972700002185 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002185


Relaxed control theory 473

I ( u j 5 ^ , I7 (u,) S -qV , i = 1, . . . , n .

This shows ut to be a p-integrable selector of F , in view of the above

definition of g , I , . . . , I , with M̂ dp = q . We conclude that

(13) holds. D

Appendix

We prove here the well-known fact that the set P(S) of a l l probab-

i l i t y measures on [S, B(5)J is a Suslin space in case the space S i s

completely regular and Suslin.

A Hausdorff topological space S is said to be Suslin i f there exist

a Polish (separable metrizable and complete) space P and a continuous

surjection ir : P -»• S [JO, I I I .67] . Now the set P(P) , equipped with the

weak topology, is a Polish space by [10, I I I .60] . We define the function

i : P(P) + P(S) by

= image of the measure v under "n ;

see [?0, I I . l l ] . By [?0, I I I . 1+5] the function i is a surjection from

P(P) into P(5) , as is seen by imitating the argument used to prove [J

III.69L Finally, since, for a l l a € Cfc(S) , v € P{P) ,

cd(ir(v)) = I e o irdv ,
h ' Jp

we see that if is also continuous from P(P) into P(S) . This proves

the result , since P(5) is a Hausdorff space by virtue of the complete

regularity of 5 [JO, m.5l»] .

References

[J] Robert J. Aumann, "Integrals of set-valued functions", J. Math. Anal.

Appl. 12 (1965), 1-12.

[2] E.J. Balder, "On a useful compactification for optimal control

problems", J. Math. Anal. Appl. 72 (1979), 391-398.

[3] E.J. Balder, "A general approach to lower semicontinuity and lower

closure in optimal control theory", SIAM J. Control Optim. 22

(198U), 570-598.

https://doi.org/10.1017/S0004972700002185 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002185


474 E . J . B a l d e r

[4] E.J. Balder, "Elimination of randomization in s ta t i s t i ca l decision

theory reconsidered", <J. Multivariate Anal, (to appear).

[5] E.J. Balder, "Mathematical foundations of s ta t i s t ica l decision

theory: a modern viewpoint", Statistics and decisions (to

appear).

[6] Henri Berliocchi and Jean-Michel Lasry, "Integrandes normales et

mesures parametrees en calcul des variations", Bull. Soc. Math.

France 101 (1973), 129-181*.

[7] Patrick Billingsley, Convergence of probability measures (John Wiley

& Sons, New York, London, Sydney, 1968).

[S] C. Castaing, M. Valadier, Convex analysis and measurable multi-

functions (Lecture Notes in Mathematics, 580. Springer-Verlag,

Berlin, Heidelberg, New York, 1977).

[9] Phan Van Chuong, Vector versions of a density theorem and

applications to problems of control theory" , Travaux du

Seminaire d'Analyse Convexe, Montpellier 1981, Expose 19,

19.1-19.19-

[10] Claude Dellacherie, Paul-Andre Meyer, Probabilites et potentiel

(Hermann, Paris , 1975; English Transl., North-Holland,

Amsterdam, 1978).

[ I J ] A. Dvoretzky, A. Wald and J. Wolfowitz, "Elimination of randomization

in certain s t a t i s t i c a l decision procedures and zero-sum two-

person games", Ann. Math. Statist. 22 (1951), 1-21.

[72] A. Ghoui la-Houri, "Sur la generalisation de la notion de commande

d'un systeme guidable", Rev. Franc. d'Inf. Rech. Oper. 4 (1967),

7-32.

[73] Werner Hildenbrand, Core and equilibria of a large economy (Princeton

University Press, Princeton, 1971*).

[14] Jacques Neveu, Bases mathematiques du calcul des probabilities

(Masson, Paris, 196U; English Transl. Holden-Day San

Fransisco, London, Amsterdam, 1965).

[15] M.-F. Sainte-Beuve, "Some topological properties of vector measures

with bounded variation and i t s applications", Ann. Mat. Pura

Appl. (k) 116 (1978), 317-379.

https://doi.org/10.1017/S0004972700002185 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002185


Relaxed control theory 475

[J6] J. Warga, Optimal control of differential and functional equations
(Academic Press , New York, London, 1972).

Mathematical Inst i tute,

University of Utrecht,

PO Box 80.010,

3508 TA Utrecht,

The Netherlands.

https://doi.org/10.1017/S0004972700002185 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002185

