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Abstract

In this paper we propose a framework that facilitates the study of large deviations for point
processes based on stationary sequences with regularly varying tails. This framework
allows us to keep track both of the magnitude of the extreme values of a process and
the order in which these extreme values appear. Particular emphasis is put on (infinite)
linear processes with random coefficients. The proposed framework provides a fairly
complete description of the joint asymptotic behavior of the large values of the stationary
sequence. We apply the general result on large deviations for point processes to derive
the asymptotic decay of certain probabilities related to partial sum processes as well as
ruin probabilities.
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1. Introduction

In some applications of stochastic modeling, including network traffic and finance, time
series are encountered where the marginal distributions are heavy tailed and clustering of
extreme values is observed. More precisely, the marginal distributions have a power-like decay
and large values tend to occur at nearby points in time, forming clusters. When studying the
probability of rare events, it is usually important not only to determine the size and frequency of
clusters of extreme values but also to capture the internal structure of the clusters. Unfortunately,
in many ‘standard’ limit theorems dealing with heavy-tailed processes the fine structure of a
cluster is lost in the limit, including the ordering of the points in a cluster. This point is
discussed in some detail in Section 3. To overcome this problem, we propose a new framework
for investigating large deviations for stochastic processes with heavy tails. Specifically, large
deviations are studied at the level of point processes associated to the underlying stochastic
process. In this way it is possible to preserve the fine structure of the clusters of large values
for a fairly general class of multivariate time series.

Received 15 June 2009; revision received 4 December 2009.
∗ Postal address: Department of Mathematics, KTH, SE-100 44 Stockholm, Sweden. Email address: hult@kth.se
Research partially supported by the Swedish Research Council.
∗∗ Postal address: School of Operations Research and Industrial Engineering, Cornell University, 220 Rhodes Hall,
Ithaca, NY 14853, USA. Email address: gennady@orie.cornell.edu
Research partially supported by NSA grant H98230-06-1-0069 and ARO grant W911NF-07-1-0078 at Cornell
University.

1

https://doi.org/10.1239/jap/1269610814 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610814


2 H. HULT AND G. SAMORODNITSKY

The processes studied here constitute the class of random coefficient linear processes. It
consists of d-dimensional time series (Xk)k∈Z with the stochastic representation

Xk =
∑
j∈Z

Ak,jZk−j , (1.1)

where the ‘noise’ sequence (Zj )j∈Z consists of independent and identically distributed (i.i.d.)
random vectors with values in R

p. A generic element of this sequence is denoted by Z. Each
Ak,j is a random d × p matrix. It is assumed that the sequence (Ak)k∈Z is stationary and that
each Ak is itself a sequence of matrices, Ak = (Ak,j )j∈Z. It is assumed that the sequence
(Ak)k∈Z is independent of the sequence (Zk)k∈Z.

The probability of large values of the process (Xk) depends, of course, on the distributional
assumptions on Z and Ak,j . In this paper we consider a heavy-tailed case: we assume that
the distribution of Z is regularly varying. We also impose certain moment conditions on the
random matrices Ak,j (see Section 2).

Probability distributions with regularly varying tails have become important building blocks
in a wide variety of stochastic models. Evidence for power-tail distributions is well documented
in a large number of applications, including computer networks, telecommunications, finance,
insurance, hydrology, atmospheric sciences, geology, ecology, etc. (see, e.g. Embrechts et
al. (1997), Adlet et al. (1998), Rachev (2003), and Tsonis and Elsner (2007)).

For the multi-dimensional version of (1.1), we use the following notion of multivariate
regular variation. A d-dimensional random vector Z has a regularly varying distribution if
there exists a nonnull Radon measure µ on R

d \ {0} such that

P(u−1Z ∈ ·)
P(|Z| > u)

→ µ(·) in M0(R
d). (1.2)

Here M0(R
d) denotes the space of Radon measures on R

d whose restriction to {|x| ≥ r} is
finite for each r > 0, | · | denotes the Euclidean norm, and convergence

mn → m in M0(R
d)

is defined as the convergence mn(f ) → m(f ) for each bounded continuous function f
vanishing on some neighborhood of the origin. See Hult and Lindskog (2006) for more details
on the space M0(R

d).
The limiting measure µ necessarily obeys a homogeneity property: there is an α > 0 such

that µ(uB) = u−αµ(B) for all Borel sets B ⊂ R
d \ {0}. This follows from standard regular

variation arguments (see, e.g. Hult and Lindskog (2006, Theorem 3.1)). The notation Z ∈
RV(µ, α)will be used for a random vector satisfying (1.2). See Basrak (2000), Resnick (1987),
Resnick (2006), and Hult and Lindskog (2006) for more on multivariate regular variation.

The class of stochastic models with the representation (1.1) is quite flexible and contains a
wide range of useful time series. Here are some examples.

Example 1.1. (Linear process.) Let (Aj ) be a sequence of deterministic real-valued d × p

matrices. Then, assuming convergence, Xk = ∑
j∈ZAjZk−j is a linear process. The repre-

sentation (1.1) is trivial, and (Xk) is stationary because (Zk) is a sequence of i.i.d. R
d -valued

random vectors.

Example 1.2. (SRE.) An important particular case of the random coefficient linear process is
the stationary solution of a stochastic recurrence equation (SRE).
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Large derivations for point processes 3

Assume that p = d , and let (Yk, Zk)k∈Z be a sequence of i.i.d. pairs of d × d matrices and
d-dimensional random vectors. Set

�n,m =
{
Yn · · ·Ym, n ≤ m,

Id, n > m,

where Id is the d × d identity matrix. Under certain assumptions ensuring the existence of a
stationary solution of the SRE

Xk = YkXk−1 + Zk, k ∈ Z, (1.3)

this stationary solution can be represented by a random coefficient linear process with Ak,j =
�k−j+1,k, j ≥ 0, andAk,j = 0, j < 0; see, e.g. Kesten (1973). Then the marginal distribution
of the stationary solution to the SRE is of the form (1.1).

Example 1.3. (Stochastic volatility.) Let (Xk) be the solution of the SRE in Example 1.2,
where we assume that Xk ∈ (0,∞)d almost surely (a.s.). Let (Vk) be a sequence of i.i.d.
random diagonal matrices independent of (Xk). Then Uk = VkXk has the representation

Uk =
∑
j∈Z

Ãk,jZk−j ,

where Ãk,j = VkAk,j and Ak,j is as in Example 1.2. The sequence Uk can be interpreted as a
stochastic volatility model where Xk is the volatility; see, e.g. Davis and Mikosch (2008).

2. Convergence and tail behavior

Consider a time series (Xk) with stochastic representation (1.1). Throughout this paper, it
is assumed that

Z ∈ RV(µ, α) and, if α > 1 also, EZ = 0. (2.1)

To begin the study of extreme values for the time series (1.1), a first requirement is to establish
conditions under which the infinite series converge a.s. and to determine the tail behavior of
the distribution of Xk . Hult and Samorodnitsky (2008) recently obtained results on the tail
behavior under conditions that include a ‘predictability’ assumption on the matrices (Ak,j ).
Here we summarize the results and remind the reader that in this paper we assume that (Ak,j )
and (Zj ) are independent. Theorem 2.1, below, describes the marginal tails; for simplicity, we
drop the time subscript k from both Xk and Ak,j .

Throughout the paper, ‖A‖ denotes the operator norm of a matrix A. The summation index
will be omitted when it is clear what it is.

Theorem 2.1. Suppose that (2.1) holds and that there is ε ∈ (0, α) such that∑
E ‖Aj‖α−ε < ∞ and

∑
E ‖Aj‖α+ε < ∞, α ∈ (0, 1) ∪ (1, 2), (2.2)

E
(∑

‖Aj‖α−ε)(α+ε)/(α−ε)
< ∞, α ∈ {1, 2}, (2.3)

E
(∑

‖Aj‖2
)(α+ε)/2

< ∞, α ∈ (2,∞). (2.4)

Then the series (1.1) converges a.s. and

P(u−1X ∈ ·)
P(|Z| > u)

→ E
(∑

µ ◦ A−1
j (·)

)
in M0(R

d). (2.5)
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4 H. HULT AND G. SAMORODNITSKY

The right-hand side of (2.5) is interpreted as

E
(∑

µ ◦ A−1
j (B)

)
= E

(∑
µ{z : Ajz ∈ B}

)
for any Borel set B ⊂ R

d .
When both Z and Ak,j are univariate (d = p = 1), the limiting measure µ of Z has the

representation

µ(dz) = (wαz−α−1 1{z > 0} + (1 − w)α(−z)−α−1 1{z < 0}) dz (2.6)

for some w ∈ [0, 1]. Then (2.5) becomes

P(X > ux)

P(|Z| > u)
→

∑
E(|Aj |α(w 1{Aj > 0} + (1 − w) 1{Aj < 0}))x−α

for each x > 0, with a similar expression for the negative tail; see Hult and Samorodnitsky
(2008, Remark 3.3).

Example 2.1. (Linear process.) If (Xk) is a linear process (Ak,j = Aj deterministic) and
d = p = 1, then, for u → ∞,

P(X > ux)

P(|Z| > u)
→

∑
(|Aj |α(w 1{Aj > 0} + (1 − w) 1{Aj < 0}))x−α.

Example 2.2. (SRE.) Suppose that (Xk) is the solution to the SRE in Example 1.2 with Y
satisfying E ‖Y‖α+ε < 1 for some ε > 0. Then, in the case d = p = 1,

P(X > ux)

P(|Z| > u)
→ w(1 − E(Y+)α)+ (1 − w)E(Y−)α

(1 − E(Y+)α)2 + (E(Y−)α)2
x−α; (2.7)

see Hult and Samorodnitsky (2008, Example 3.3). Here, and throughout, x+ = max{x, 0}
denotes the positive part of x, and x− = max{−x, 0} denotes its negative part. In particular, if
Y is nonnegative then w = 1, E Y− = 0, and (2.7) reduces to

P(X > ux)

P(|Z| > u)
→ (1 − E Yα)−1x−α (u → ∞).

Example 2.3. (Stochastic volatility.) Let (Xk) be as in Example 2.2, where d = p = 1 and Y
and Z are nonnegative. Let (Vk) be a sequence of i.i.d. random variables, independent of (Xk).
Suppose that EV α+ε < ∞ for some ε > 0. Then Uk = VkXk satisfies

P(U > ux)

P(Z > u)
→ EV α

1 − E Yα
x−α (u → ∞).

Remark 2.1. The following two observations will be useful for later reference. It follows from
Remark 4.1 of Hult and Samorodnitsky (2008) that, for any increasing truncation n(x) ↑ ∞,

lim
x→∞

P(| ∑|j |>n(x) AjZj | > x)

P(|Z| > x)
= 0. (2.8)

Furthermore, only values of Zj comparable to the level x matter in the sense that

lim
τ→0

lim sup
x→∞

P(| ∑j∈ZAjZj 1{|Zj | ≤ τx}| > x)

P(|Z| > x)
= 0. (2.9)
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Large derivations for point processes 5

3. Why are large deviations of point processes needed?

In this section we discuss, somewhat informally, the joint asymptotic behavior of large values
of the sequence (Xk) in (1.1). The goal is to set up the necessary background and intuition
for the general result in Section 4. We consider two special cases: sequences of i.i.d. random
variables and moving average processes. There is no clustering of the extremes in the former
case, but such clustering does occur in the latter case. Our goal is to devise a limiting procedure
that preserves the relevant fine structure of clusters of the extremes. The theme of clustering is
important in other areas of probability as well; see Aldous (1989).

Example 3.1. (Independent and identically distributed random variables.) Consider a
sequence (Zk) of i.i.d. real-valued random variables with Z ∈ RV(α, µ) and µ as in (2.6),
and, as in (2.1), we assume that EZk = 0 when α > 1. It is well known (see, e.g. Resnick
(1987)) that, for each n ≥ 1, the vector (Z1, . . . , Zn) is regularly varying with limit measure
µ(n) concentrated on the coordinate axes:

µ(n)(dz1, . . . , dzn) =
n∑
i=1

µ(dzi)
∏
j �=i

δ0(dzj ),

where δx is a unit mass at x. The interpretation is that, asymptotically, only one of the variables
Z1, . . . , Zn is of large absolute value and each variable is equally likely to be large.

The same intuition holds true when considering variables Z1, . . . , Zn in a time window of
length n and letting n → ∞, if the threshold increases with n at an appropriate rate. Let
γn be a sequence with γn → ∞ and such that nP(|Z| > γn) → 0 as n → ∞. Then, the
probability that two different Zs among the variables Z1, . . . , Zn are of size of the order γn is
small compared to the probability that just one of the Zis is of size of the order γn. Indeed, for
any ε > 0,

P(there exist 1 ≤ i < j ≤ n such that |Zi | > γnε and |Zj | > γnε)

P(|Zi | > γn for some 1 ≤ i ≤ n)

∼ (n(n− 1)/2)P(|Z| > γnε)
2

nP(|Z| > γn)

→ 0.

Here an ∼ bn is shorthand for limn→∞ an/bn = 1.
A convenient description of the large values for the sequence Z1, Z2, . . . can be obtained

by considering the convergence of the point measures

Nn =
n∑
k=1

δ
(k/n,γ−1

n Zk)
, n = 1, 2, . . . ,

on the state space [0, 1] × (Rd \ {0}). The assumption that nP(|Z| > γn) → 0 as n → ∞
implies that γn → ∞ too fast for a nontrivial weak convergence ofNn (described, for example,
by Proposition 3.21 of Resnick (1987)). When γn grows so fast, the second coordinates of all
points of the point measure Nn will tend to 0 with probability 1. Since points with the zero
second coordinate are defined not to be in the state space on which the point measures live
(see, once again, Resnick (1987)), it turns out that the point measure Nn converges a.s. to the
null measure, denoted by ∅ (we use the notation introduced in Daley and Vere-Jones (2003)).
Intuitively, this is exactly the situation where large deviations in the space of point measures
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6 H. HULT AND G. SAMORODNITSKY

might help: the hope is to find a sequence rn → ∞ such that rn P(Nn ∈ ·) converges to some
limiting measure m on the space of point measures.

The above discussion makes it reasonable to expect that this limiting measure,m, is concen-
trated on point measures with one point, corresponding, for each n = 1, 2, . . . , to a single large
value of Zk∗ , k∗ = 1, . . . , n (at the scale γn = n). In fact, the limiting measure is expected to
be

m(B) = (Leb × µ){(t, z) : δ(t,z) ∈ B}, B a measurable set of measures.

Here and in the sequel, Leb denotes the appropriate Lebesgue measure (on the unit interval,
in this case). The value of the coordinate t is interpreted as the time k∗ of the large Zk∗ value
rescaled within the set {1, . . . , n}, and since all Zks have equal probability of being large, t
is ‘uniformly distributed’ on [0, 1]. The corresponding value z is governed by the limiting
measure µ which describes the large values of the Z variables. The suggested convergence is
established rigorously (in a significantly more general setting) in Theorem 4.1, below.

It is possible to look at this convergence as the partial sum convergence of the underlying
sequence (δ

(k/n,γ−1
n Zk)

) in the space of point measures. This is similar to Sanov’s theorem in
the light-tailed case (see, e.g. Dembo and Zeitouni (1998, Section 6.2)).

Example 3.2. (A finite moving average.) Suppose that, in (1.1), p = d = 1 and Ak,j = Aj
are deterministic coefficients with Aj = 0 if j < 0 or j > q. Then (Xk) is a sequence defined
by

Xk = A0Zk + A1Zk−1 + · · · + AqZk−q .

Consider a time window of length n where, for now, n is fixed. That is, we consider the vector
(X1, . . . , Xn). Then, (X1, . . . , Xn)

� = A′(Z1−q, . . . , Zn)�, where A′ is the n× (n+ 1 + q)

matrix

A′ =

⎛
⎜⎜⎜⎝
Aq Aq−1 · · · A0 0 · · · · · · 0
0 Aq Aq−1 · · · A0 0 · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

...

0 · · · 0 Aq Aq−1 · · · · · · A0

⎞
⎟⎟⎟⎠ .

Since (Zk) is an i.i.d. sequence, the vector (Z1−q, . . . , Zn)� is regularly varying with limit
measure concentrated on the coordinate axes, as in Example 3.1. That is, asymptotically, only
one variable among Z1−q, . . . , Zn will be large on the large deviations scale, and they all have
equal probability of being large. Suppose that Zk∗ is large for some 1 − q ≤ k∗ ≤ n. Then,
since all the other Zks are small in comparison to Zk∗ , we expect that Xk is small if k < k∗ or
k > k∗ + q, while, for k∗ ≤ k ≤ k∗ + q, we have

Xk ≈ Ak−k∗Zk∗ .

If we can find a sequence rn → ∞ such that the sequence of measures (rn P(Nn ∈ ·)) converges
to a nondegenerate limit, where

Nn =
n∑
k=1

δ
(k/n,γ−1

n Xk)
, n = 1, 2 . . . ,
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Large derivations for point processes 7

is defined on the state space [0, 1] × (R \ {0}), we would expect the limiting measure to be
concentrated on point measures with q + 1 points of the form (t, xi), with the same time
coordinate t and space coordinates of the form xi = Aiz for some z. In other words, we expect
the limiting measure to be

m(B) = (Leb × µ)

{
(t, z) :

q∑
i=0

δ(t,Aiz) ∈ B
}
, B a measurable set of measures.

The clustering of extreme values is captured in the limiting measure as there are q + 1 points
corresponding to large values of the Xks. However, in the limit, all these points have the
same time coordinate t , which means that the limiting measure does not keep track of the
order in which the large values arrived. That is, the complete internal structure of the cluster of
extreme values is not captured. The order at which the large values arrive is, however, of crucial
importance when studying, for instance, the ruin probabilities, or the long strange segments
corresponding to the process (Xk); see, e.g. Asmussen (2000), Dembo and Zeitouni (1998),
Mikosch and Samorodnitsky (2000), and Hult et al. (2005). Therefore, information is lost in
the limit.

The strategy we adopt in order to retain information on the internal cluster structure of
extreme values is to consider point measures similar to the measures Nn above, but enlarging
the dimension of the state space so that each point of the point measure describes more than
one value of the process (Xk). It is intuitive that, for a finite moving average of this example,
it is enough to keep track of q + 1 consecutive observations of the stationary process, and this
tells us how large the state space of the point measures should be. Specifically, we consider the
point measures

n∑
k=1

δ
(k/n,γ−1

n (Xk,Xk−1,...,Xk−q )), n = 1, 2 . . . .

The above discussion makes plausible the assertion that, for such point processes, the limiting
measure in a large deviations procedure is concentrated on point measures with 2q + 1 points
of the form

(t, (A0z, 0, . . . , 0)), (t, (A1z,A0z, 0, . . . , 0)), . . . , (t, (0, . . . , 0, Aqz)).

Note that the information about the order in which the extreme values arrived can be obtained
because the space coordinates are simply shifts of each other.

In general, all the information on the extreme values of the process will be preserved only
if we keep track of an infinite (or increasing with n) number of observations of the process
(Xk). This is possible to do, but we have chosen not to pursue this last possibility because
it significantly complicates the technical details of the construction of the point measures and
working with these measures. Instead, we have chosen to construct point measures based on
finitely many consecutive observations of the stationary process, as if it were a finite moving
average. In the applications we consider, this turns out to be sufficient when coupled with a
truncation argument.
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8 H. HULT AND G. SAMORODNITSKY

4. Large deviations for point processes: the main result

We start by specifying the precise assumptions on the normalizing sequence (γn)n≥1 that
we need to obtain a large deviation scaling. Assume that, as n → ∞,

Z1 + · · · + Zn

γn
→ 0 in probability

and
γn√
n1+ε → ∞ for some ε > 0 if α = 2

γn√
n log n

→ ∞ if α > 2.
(4.1)

Note that these conditions are exactly the same as those that were used in Theorem 2.1 of Hult et
al. (2005) to obtain a functional level large deviation result for the partial sums of i.i.d. random
vectors. If we set rn = 1/(nP(|Z| > γn)) then rn → ∞ as n → ∞ and it turns out that
normalizing the probability measures of the point processes by (rn) is the correct normalization
to obtain a large deviation result.

For q ≥ 0, define a point measure Nq
n on the space E

q = [0, 1] × (Rd(q+1) \ {0}) by

N
q
n =

n∑
k=1

δ
(k/n,γ−1

n Xk,γ
−1
n Xk−1,...,γ

−1
n Xk−q ). (4.2)

We will show that the sequence of measures on the space of point measures,

m
q
n(·) = rn P(Nq

n ∈ ·), n ≥ 1,

converges in the appropriate sense and compute the limiting measure, calledmq , for any q ≥ 0.
The limiting measure gives us a partial description of the extremal behavior of the sequence (Xk).
This description becomes more and more detailed as the number q is taken larger and larger.

A technical framework suitable for studying this problem is provided in Appendix A, and
we use the notation introduced there. Let N

q
p = Np(E

q) be the space of point measures on
E
q equipped with the vague topology. The convergence mqn → mq takes place in the space

M0(N
q
p), the space of Radon measures on N

q
p that are finite on sets of the form {ξ : d(ξ,∅) > r}

for each r > 0 (see Appendix A). Here ∅ denotes the null measure and d(·, ·) denotes the metric
on N

q
p given by (A.1). With this metric, (Nqp, d) is a complete separable metric space.

For a sequence A of d × p matrices (Ak,j )j,k∈Z and (t, z) ∈ [0, 1] × (Rp \ {0}), we write

TA,q(t, z) =
∑
j∈Z

δ(t,Aj,j z,Aj−1,j−1z,...,Aj−q,j−qz).

Under certain conditions on the matrices in Ak,j , TA,q is a map from [0, 1] × (Rp \ {0}) into
the space N

q
p.

We can now state the main result of this paper.

Theorem 4.1. Suppose that (2.1)–(2.4) and (4.1) hold. Then, for any q ≥ 0, the stationary
process (Xk)k∈Z in (1.1) satisfies

m
q
n(·) = rn P(Nq

n ∈ ·) → E((Leb × µ) ◦ T −1
A,q
(·)) =: mq(·) in M0(N

q
p). (4.3)

In particular, with probability 1, TA,q is a map from [0, 1] × (Rp \ {0}) into the space N
q
p.
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Remark 4.1. For any a > 0, the measure mq on N
q
p defined in (4.3) satisfies

mq{ξ : ξ([0, 1] × {(x0, . . . , xq) : |xi | = a, some i ∈ {0, . . . , q}}) > 0}
= E

(
µ

{
z :

∑
j∈Z

δ(Aj,j z,...,Aj−q,j−qz)((x0, . . . , xq) : |xi | = a, some i ∈ {0, . . . , q}) > 0

})

≤
∑
j∈Z

Eµ{z : |Aj,j z| = a}

= 0,

by the scaling property of the measure µ. This fact is useful for establishing continuity almost
everywhere with respect to the measure mq of various mappings.

Example 4.1. (Independent and identically distributed random vectors.) For a sequence of
i.i.d. random vectors, we have Ak,j = Aδ0j , where A is a fixed d × p matrix, and, hence, for
q = 0, the limiting measure m0 is given by m0(·) = (Leb × µ) ◦ T −1

A,0(·), where TA,0 is the
mapping

TA,0(t, z) = δ(t,Az).

Example 4.2. (Linear process.) For a linear process, the matrices Ak,j = Aj , j ∈ Z, are
deterministic. The limiting measure mq is given by mq(·) = (Leb × µ) ◦ T −1

A,q(·), where the
mapping TA,q is given by

TA,q(t, z) =
∑
j∈Z

δ(t,Aj z,Aj−1z,...,Aj−qz).

Proof of Theorem 4.1. By Theorem A.2 we need to prove that the measure mq in (4.3)
belongs to M0(N

q
p) and that, as n → ∞,

mn(Fg1,g2,ε1,ε2) → mq(Fg1,g2,ε1,ε2) (4.4)

for all Lipschitz functions g1, g2 ∈ C+
K(E

q) and ε1, ε2 > 0, where the functions Fg1,g2,ε1,ε2 are
given in (A.2) in Appendix A. For the first statement, it is enough to prove that, for each δ > 0,

E Sδ =: E

(∑
j∈Z

1{‖Aj‖ > δ}
)
< ∞.

This is an easy consequence of conditions (2.2)–(2.4). For example, if 0 < α ≤ 2 then, for
0 < ε < α,

E Sδ ≤ δ−(α−ε)∑
j∈Z

E ‖Aj‖α−ε < ∞,

and the case α > 2 is similar.
We now prove (4.4). Note that

mn(Fg1,g2,ε1,ε2) = rn E

((
1 − exp

{
−

[ n∑
k=1

g1

(
k

n
,
Xk

γn
, . . . ,

Xk−q
γn

)
− ε1

]
+

})

×
(

1 − exp

{
−

[ n∑
k=1

g2

(
k

n
,
Xk

γn
, . . . ,

Xk−q
γn

)
− ε2

]
+

}))
. (4.5)
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The first step is to truncate the infinite sum in the definition ofXk , replacingXk by
∑

|j |≤JnAk,j×
Zk−j , as follows. Let (Jn) be a sequence of positive numbers such that Jn → ∞ and

Jn =

⎧⎪⎨
⎪⎩
o(n) if 0 < α < 1,

o(min(n, γn/ l(γn))) if α = 1,

o(min(n, γn)) if α > 1,

(4.6)

where, for x > 0, l(x) = E(|Z| 1{|Z| ≤ x}). The conditions on the asymptotic growth of Jn
are used below.

By Lemma 4.1, there is a sequence βn ↓ 0 such that

rn P

(
max

1≤k≤n
1

γn

∣∣∣∣ ∑
|j |>Jn

Ak,jZk−j
∣∣∣∣ > βn

)
→ 0

as n → ∞. Therefore, the expression on the right-hand side of (4.5) is within o(1) of

rn E

[(
1 − exp

{
−

[ n∑
k=1

g1

(
k

n
,Rk,n + 1

γn

∑
|j |≤Jn

Ak,jZk−j , . . . , Rk−q,n

+ 1

γn

∑
|j |≤Jn

Ak−q,jZk−q−j
)

− ε1

]
+

})

×
(

1 − exp

{
−

[ n∑
k=1

g2

(
k

n
,Rk,n + 1

γn

∑
|j |≤Jn

Ak,jZk−j , . . . , Rk−q,n

+ 1

γn

∑
|j |≤Jn

Ak−q,jZk−q−j
)

− ε2

]
+

})]

:= rn E(	n),

where (Rk,n) are random variables satisfying |Rk,n| ≤ βn for all k, n.
To proceed, we use the intuitive idea that only one of theZs is likely to be large. Take τ > 0.

The above expression can be decomposed as

rn E(	n 1 {all |Z−Jn−q+1|, . . . , |Zn+Jn | are less than τγn})
+ rn E(	n 1 {exactly one of |Z−Jn−q+1|, . . . , |Zn+Jn | exceeds τγn})
+ rn E(	n 1 {at least two of |Z−Jn−q+1|, . . . , |Zn+Jn | exceed τγn})

= rn E

(
	n 1

{ n+Jn⋂
t=−Jn−q+1

|Zt | ≤ τγn

})
(4.7)

+ rn E

(
	n 1

{ n+Jn⋃
t=−Jn−q+1

⋂
s=−Jn−q+1,...,n+Jn

s �=t

{|Zt | > τγn, |Zs | ≤ τγn}
})

(4.8)

+ rn E

(
	n 1

{ n+Jn⋃
t=−Jn−q+1

⋃
s=−Jn−q+1,...,n+Jn

s �=t

{|Zt | > τγn, |Zs | > τγn}
})
. (4.9)

We claim that the main contribution comes from (4.8) and that the contributions from the other
terms vanish as n → ∞ and then τ → 0. Let us start with (4.7). Recall that g1 and g2 have
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compact supports in E
q = [0, 1] × (Rd(q+1) \ {0}). Hence, there is a δ > 0 such that

([0, 1] × {(x0, . . . , xq) : max{|x0|, . . . , |xq |} < δ}) ∩ {support(g1) ∪ support(g2)} = ∅.

On the set
⋂n+Jn
t=−Jn−q+1{|Zt | ≤ τγn} we have, for large n,

rn E

(
	n 1

{ n+Jn⋂
t=−Jn−q+1

|Zt | ≤ τγn

})

≤ rn E

(
	n 1

{ n⋃
k=1−q

{∣∣∣∣Rk,n + 1

γn

∑
|j |≤Jn

Ak,jZk−j 1{|Zk−j | ≤ τγn}
∣∣∣∣ > δ

}})

≤ rn P

( n⋃
k=1−q

{∣∣∣∣Rk,n + 1

γn

∑
|j |≤Jn

Ak,jZk−j 1{|Zk−j | ≤ τγn}
∣∣∣∣ > δ

})

≤ rn(n+ q)P

(∣∣∣∣ ∑
|j |≤Jn

A0,jZj 1{|Zj | ≤ τγn}
∣∣∣∣ > γnδ

2

)

→ 0

as n → ∞ and then τ → 0, by appealing to (2.9) (the last inequality used the fact that βn ↓ 0).
For (4.9), we observe that, for any τ > 0,

rn E

(
	n 1

{ n+Jn⋃
t=−Jn−q+1

⋃
s=−Jn−q+1,...,n+Jn

s �=t

{|Zt | > τγn, |Zs | > τγn}
})

≤ rn P

( n+Jn⋃
t=−Jn−q+1

⋃
s=−Jn−q+1,...,n+Jn

s �=t

{|Zt | > τγn, |Zs | > τγn}
)

≤ rn(n+ q + 2Jn)
2 P(|Z| > τγn)

2

→ 0

as n → ∞, by the definition of rn and the fact that Jn/n is bounded. Hence, as claimed, the
main contribution comes from (4.8).

Since the union in (4.8) is disjoint, we may rewrite (4.8) as

n+Jn∑
t=−Jn−q+1

rn E

[(
1 − exp

{
−

[ n∑
k=1

g1

(
k

n
,Rk,n + 1

γn

∑
|j |≤Jn

Ak,jZk−j , . . . , Rk−q,n

+ 1

γn

∑
|j |≤Jn

Ak−q,jZk−q−j
)

− ε1

]
+

})

×
(

1 − exp

{
−

[ n∑
k=1

g2

(
k

n
,Rk,n + 1

γn

∑
|j |≤Jn

Ak,jZk−j , . . . , Rk−q,n

+ 1

γn

∑
|j |≤Jn

Ak−q,jZk−q−j
)

− ε2

]
+

})

× 1{|Zt | > τγn, |Zs | ≤ τγn, all s = −Jn − q + 1, . . . , n+ Jn, s �= t}
]
.

(4.10)
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As |Zt | is large and |Zs | is small, s �= t , we can practically ignore the contribution from the
latter terms. To be precise, we claim that the above expression is asymptotically equal (written
an ∼ bn) to

n+Jn∑
t=−Jn−q+1

rn E

[(
1 − exp

{
−

[ n∑
k=1

g1

(
k

n
,Rk,n + 1

γn

∑
|j |≤Jn

Ak,jZk−j 1{t = k − j}, . . . ,

Rk−q,n + 1

γn

∑
|j |≤Jn

Ak−q,jZk−q−j 1{t = k − q − j}
)

− ε1

]
+

})

×
(

1 − exp

{
−

[ n∑
k=1

g2

(
k

n
,Rk,n + 1

γn

∑
|j |≤Jn

Ak,jZk−j 1{t = k − j}, . . . ,

Rk−q,n + 1

γn

∑
|j |≤Jn

Ak−q,jZk−q−j 1{t = k − q − j}
)

− ε1

]
+

})

× 1{|Zt | > τγn}
]

=:
n+Jn∑

t=−Jn−q+1

rn E[	′
n 1{|Zt | > τγn}]. (4.11)

For now, we postpone the proof that (4.10) ∼ (4.11) and proceed, instead, with analyzing
(4.11). We can rewrite (4.11) as

n+Jn∑
t=−Jn−q+1

rn E

[(
1 − exp

{
−

[ n∑
k=1

g1

(
k

n
,Rk,n + 1

γn
Ak,k−tZt 1{|k − t | ≤ Jn}, . . . , Rk−q,n

+ 1

γn
Ak−q,k−q−tZt 1{|k − q − t | ≤ Jn}

)
− ε1

]
+

})

×
(

1 − exp

{
−

[ n∑
k=1

g2

(
k

n
,Rk,n + 1

γn
Ak,k−tZt 1{|k − t | ≤ Jn}, . . . , Rk−q,n

+ 1

γn
Ak−q,k−q−tZt 1{|k − q − t | ≤ Jn}

)
− ε2

]
+

})

× 1{|Zt | > τγn}
]
.

In the sequel, as the subscripts change, we shorten Rk,n to Rn. We do not impose any
assumptions on these random variables apart from the fact that |Rn| ≤ βn for all n. With
l = k − t we can rewrite the above expression as

n+Jn∑
t=−Jn−q+1

rn E

[(
1 − exp

{
−

[ n−t∑
l=1−t

g1

(
t + l

n
, Rn + 1

γn
At+l,lZt 1{|l| ≤ Jn}, . . . , Rn

+ 1

γn
At+l−q,l−qZt 1{|l − q| ≤ Jn}

)
− ε1

]
+

})
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×
(

1 − exp

{
−

[ n−t∑
l=1−t

g2

(
t + l

n
, Rn + 1

γn
At+l,lZt 1{|l| ≤ Jn}, . . . , Rn

+ 1

γn
At+l−q,l−qZt 1{|l − q| ≤ Jn}

)
− ε2

]
+

})

× 1{|Zt | > τγn}
]
.

By stationarity we may replace At+l−i,l by Al−i,l , i = 0, . . . , q, and, conditioning on Zt , the
above equals

∫
|z|>τ

n+Jn∑
t=−Jn−q+1

rn E

[(
1 − exp

{
−

[ n−t∑
l=1−t

g1

(
t + l

n
, Rn + Al,lz 1{|l| ≤ Jn}, . . . , Rn

+ Al−q,l−qz 1{|l − q| ≤ Jn}
)

− ε1

]
+

})

×
(

1 − exp

{
−

[ n−t∑
l=1−t

g2

(
t + l

n
, Rn + Al,lz 1{|l| ≤ Jn}, . . . , Rn

+ Al−q,l−qz 1{|l − q| ≤ Jn}
)

− ε2

]
+

})]

× P(γ−1
n Zt ∈ dz)

=:
∫

|z|>τ
κn(z)rnnP(γ−1

n Z ∈ dz)

=:
∫

|z|>τ
κn(z)µn(dz)

∼
∫

|z|>τ
κ̃n(z)µn(dz),

where

κ̃n(z) =
n+Jn∑

t=−Jn+1

E

[(
1 − exp

{
−

[ n−t∑
l=1−t

g1

(
t + l

n
, Al,lz 1{|l| ≤ Jn}, . . . ,

Alq,l−qz 1{|l − q| ≤ Jn}
)

− ε1

]
+

})

×
(

1 − exp

{
−

[ n−t∑
l=1−t

g2

(
t + l

n
, Al,lz 1{|l| ≤ Jn}, . . . ,

Al−q,l−qz 1{|l − q| ≤ Jn}
)

− ε2

]
+

})]
1

n
,

and we have used the uniform continuity of the functions g1 and g2 and the fact that |Rn| ≤
βn ↓ 0. We claim that, as n → ∞,∫

|z|>τ
κ̃n(z)µn(dz) →

∫
|z|>τ

κ(z)µ(dz), (4.12)
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where

κ(z) =
∫ 1

0
E

[(
1 − exp

{
−

[∑
l∈Z

g1(t, Al,lz, . . . , Al−q,l−qz)− ε1

]
+

})

×
(

1 − exp

{
−

[∑
l∈Z

g2(t, Al,lz, . . . , Al−q,l−qz)− ε2

]
+

})]
dt.

Note, first of all, thatµn → µ in M0(R
d). Since the functions (κ̃n) andκ are uniformly bounded,

it is enough to prove the convergence in (4.12) when integrating over the set {τ < |z| < M}
for any finite M > τ . Using the fact that Jn/n → 0, we need to check that, for any K ,∫

τ<|z|<M
κ(K)n (z)µn(dz) →

∫
τ<|z|<M

κ(z)µ(dz), (4.13)

with

κ(K)n (z) =
n+K∑

t=−K+1

E

[(
1 − exp

{
−

[ n−t∑
l=1−t

g1

(
t + l

n
, Al,lz 1{|l| ≤ Jn}, . . . ,

Al−q,l−qz 1{|l − q| ≤ Jn}
)

− ε1

]
+

})

×
(

1 − exp

{
−

[ n−t∑
l=1−t

g2

(
t + l

n
, Al,lz 1{|l| ≤ Jn}, . . . ,

Al−q,l−qz 1{|l − q| ≤ Jn}
)

− ε2

]
+

})]
1

n
.

Recall that the supports of g1 and g2 do not intersect the set

[0, 1] × {(x0, . . . , xq) : max{|x0|, . . . , |xq |} < δ}
for some δ > 0. Assumptions (2.2)–(2.4) imply that

P

(
‖Al,l‖ ≥ δ

M
for some |l| ≥ K

)
→ 0 as K → ∞.

Since the limit in (4.13) does not depend on K , we may replace κ(K)n in it (but still using the
same notation) with

κ(K)n (z) =
n+K∑

t=−K+1

E

[(
1 − exp

{
−

[∑
l∈Z

g1

(
t + l

n
, Al,lz, . . . , Al−q,l−qz

)
− ε1

]
+

})

×
(

1 − exp

{
−

[∑
l∈Z

g2

(
t + l

n
, Al,lz, . . . , Al−q,l−qz

)
− ε2

]
+

})]
1

n
.

However, κ(K)n → κ uniformly (in z). Therefore, (4.13) follows, e.g. by Billingsley (1968,
Theorem 5.5). Having now established (4.12), we let τ → 0 to obtain∫

|z|>τ
κ(z)µ(dz) → E[(Leb × µ) ◦ T −1

A
(Fg1,g2,ε1,ε2)],

as required.
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It remains only to prove the asymptotic equivalence (4.10) ∼ (4.11). Define Cn = {−Jn −
q + 1, . . . , n+ Jn}. Subtracting (4.11) from (4.10) yields

n+Jn∑
t=−Jn−q+1

rn(E[	n 1{|Zt | > τγn, |Zs | ≤ τγn, all s ∈ Cn, s �= t}]

− E[	′
n 1{|Zt | > τγn}])

=
n+Jn∑

t=−Jn−q+1

rn E[(	n −	′
n) 1{|Zt | > τγn, |Zs | ≤ τγn, all s ∈ Cn, s �= t}] (4.14)

+
n+Jn∑

t=−Jn−q+1

rn E[	′
n 1{|Zt | > τγn}(1 − 1{|Zs | ≤ τγn, all s ∈ Cn, s �= t})].

(4.15)

Since 	′
n ≤ 1, we can bound (4.15) by

n+Jn∑
t=−Jn−q+1

rn P(|Z| > τγn)(1 − (1 − P(|Z| > τγn))
n+q+2Jn) → 0

as n → ∞, by the choice of rn and the fact that Jn/n → 0. Lemma 4.2, below, shows that
(4.14) tends to 0 as n → ∞.

Lemma 4.1. For the stationary process (Xk)k∈Z in (1.1), we have, under assumptions (2.2)–
(2.4) and (4.6),

lim
n→∞ rn P

(
max

1≤k≤n

∣∣∣∣ ∑
|j |>Jn

Ak,jZk−j
∣∣∣∣ > γnε

)
= 0

for any ε > 0.

Proof. By stationarity we have

rn P

(
max

1≤k≤n

∣∣∣∣ ∑
|j |>Jn

Ak,jZk−j
∣∣∣∣ > γnε

)
≤ rnnP

(∣∣∣∣ ∑
|j |>Jn

Ak,jZk−j
∣∣∣∣ > γnε

)
.

Using Remark 2.1 and the definition of rn, we see that the above expression is bounded above
by o(1)nrn P(|Z| > γnε), and this tends to 0 as n → ∞.

Lemma 4.2. Denote the sum in (4.14) by �̃n. Then

lim
τ→0

lim sup
n→∞

�̃n = 0.

Proof. Note that, by taking norms, it is enough to consider the one-dimensional case d =
p = 1. Furthermore, it is clearly enough to consider a single function g and ε > 0, and prove
that

lim
τ→0

lim sup
n→∞

rn�n = 0, (4.16)
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where

�n =
∑
t∈Cn

E

[(
exp

{
−

[ n∑
k=1

g

(
k

n
,Rk,n + 1

γn

∑
|j |≤Jn

Ak,jZk−j , . . . , Rk−q,n

+ 1

γn

∑
|j |≤Jn

Ak−q,jZk−q−j
)

− ε

]
+

}

− exp

{
−

[ n∑
k=1

g

(
k

n
,Rk,n + 1

γn

∑
|j |≤Jn

Ak,jZk−j 1{t = k − j}, . . . , Rk−q,n

+ 1

γn

∑
|j |≤Jn

Ak−q,jZk−q−j 1{t = k − q − j}
)

− ε

]
+

})

× 1{|Zt | > τγn, |Zs | ≤ τγn, all s ∈ Cn, s �= t}
]
,

where, as above, Cn = {−Jn − q + 1, . . . , n+ Jn}. Let L be the Lipschitz constant of g with
respect to the metric on E

q given by

d((s, x0, . . . , xq), (t, y0, . . . , yq)) = |s − t | + min{1, |x0 − y0| + · · · + |xq − yq |}.

Note that, in the obvious notation,

|�n| ≤ LE
n∑
k=1

min

{
1,

q∑
i=0

1

γn

∣∣∣∣ ∑
|j |≤Jn

Ak−i,jZk−i−j 1{|Zk−i−j | ≤ τγn}
∣∣∣∣
}

≤ Ln(q + 1)E min

[
1,

1

γn

∣∣∣∣ ∑
|j |≤Jn

A0,jZ−j 1{|Z−j | ≤ τγn}
∣∣∣∣
]

= Ln(q + 1)
∫ 1

0
P

(∣∣∣∣ ∑
|j |≤Jn

A0,jZ−j 1{|Z−j | ≤ τγn}
∣∣∣∣ > xγn

)
dx.

Suppose first that 0 < α < 1. We have, by (2.9), as τ ↓ 0,

rn�n ≤ o(1)
nrn

γn

∫ γn

0
P(|Z| > x) dx = o(1)nrn P(|Z| > γn) → 0,

by Karamata’s theorem, and (4.16) follows.
Now consider the case in which α ≥ 1. We abbreviate

�n := E(Dn) =
n+Jn∑

t=−Jn−q+1

E(Dn 1{Bt }),

where

Bt = {|Zt | > τγn, |Zs | ≤ τγn, all s ∈ Cn, s �= t}.
Since g has compact support, there is a δ > 0 such that g(s, x0, . . . , xq) = 0 for all s ∈ [0, 1]
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and {(x0, . . . , xq) : |x0| + · · · + |xq | < δ}. Let t ∈ Cn. We have, on the event Bt ,

|Dn| 1{Bt } ≤
∣∣∣∣
n∑
k=1

g

(
k

n
,Rk,n + 1

γn

∑
|j |≤Jn

Ak,jZk−j , . . . , Rk−q,n + 1

γn

∑
|j |≤Jn

Ak−q,jZk−q−j
)

−
n∑
k=1

g

(
k

n
,Rk,n + 1

γn

∑
|j |≤Jn

Ak,jZk−j 1{t = k − j}, . . . , Rk−q,n

+ 1

γn

∑
|j |≤Jn

Ak−q,jZk−q−j 1{t = k − q − j}
)∣∣∣∣ 1{Bt }.

Let Kt = {k : t − Jn ≤ k ≤ t + q + Jn}, and decompose the last expression into the sum over
Kt and {1, . . . , n} \Kt . Then, on the event Bt , |�n| is bounded above by

L
∑
k∈Kt

min

{
1,

q∑
i=0

1

γn

∣∣∣∣ ∑
|j |≤Jn

Ak−i,jZk−i−j 1{|Zk−i−j | ≤ τγn} 1{j �= k − i − t}
∣∣∣∣
}

+ ‖g‖∞
∑
k /∈Kt

1
{ q∑
i=0

(
|Rk−i,n| + 1

γn

∣∣∣∣ ∑
|j |≤Jn

Ak−i,jZk−i−j 1{|Zk−i−j | ≤ τγn}
∣∣∣∣
)
> δ

}

:= Dn,1 +Dn,2. (4.17)

We start with Dn,2. Recall that, for all i, |Rk−i,n| is bounded by βn ↓ 0. In the sequel, C
denotes a finite positive constant that may change from time to time. We see that, for large n,

rn

n+Jn∑
t=−Jn−q+1

E(Dn,2 1{Bt }) ≤ Crn(n+ q + 2Jn)nP(|Z| > τγn)

× P

( q∑
i=0

∣∣∣∣ ∑
|j |≤Jn

Ak−i,jZk−i−j 1{|Zk−i−j | ≤ τγn}
∣∣∣∣ > δγn

2

)

≤ Cτ−αn(q + 1)

× P

(∣∣∣∣ ∑
|j |≤Jn

Ak,jZk,j 1{|Zk,j | ≤ τγn}
∣∣∣∣ > δγn

2(q + 1)

)
.

Using (2.9) shows that, for small τ > 0, this is further bounded by CnP(|Z| > γn), and this
tends to 0 as n → ∞ by the choice of γn.

It remains to consider the term Dn,1 in (4.17). Note in Dn,1 that, for each t , k is restricted
to at most 2Jn + q + 1 possible values. We have

rn

n+Jn∑
t=−Jn−q+1

E(Dn,1 1{Bt })

≤ Crn(n+ q + 2Jn)P(|Z| > τγn)

× Jn E min

[
1,

q∑
i=0

1

γn

∣∣∣∣ ∑
|j |≤Jn

Ak−i,jZk−i−j 1{|Zk−i−j | ≤ τγn}
∣∣∣∣
]

≤ C(q + 1)
Jn

γn

P(|Z| > τγn)

P(|Z| > γn)
E

∣∣∣∣ ∑
|j |≤Jn

A0,jZ−j 1{|Z−j | ≤ τγn}
∣∣∣∣. (4.18)
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18 H. HULT AND G. SAMORODNITSKY

Suppose first that α = 1. For large n, the last expression can be bounded by

Cτ−1 Jn

γn
E(|Z| 1{|Z| ≤ τγn})E

∑
|j |≤Jn

|Aj |.

Note that E
∑

|j |≤Jn |Aj | stays bounded by (2.2). Furthermore, the function

l(x) = E(|Z| 1{|Z| ≤ x})
is slowly varying. Therefore, the above expression vanishes as n → ∞ by (4.6).

Next consider the case in which α > 1. Let µn = E(Z 1{|Z| ≤ τγn}). Note that

E

∣∣∣∣ ∑
|j |≤Jn

AjZj 1{|Zj | ≤ τγn}
∣∣∣∣ ≤ E

∣∣∣∣ ∑
|j |≤Jn

Aj (Zj 1{|Zj | ≤ τγn} − µn)

∣∣∣∣ + |µn| E

∣∣∣∣ ∑
|j |≤Jn

Aj

∣∣∣∣
=: I + II.

Let us start with II . Since EZ = 0, we see that, as n → ∞,

|µn| ≤ E(|Z| 1{|Z| > τγn}) ∼ Cτγn P(|Z| > τγn).

Furthermore, to deal with
∑

|j |≤Jn Aj , we use assumptions (2.2)–(2.4). Suppose, for example,
that 1 < α ≤ 2. Choose ε small enough so that α − ε > 1, and note that

E

∣∣∣∣ ∑
|j |≤Jn

Aj

∣∣∣∣ ≤ CJ 1−(α−ε)−1

n E

( ∑
|j |≤Jn

|Aj |α−ε
)1/(α−ε)

≤ CJ 1−(α−ε)−1

n ,

so the corresponding term in (4.18) is bounded, for large n, by

Cτ 1−2αJ 2−(α−ε)−1

n P(|Z| > γn).

Note that, for small enough ε, θ := 2 − (α − ε)−1 < α. In that case the above expression is
o(Jn/γn) → 0 as n → ∞ by (4.6). Similarly, in the case in which α > 2 this term goes to 0
as well.

For I , by the Burkholder–Davis–Gundy inequality,

E

∣∣∣∣ ∑
|j |≤Jn

Aj (Zj 1{|Zj | ≤ τγn} − µn)

∣∣∣∣
≤ C EA

[
EZ

( ∑
|j |≤Jn

A2
j (Zj 1{|Zj | ≤ τγn} − µn)

2
)1/2]

.

The notation EZ,EA, etc. specifies the random objects with respect to which the expectation
is taken. We use, once again, assumptions (2.2)–(2.4). Assuming again that 1 < α ≤ 2, and
choosing ε as above, we see that the above expression is bounded by

C EA

[
EZ

( ∑
|j |≤Jn

|Aj |α−ε|Zj 1{|Zj | ≤ τγn} − µn|α−ε
)1/(α−ε)]

≤ C(E |Z 1{|Z| ≤ τγn} − µn|α−ε)1/(α−ε) E

( ∑
|j |≤Jn

|Aj |α−ε
)1/(α−ε)

,

which is bounded, and so the corresponding term in (4.18) converges to 0 because Jn/γn → 0
as n → ∞. The case in which α > 2 is entirely analogous (and simpler).
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5. First applications

Theorem 4.1 provides a fairly complete description of the asymptotics of the probability of
rare events for the sequence (Xk). In this section we provide some immediate applications of
this theorem. For the sake of simplicity and to avoid complicated formulae, we restrict attention
to the case where both Ak,j and Zj are univariate and Ak,j ≥ 0 a.s. Then Z has a univariate
regularly varying distribution and its limiting measure can be written as in (2.6).

Example 5.1. (Order statistics.) The first application is to order statistics. Let Xi:n be the ith
order statistic of X1, . . . , Xn in descending order. That is,

X1:n ≥ X2:n ≥ · · · ≥ Xn:n.

Fix an integer q ≥ 1, and consider the q-dimensional vector (X1:n, . . . , Xq:n) consisting of
the q largest values. We denote by A∗

i the ith order statistic of the sequence {Aj,j , j ∈ Z} in
descending order; under assumptions (2.2)–(2.4), this is a well-defined random variable. Note
that, for ∞ > u1 > u2 > · · · > uq > 0, we can write

P(X1:n > γnu1, . . . , Xq:n > γnuq) = P(N0
n ∈ B(u1, . . . , uq))

with

B = B(u1, . . . , uq) =
q⋂
i=1

{ξ : ξ([0, 1] × (ui,∞)) ≥ i}.

Then we have the following implication of Theorem 4.1.

Corollary 5.1. Let d = p = 1. Assume that Ak,j ≥ 0 for all k, j and that the hypotheses of
Theorem 4.1 hold. Then, as n → ∞,

P((X1:n > γnu1, . . . , Xq:n > γnuq))

nP(|Z| > γn)
→ w E min

i=1,...,q
(A∗

i u
−1
i )α.

Proof. First note that

m0(B(u1, . . . , uq)) = E[(Leb × µ) ◦ T −1
A
(B(u1, . . . , uq))]

= E

[
µ

{
z :

∑
δAj,j z(u1,∞) ≥ 1, . . . ,

∑
δAj,j z(uq,∞) ≥ q

}]
= E[µ{z : A∗

1z ∈ (u1,∞), . . . , A∗
qz ∈ (uq,∞)}]

= w E min
i=1,...,q

(A∗
i u

−1
i )α.

The claim, therefore, is a direct application of Theorem 4.1 once we show that the set

B(u1, . . . , uq)

is bounded away from the null measure and m(∂B(u1, . . . , uq)) = 0.
The set B(u1, . . . , uq) is open. To see this, write B(u1, . . . , uq) = ⋂q

i=1 Bi with Bi =
{ξ : ξ([0, 1] × (ui,∞)) ≥ i}. Then, Bc

i = {ξ : ξ([0, 1] × (ui,∞)) < i} and, for a sequence of
measures (ξn) ⊂ Bc

i with ξn
v−→ ξ , we have, by the Portmanteau theorem,

i > lim inf
n→∞ ξn([0, 1] × (ui,∞)) ≥ ξ([0, 1] × (ui,∞)).
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Hence, ξ ∈ Bc
i so Bc

i is closed. This shows that Bi is open and, consequently, B(u1, . . . , uq)

is open. Similarly, the set Ci = {ξ : ξ([0, 1] × [ui,∞)) ≥ i} is closed. Since Bi ⊂ Ci and Ci
does not contain the null measure, we see that each Bi is bounded away from the null measure
and, hence, so is B.

Furthermore, it follows, by the above calculation, that

m(∂B(u1, . . . , uq)) = m(B(u1, . . . , uq))−m(B(u1, . . . , uq))

≤ m

( q⋂
i=1

Ci

)
−m(B(u1, . . . , uq))

= E

[∫ ∞

0
1[u1/A

∗
1,∞)(z) . . . 1[uq/A∗

q ,∞)(z)wαz
−α−1 dz

]

− E

[∫ ∞

0
1(u1/A

∗
1,∞)(z) . . . 1(uq/A∗

q ,∞)(z)wαz
−α−1 dz

]
= 0.

This proves the claim.

Example 5.2. (Hitting times.) Next we consider the large deviations of first hitting times. Take
a > 0, and consider the first hitting time of (aγn,∞) by {Xk}, namely

τn = inf{k : Xk > aγn}.
Corollary 5.2. Let d = p = 1. Assume that Ak,j ≥ 0 for all k, j and that the hypotheses of
Theorem 4.1 hold. Then, for any λ > 0 as n → ∞,

P(τn ≤ λn)

nP(|Z| > γn)
→ λE[(A∗

1)
α]wa−α.

Proof. It is enough to prove the statement for λ = 1; the proof for a general λ > 0 will then
follow via denoting m = [λn] and redefining appropriately the sequence (γn). We have

rn P(τn ≤ n) = rn P

(
sup

0≤k≤n
Xk

γn
> a

)
= rn P(X1:n > γna),

and the statement follows from Corollary 5.1.

6. Large deviations of the partial sums

In this section large deviation results for the partial sums Sn = X1 +· · ·+Xn, n = 1, 2 . . . ,
are considered. The main idea is to start from Theorem 4.1 and derive results for the partial sum
by summing up the points in the point measure Nn, while applying the continuous mapping
argument.

It turns out that for success of this program additional assumptions are needed. The first
assumption is designed to control the contribution of ‘relatively small’ values of the Xks. To
this end, we introduce the following condition: for each δ > 0,

lim
ε↓0

lim sup
n

rn P

(∣∣∣∣
n∑
k=1

Xk 1{|Xk| ≤ γnε}
∣∣∣∣ > γnδ

)
= 0. (6.1)
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The second assumption we need is

the sum
∑

Aj,j converges a.s. and E sup
J⊂Z

∥∥∥∥ ∑
j∈J

Aj,j

∥∥∥∥
α

< ∞. (6.2)

Theorem 6.1. Assume that the hypotheses of Theorem 4.1 hold and, in addition, that (6.1) and
(6.2) hold. Then

rn P(γ−1
n Sn ∈ ·) → E

[
µ

(
z :

∑
j∈Z

Aj,j z ∈ ·
)]

in M0(R
d). (6.3)

Remark 6.1. Note that the large deviation result is uniform in the sense that the normalization
rn is the same for all sets. In particular, the univariate result (p = d = 1) can be stated as

lim
n→∞

P(Sn > ργn)

nP(|Z| > ργn)
= w E

([(∑
Aj,j

)+]α) + (1 − w)E
([(∑

Aj,j

)−]α)

for every ρ > 0, where the limiting measure associated with Z is given by (2.6).

Remark 6.2. In some cases, replacing conditions (6.1) and (6.2) by somewhat stronger
conditions, we can modify the proof of Theorem 6.1 to obtain large deviations of the partial
sum of the absolute values of the process. It is sufficient to change condition (6.2) to

E
(∑

‖Aj,j‖
)α
< ∞. (6.4)

If 0 < α ≤ 1, or α > 1 and n/γn → 0, then it is sufficient to change condition (6.1) to, for
each δ > 0,

lim
ε↓0

lim sup
n

rn P

( n∑
k=1

|Xk| 1{|Xk| ≤ γnε} > γnδ

)
= 0. (6.5)

In this case we conclude that Sabs
n = ∑n

k=1 |Xk| satisfies

rn P(γ−1
n Sabs

n ∈ ·) → E

[
µ

(
z :

∑
j∈Z

|Aj,j z| ∈ ·
)]

in M0(R
d).

If, on the other hand, α > 1 and γn ≡ n, then it is sufficient to change condition (6.1) to, for
each δ > 0,

lim
ε↓0

lim sup
n

rn P

(∣∣∣∣
n∑
k=1

(|Xk| − E |X0|) 1{|Xk| ≤ nε}
∣∣∣∣ > nδ

)
= 0, (6.6)

and then (Sabs
n − nE |X0|) satisfies

rn P(n−1(Sabs
n − nE |X0|) ∈ ·) → E

[
µ

(
z :

∑
j∈Z

|Aj,j z| ∈ ·
)]

in M0(R
d). (6.7)
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Proof of Theorem 6.1. The idea is to divide Sn into three parts. One part contains the terms
where ε < |Xk| ≤ 1/ε for a small positive ε, and the other two parts contain terms with
|Xk| ≤ ε and |Xk| > 1/ε. The contributions from the latter two parts turn out to be negligible.

For 0 < ε < 1, let gε be a function [0, 1]× (Rd \{0}) �→ R
d such that gε(t, x) = gε(x) = x

on ε < |x| ≤ 1/ε, gε(x) = 0 for all other values of x. First we consider the convergence of
rn P(N0

n (gε) ∈ ·) with N0
n as in Theorem 4.1. Let m0 be the limiting measure in (4.3) with

q = 0. Note that gε is continuous except at the points |x| = ε and 1/ε. By Remark 4.1,

m0{ξ : ξ([0, 1] × {|x| = ε or 1/ε}) > 0} = 0.

Hence, the map ξ �→ ξ(gε) from Np to R
d satisfies the continuity assumption in the mapping

theorem (Lemma A.2). Therefore, Theorem 4.1, with q = 0, together with the mapping
theorem, implies that

rn P(N0
n (gε) ∈ ·) → E

[
(Leb × µ)

(
(t, z) :

∑
j∈Z

gε(t, Aj,j z) ∈ ·
)]

:= m̃ε(·) in M0(R
d).

(6.8)

Set m̃n(·) = rn P(γ−1
n Sn ∈ ·) and m̃ as on the right-hand side of (6.3). We need to show that

m̃n(f ) → m̃(f ) for any f ∈ C0(R
d); in fact, it is sufficient to consider uniformly continuous

f (see Appendix A). For any such f , there is an η > 0 such that x ∈ support(f ) implies that
|x| > η. For any δ > 0,

m̃n(f ) = rn E[f (γ−1
n Sn)]

= rn E[f (γ−1
n Sn) 1{|γ−1

n Sn −N0
n (gε)| > δ}]

+ rn E[f (γ−1
n Sn) 1{|γ−1

n Sn −N0
n (gε)| ≤ δ}].

The first term is bounded above by

|f |∞rn P(|γ−1
n Sn −N0

n (gε)| > δ) ≤ |f |∞rn P

(∣∣∣∣
n∑
k=1

Xk 1{|Xk| ≤ γnε}
∣∣∣∣ > γnδ

2

)

+ |f |∞rn P

(∣∣∣∣
n∑
k=1

Xk 1
{
|Xk| > γn

ε

}∣∣∣∣ > γnδ

2

)
. (6.9)

Assumption (6.1) guarantees that the first member on the right-hand side of (6.9) is asymp-
totically negligible. The second member on the right-hand side of (6.9) is, up to a constant,
bounded above by

rn P

(
max

k=1,...,n
|Xk| > γn

ε

)
≤ rnnP

(
|X0| > γn

ε

)
→ 0

as first n → ∞ and then ε → 0. Therefore, the statement of the theorem will follow once we
show that

lim
δ↓0

lim sup
ε↓0

lim sup
n→∞

rn E[|f (γ−1
n Sn)− f (N0

n (gε))| 1{|γ−1
n Sn −N0

n (gε)| ≤ δ}] = 0 (6.10)
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and

lim
ε↓0

m̃ε(f ) = m̃(f ). (6.11)

Indeed, in that case we could write, for each ε > 0 and δ > 0,

|m̃n(f )− m̃(f )| ≤ rn E[|f (γ−1
n Sn)− f (N0

n (gε))| 1{|γ−1
n Sn −N0

n (gε)| ≤ δ}]
+ rn E[f (γ−1

n Sn) 1{|γ−1
n Sn −N0

n (gε)| > δ}]
+ |rn E[f (N0

n (gε)) 1{|γ−1
n Sn −N0

n (gε)| ≤ δ}] − rn E[f (N0
n (gε))]|

+ |rn E[f (N0
n (gε))] −mε(f )| + |m̃ε(f )− m̃(f )|.

By (6.10), the argument in (6.9), (6.8), and (6.11), each term converges to 0 as first n → ∞,
then ε ↓ 0, and finally δ ↓ 0.

It remains to prove (6.10) and (6.11). We start with (6.10). Choose δ above to be smaller
than η/2. The reason for this is that if either f (γ−1

n Sn) > 0 or f (N0
n (gε)) > 0, then, on

{|γ−1
n Sn −N0

n (gε)| ≤ δ}, we have |N0
n (gε)| > η/2. Since f is uniformly continuous, the

expression in (6.10) is bounded above by

oδ(1)rn E[1{|N0
n (gε)| > η/2} 1{|γ−1

n Sn −N0
n (gε)| ≤ δ}] ≤ oδ(1)rn P(|N0

n (gε)| > η/2).

As n → ∞ and ε ↓ 0, (6.8) and (6.11) (still to be proved) show that this remains bounded by
(constant) oδ(1). As δ ↓ 0, this converges to 0.

It remains to show (6.11). We have, as ε ↓ 0,

m̃ε(f ) =
∫
�

∫
Rd\{0}

f
(∑

gε(Aj,j z)
)
µ(dz)P(dω)

→
∫
�

∫
Rd\{0}

f
(∑

Aj,j z
)
µ(dz)P(dω)

= m̃(f ),

by dominated convergence. Indeed,
∑
gε(Aj,j z) → ∑

Aj,j z, (µ× P)-almost everywhere as
ε ↓ 0, f is continuous, and∣∣∣∣f

(∑
gε(Aj,j z)

)∣∣∣∣ ≤ |f |∞ 1
{

sup
J⊂Z

∣∣∣∣ ∑
j∈J

Aj,j z

∣∣∣∣ > η

}
,

which is (µ× P)-integrable by the scaling property of the measure µ and assumption (6.2).

6.1. Checking the conditions of Theorem 6.1

To apply Theorem 6.1, we need to verify the extra assumptions imposed there. In this section
we provide conditions that are easier to check for some more specific models.

Proposition 6.1. Let (Xk) be the stationary process in (1.1) satisfying the conditions of
Theorem 4.1. If 0 < α < 1 then (6.5) holds and, hence, (6.1) holds as well. If 0 < α ≤ 1 then
(6.4) holds and, hence, (6.2) holds as well.
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Proof. Assume that 0 < α < 1. By Markov’s inequality, Karamata’s theorem, and, finally,
Theorem 2.1,

lim
ε↓0

lim sup
n

rn P

( n∑
k=1

|Xk| 1{|Xk| ≤ γnε} > γnδ

)

≤ lim
ε↓0

lim sup
n

rn(γnδ)
−1 E

( n∑
k=1

|Xk| 1{|Xk| ≤ γnε}
)

= lim
ε↓0

lim sup
n

rnn(γnδ)
−1 E |X0| 1{|X0| ≤ γnε}

= lim
ε↓0

lim sup
n

rnn(γnδ)
−1C(γnε)P(|X0| > γnε)

= lim
ε↓0

lim sup
n

C
ε P(|X0| > γnε)

δ P(|Z| > γn)

= lim
ε↓0

C
ε1−α

δ

= 0,

and so (6.1) holds. If 0 < α ≤ 1 then, by (2.2) and the Cauchy–Schwarz inequality,

E
(∑

‖Aj‖
)α ≤

∑
E ‖Aj‖α

≤
∑

(E ‖Aj‖α−ε)1/2(E ‖Aj‖α+ε)1/2

≤
(∑

E ‖Aj‖α−ε)1/2(∑
E ‖Aj‖α+ε)1/2

< ∞,

and so (6.4) holds.

If the sum (1.1) defining the process (Xk) is finite, then modest additional assumptions on
the sequence (Ak)k∈Z guarantee applicability of Theorem 6.1. We present one such situation.

Proposition 6.2. Let (Xk) be the stationary process in (1.1) satisfying the conditions of
Theorem 4.1. Suppose, further, that the sequence (Ak)k∈Z is i.i.d. such that, for some M =
0, 1, 2, . . . , Ak,j = 0 a.s. for |j | > M . Then (6.1) holds and, further, (6.5) and (6.6) (as
appropriate) hold. Also, both (6.2) and (6.4) hold, and so Theorem 6.1 applies.

When the i.i.d. assumption of the sequence (Ak)k∈Z is dropped, we can still obtain sufficient
conditions for (6.1). See Lemma 7.3, below.

Proof of Proposition 6.2. For finite sums, condition (6.4) is a trivial consequence of (2.2)–
(2.4). We will show that (6.1) holds; the proofs for (6.5) and (6.6) are similar. It is clearly
enough to consider the case d = 1. Note further that

P

(∣∣∣∣
n∑
k=1

Xk 1{|Xk| ≤ γnε}
∣∣∣∣ > γnδ

)

≤ P( for some k = 1, . . . , n, |Ak,jZk−j | > γnε for at least two different j)

+ P

(∣∣∣∣
n∑
k=1

Xk 1{|Ak,jZk−j | ≤ γnMε for all k = 1, . . . , n and |j | ≤ M}
∣∣∣∣ > γnδ

)
.

(6.12)
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The first term on the right-hand side of (6.12) is bounded by

n
∑

i,j=−M,...,M
i �=j

P(|A0,iZ−i | > γnε, |A0,jZ−j | > γnε) = o(1)nP(|Z| > γn) = o(1)

(
1

rn

)
,

as in Lemma 3.4 of Hult and Samorodnitsky (2008). The second term on the right-hand side
of (6.12) does not exceed

M∑
j=−M

P

(∣∣∣∣
n∑
k=1

Ak,jZk−j 1{|Ak,jZk−j | ≤ γnMε for all k = 1, . . . , n and |j | ≤ M}
∣∣∣∣

>
γnδ

2M + 1

)
. (6.13)

By the assumed independence, for every |j | ≤ M ,

lim
ε↓0

lim sup
n

rn P

(∣∣∣∣
n∑
k=1

Ak,jZk−j 1{|Ak,jZk−j | ≤ γnMε for k = 1, . . . , n, |j | ≤ M}
∣∣∣∣

>
γnδ

2M + 1

)
= 0; (6.14)

see the argument in Lemma 2.1 of Hult et al. (2005). Therefore, (6.1) follows.

Finally, for certain symmetric stochastic recurrence equations as in Examples 1.2 and 2.2,
we provide sufficient conditions for the applicability of Theorem 6.1.

Proposition 6.3. Suppose that the i.i.d. pairs (Yk, Zk)k∈Z are symmetric (i.e. (−Yk,−Zk) d=
(Yk, Zk)), Z ∈ RV(µ, α) for some 0 < α < 2, and E ‖Y‖α+ε < 1 for some ε > 0. Then the
random recursion (1.3) has a unique stationary solution, and it satisfies Theorem 6.1.

Proof. Existence and uniqueness of a stationary solution follows from Corollary 2.3 of Hult
and Samorodnitsky (2008), which also shows that this solution is of the form (1.1) and satisfies
the assumptions of Theorem 4.1. For 0 < α < 1, the statement follows from Proposition 6.1.
For α ≥ 1, we have, by convexity (see Lemma 3.3.1 of Kwapień and Woyczyński (1992)),

E
(∑

‖Aj‖
)α = E

( ∞∑
j=0

∥∥∥∥
j∏
i=0

Yi

∥∥∥∥
)α

≤ E

( ∞∑
j=0

j∏
i=0

‖Yi‖
)α

≤
[ ∞∑
j=0

(
E

j∏
i=0

‖Yi‖α
)1/α]α

< ∞,

since E ‖Y‖α < 1. Therefore, (6.4) holds. Furthermore, the symmetry assumption in the propo-
sition guarantees that the stationary process (Xk) is symmetric in the sense that (Xk)

d= (εkXk),
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where (εk) is a sequence of i.i.d. Rademacher random variables independent of (Xk). We
conclude, as in the proof of Proposition 6.1, that

lim
ε↓0

lim sup
n

rn P

(∣∣∣∣
n∑
k=1

Xk 1{|Xk| ≤ γnε}
∣∣∣∣ > γnδ

)

≤ lim
ε↓0

lim sup
n

rn(γnδ)
−2 E

(∣∣∣∣
n∑
k=1

Xk 1{|Xk| ≤ γnε}
∣∣∣∣
)2

= lim
ε↓0

lim sup
n

rn(γnδ)
−2 E

( n∑
k=1

X2
k 1{|Xk| ≤ γnε}

)

= lim
ε↓0

lim sup
n

rnn(γnδ)
−2 EX2

k 1{|Xk| ≤ γnε}
= lim

ε↓0
lim sup

n
rnn(γnδ)

−2C(γnε)
2 P(|Xk| > γnε)

= lim
ε↓0

lim sup
n

C
ε2 P(|Xk| > γnε)

δ2 P(|Z| > γn)

= lim
ε↓0

C
ε2−α

δ2

= 0,

proving (6.1).

7. Ruin probabilities

In this section we consider the univariate (d = p = 1) ruin problem based on the sequence
(Xk) in (1.1). Throughout this section, we assume that α > 1 (which requires, according to
our assumptions, that EZ = 0), and let c > 0 be the ‘drift’. We are interested in deriving the
asymptotic decay of the so-called infinite-horizon ruin probability

ψ(u) = P
(

sup
n
(Sn − cn) > u

)
as u → ∞. Here Sn = X1 + · · · +Xn is the partial sum process.

As in Section 6, we need to assume extra technical conditions, mostly in order to control
the contributions of the small jumps to the ruin probability. We start with some notation. For
integer q ≥ −1, let

X̂
q
k =

∑
|j |>q

Ak,jZk−j , k ∈ Z. (7.1)

We assume that, for each q ≥ −1 and each δ > 0,

lim
ε↓0

lim sup
n

rn P

(∣∣∣∣
n∑
k=1

(|X̂qk | − E |X̂q0 |) 1{|X̂qk | ≤ nε}
∣∣∣∣ > nδ

)
= 0 (7.2)

and that, for every q ≥ 0 and γ > 0,

lim
δ→0

lim sup
n→∞

P(supk≤n | ∑k
i=1X

q
i 1{|Xqi | ≤ nδ}| > nγ )

nP(|Z| > n)
= 0. (7.3)
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It is easy to check that condition (7.2) holds, for example, under the assumptions of Proposi-
tion 6.2. Sufficient conditions for (7.3) are given in Lemma 7.3, below.

Theorem 7.1. Suppose that the conditions of Theorem 4.1 hold with α > 1. Suppose, in
addition, that (6.4), (7.2), and (7.3) hold. Then

lim
u→∞

ψ(u)

uP(|Z| > u)
= E

[
w

(
sup
j∈Z

j∑
k=−∞

Ak,k

)α
+ (1 − w)

(
sup
j∈Z

j∑
k=−∞

−Ak,k
)α] 1

c(α − 1)
.

(7.4)

Example 7.1. (Independent and identically distributed.) In the i.i.d. caseAk,j = 1{j = 0} we
get the classical result (see, e.g. Embrechts et al. (1997, p. 43))

lim
u→∞

ψ(u)

uP(|Z| > u)
= w

c(α − 1)
.

Example 7.2. (SRE.) Consider the univariate SRE of Examples 1.2 and 2.2. Assume that the
i.i.d. pairs (Yk, Zk)k∈Z are symmetric and that (7.2) holds. Set

M+ = sup
j≥0

( j∑
k=0

Y1 · · ·Yk
)+
, M− = sup

j≥0

( j∑
k=0

Y1 · · ·Yk
)−
.

Then

lim
u→∞

ψ(u)

uP(|Z| > u)
= (w E[Mα+] + (1 − w)E[Mα−]) 1

c(α − 1)
.

This result is believed to be new.

Proof of Theorem 7.1. For q ≥ 0, we define a counterpart to (7.1) by

X
q
k =

∑
|j |≤q

Ak,jZk−j , k ∈ Z,

and let

S
q
n = X

q
1 + · · · +X

q
n, Ŝ

q
n = X̂

q
1 + · · · + X̂

q
n, n = 1, 2, . . . .

Let R denote the right-hand side of (7.4). The first step is to prove the upper bound

lim sup
u→∞

ψ(u)

uP(|Z| > u)
≤ R. (7.5)

For (a large) integer M = 1, 2, . . . , ψ(u) is bounded above by

P
(

sup
k≤[u]M

(Sk − ck) > [u]
)

+ P
(

sup
k>[u]M

(Sk − ck) > [u]
)

=: p(11)
M (u)+ p

(12)
M (u).

By Lemma 7.1,

lim
M→∞ lim sup

u→∞
p
(12)
M (u)

uP(|Z| > u)
= 0,
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so the main contribution comes from p
(11)
M (u). For any ε > 0 and any integer q ≥ 0, we have

the upper bound

p
(11)
M (u) ≤ P

(
sup

k≤[u]M
(S
q
k − ck) > [u](1 − ε)

)
+ P

(
sup

k≤[u]M
Ŝ
q
k > [u]ε

)
.

It follows from Remark 6.2 and assumptions (6.4) and (7.2) that

lim
q→∞ lim

u→0

P(supk≤[u]M Ŝ
q
k > [u]ε)

uP(|Z| > u)
= 0.

It remains to show that

lim
M→∞ lim

ε→0
lim sup
q→∞

lim sup
u→∞

P(supk≤[u]M(S
q
k − ck) > [u](1 − ε))

uP(|Z| > u)
≤ R.

Setting n = [u]M and taking 0 < γ < 1, and a small δ > 0, we see that

P
(

sup
k≤[u]M

(S
q
k − ck) > [u](1 − ε)

)

= P

(
sup
k≤n

n−1(S
q
k − ck) > (1 − ε)M−1, sup

k≤n

∣∣∣∣
k∑
i=1

X
q
i 1{|Xqi | ≤ nδ}

∣∣∣∣ ≤ nγ

)

+ P

(
sup
k≤n

n−1(S
q
k − ck) > (1 − ε)M−1, sup

k≤n

∣∣∣∣
k∑
i=1

X
q
i 1{|Xqi | ≤ nδ}

∣∣∣∣ > nγ

)
. (7.6)

Note that, by the regular variation and (7.3), for everyM (recall that n = [u]M) and 0 < γ < 1,

lim
δ→0

lim sup
u→∞

P(supk≤[u]M | ∑k
i=1X

q
i 1{|Xqi | ≤ nδ}| > nγ )

uP(|Z| > u)
= 0. (7.7)

Hence, we are left with estimating (7.6).
Since each noise variable Z affects at most 2q + 1 values of the process (Xq), it follows

from the obvious fact that, for every δ > 0,

lim
n→∞

P(|Zj | > nδ for at least two different j = −q, . . . , n+ q)

nP(|Z| > n)
= 0,

and Remark 4.1 of Hult and Samorodnitsky (2008), that

P(Dn) := P(|Xqji | > nδ for j1, j2 = 1, . . . , n, |j1 − j2| > 2q) = o(nP(|Z| > n)). (7.8)

We conclude by (7.8) and (7.9) that, for the upper bound, we need to prove that

lim
M→∞ lim

ε→0
lim sup
q→∞

lim
γ→0

lim sup
δ→0

lim sup
u→∞

pn(δ)

uP(|Z| > u)
≤ R. (7.9)

Here pn(δ) is a modification of the probability in (7.6), defined as follows.
For n ≥ 1 and δ > 0, let

Kδ(n) = inf{i = 1, . . . , n : |Xi | > nδ},
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defined to be equal to n+ 1 if the infimum is taken over the empty set. Then we set

pn(δ) = P

(
sup

0≤k≤2q
n−1

Kδ(n)+k∑
i=Kδ(n)

Xi − cKδ(n) > (1 − ε)M−1 − 2γ

)
.

This puts us in a situation where we can use the large deviations for point processes in
Theorem 4.1 and the mapping theorem in Lemma A.2.

Let q ′ = 6q + 1. This will correspond to the dimension of the point processes we will work
with. Specifically, q ′ is the number of values of the process we are keeping track of in (4.2), and
we will use the statement of Theorem 4.1 in the space M0(N

q ′
p ). We now define a functional

h∗ : N
q ′
p → R as follows. Let

ξ =
∑
k∈�

δ
(tk,x

(1)
k ,...,x

(q′)
k )

∈ N
q ′
p .

Consider all points (tk, x
(1)
k , . . . , x

(q ′)
k ) of ξ satisfying the following two conditions:

1. for some m = 2q + 1, . . . , q ′ − 2q, |x(m)k | > δ;

2. |x(j)k | ≤ δ for all j = 1, . . . , 2q and all j = q ′ − 2q + 1, . . . , q ′.

Note that, by the definition of the space N
q ′
p , the setHδ(ξ) of such points is finite. IfHδ(ξ) = ∅,

we set h∗(ξ) = 0.
With the obvious convention for the expression k ∈ Hδ(ξ), we set, for each such k,

mk = min{m = 2q + 1, . . . , q ′ − 2q : |x(m)k | > δ},

and define

h(tk, x
(1)
k , . . . , x

(q ′)
k ) = max

j=0,1,...,2q

(mk+j∑
i=mk

x
(i)
k

)
− ctk.

Finally, we define

h∗(ξ) = max
k∈Hδ(ξ)

h(tk, x
(1)
k , . . . , x

(q ′)
k ). (7.10)

It follows from Lemma 7.2 that the measure mq
′

in Theorem 4.1 assigns zero value to the set
of discontinuities of h∗.

By the mapping theorem (Lemma A.2) we conclude that, for any τ > 0,

rn P(h∗(Nq ′
n ) > τ) = m

q ′
n (h

∗(Nq ′
n ) > τ) → mq

′ {ξ : h∗(ξ) > τ }, (7.11)

using the fact that the right-hand side of (7.11) is continuous in τ > 0.
Now taking into account the definition of rn, the estimate (7.8), and the fact that n = [u]M ,

we obtain, from (7.11),

lim sup
u→∞

pn(δ)

uP(|Z| > u)
≤ M−(α−1)mq

′ {ξ : h∗(ξ) > (1 − ε)M−1 − 2γ }.
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It follows from the form of the limiting measuremq
′
in the one-dimensional case (see (2.6))

that, for any τ > 0,

lim
δ→0

mq
′ {ξ : h∗(ξ) > τ }

= 1

c(α − 1)
(τ−(α−1) − (c + τ)−(α−1))

× E

[
w

(
max

j=0,1,...,2q

−q+j∑
k=−q

Ak,k

)α
+

+ (1 − w)

(
max

j=0,1,...,2q

−q+j∑
k=−q

−Ak,k
)α

+

]
,

from which we see that

lim sup
q→∞

lim
γ→0

lim sup
δ→0

lim sup
u→∞

pn(δ)

uP(|Z| > u)

≤ M−(α−1)[((1 − ε)M)α−1 − (c + ((1 − ε)M−1))−(α−1)]R,
from which (7.9) follows. This proves the upper bound (7.5).

The lower bound requires a similar estimate. Take ε > 0, and let u be sufficiently large that
([u] + 1)/[u] < 1 + ε. For (a large) integer M = 1, 2, . . . , we have

ψ(u) ≥ P
(

sup
k

(Sk − ck) > [u] + 1
)

≥ P
(

sup
k≤[u]M

(Sk − ck) > [u](1 + ε)
)

≥ P
(

sup
k≤[u]M

(S
q
k − ck) > [u](1 + 2ε)

)
− P

(
sup

k≤[u]M
Ŝ
q
k > [u]ε

)
.

Hence, by Remark 6.2 and assumptions (6.4) and (7.2), it is sufficient to prove that

lim
M→∞ lim

ε→0
lim inf
q→∞ lim inf

u→∞
P(supk≤[u]M(S

q
k − ck) > [u](1 + 2ε))

uP(|Z| > u)
≥ R.

Using (7.7) again, it is sufficient to consider

P(supk≤[u]M n−1(
∑k
i=1Xi 1{nδ < |Xi | < n/δ} − ck) > (1 + 2ε)/M + γ )

uP(|Z| > u)
,

and the argument from here is the same as in the case of the upper bound.

Below are the lemmas used in the proof of Theorem 7.1.

Lemma 7.1. Under the assumptions of Theorem 7.1,

lim
M→∞ lim sup

u→∞
P(supk>uM(Sk − ck) > u)

uP(|Z| > u)
= 0.

Proof. We use Theorem 6.1 and Remarks 6.1 and 6.2 with γn ≡ n. Choose β > 1 and
A > 1 such that

E |X1| < c(1 − 1/A)

β − 1
, (7.12)
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and write

P
(

sup
k>uM

(Sk − ck) > u
)

≤
∞∑
j=1

P(Sk > ck for some Muβj−1 ≤ k ≤ Muβj ).

By stationarity of (Xk), for every j = 1, 2, . . . ,

P(Sk > ck for some Muβj−1 ≤ k ≤ Muβj )

≤ P

(
S�Muβj−1� >

cMuβj−1

A

)

+ P

(
Sk > ck + cMuβj−1

(
1 − 1

A

)
for some 0 ≤ k ≤ Mu(βj − βj−1)

)
.

Using Theorem 6.1, we see that, for some positive constant C (that, as usual, may change in
the sequel), we have, for large enough u,

P

(
S�Muβj−1� >

cMuβj−1

A

)
≤ CMuβj−1 P(|Z| > Muβj−1),

and, by Potter’s bound, for large enough M ,

P(|Z| > Muβj−1)

P(|Z| > u)
≤ C(Mβj−1)−α.

It follows that

lim sup
u→∞

∑∞
j=1 P(S�Muβj−1� > cMuβj−1/A)

uP(|Z| > u)
≤ CM−(α−1).

Using the fact that α > 1, we let M → ∞ and see that the above expression converges to 0.
Furthermore, for every j = 1, 2, . . . ,

P

(
Sk > ck + cMuβj−1

(
1 − 1

A

)
for some 0 ≤ k ≤ Mu(βj − βj−1)

)

≤ P

(Mu(βj−βj−1)∑
k=0

|Xk| > cMuβj−1
(

1 − 1

A

))

≤ P

(
1

Mu(βj − βj−1)

Mu(βj−βj−1)∑
k=0

(|Xk| − E |X1|) > c(1 − 1/A)

β − 1
− E |X1|

)
.

By the choice of β and A as in (7.12) and assumption (7.2), we can use the large deviation
result (6.7) to conclude that, just as above, for all large enough M ,

lim sup
u→∞

P(Sk > ck + cMuβj−1(1 − 1/A) for some 0 ≤ k ≤ Mu(βj − βj−1))

uP(|Z| > u)

≤ C(Mβj−1)−(α−1),

and, as before, these bounds can be summed up over j and, then, we let M → ∞ and use the
fact that α > 1. This proves the statement of the lemma.
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Lemma 7.2. Under the assumptions of Theorem 7.1, the measuremq
′
in Theorem 4.1 does not

charge the set of discontinuities of h∗ in (7.10).

Proof. Let � be the subset of N
q ′
p consisting of point measures ξ such that

ξ([0, 1] × {(x0, . . . , xq ′) : |xi | = δ, some i ∈ {0, . . . , q ′}}) = 0.

According to Remark 4.1, the measure mq
′

is concentrated on the set �, and so it is enough
to prove that the functional h∗ is continuous at each ξ ∈ �. Let (ξn) be a sequence in

N
q ′
p such that ξn

v−→ ξ . If Hδ(ξ) = ∅ then Hδ(ξn) = ∅ for all large enough n, and so
h∗(ξn) = 0 → 0 = h∗(ξ).

Suppose now that Hδ(ξ) �= ∅. By the definition of the set � we see that, for all large
enough n (say n ≥ n0), the cardinality of Hδ(ξn) is equal to the (finite) cardinality of Hδ(ξ).

Moreover, the vague convergence ξn
v−→ ξ implies that, for everyn ≥ n0, there is an enumeration

{((tk)n, (x(1)k )n, . . . , (x
(q ′)
k )n)} of Hδ(ξn) such that, for every k ∈ Hδ(ξ),
((tk)

n, (x
(1)
k )n, . . . , (x

(q ′)
k )n) → (tk, x

(1)
k , . . . , x

(q ′)
k )

componentwise as n → ∞ (see Resnick (1987, Proposition 3.13)). Therefore, for each such k,

h((tk)
n, (x

(1)
k )n, . . . , (x

(q ′)
k )n) → h(tk, x

(1)
k , . . . , x

(q ′)
k ),

and, since the set Hδ(ξ) is finite, we conclude that h∗(ξn) → h∗(ξ), as required.

Finally, as promised, we provide sufficient conditions for (7.3).

Lemma 7.3. Assume that the hypothesis of Theorem 4.1 holds. If 1 < α ≤ 2 then, for every
q ≥ 0 and γ > 0,

lim
δ→0

lim sup
n→∞

P(supk≤n | ∑k
i=1X

q
i 1{|Xqi | ≤ nδ}| > nγ )

nP(|Z| > n)
= 0.

If α > 2, the conclusion holds if, additionally, for some β > α − 1 and all −q ≤ j ≤ q,

EA2β
0,j < ∞. (7.13)

Proof. Write

P

(
sup
k≤n

∣∣∣∣
k∑
i=1

X
q
i 1{|Xqi | ≤ nδ}

∣∣∣∣ > nγ

)

≤
∑
|j |≤q

P

(
sup
k≤n

∣∣∣∣
k∑
i=1

Ai,jZi−j 1{|Xqi | ≤ nδ}
∣∣∣∣ > nγ

2q + 1

)
.

We replace below, for simplicity, γ /(2q + 1) with γ . Since the above sum has a finite number
of terms, it is enough to prove the appropriate convergence to 0 for each one of the terms
separately. For simplicity, we consider j = 0. Define

Bn =
{

sup
k≤n

∣∣∣∣
k∑
i=1

Ai,0Zi 1{|Xqi | ≤ nδ}
∣∣∣∣ > nγ

}
,
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so that we can write, for a small ρ > 0,

P

(
sup
k≤n

∣∣∣∣
k∑
i=1

Ai,0Zi 1{|Xqi | ≤ nδ}
∣∣∣∣ > nγ

)

= P(Bn ∩ {|Zm| ≤ nρ for all m = 1 − q, . . . , n+ q})
+ P(Bn ∩ {|Zm| > nρ for exactly one m = 1 − q, . . . , n+ q})
+ P(Bn ∩ {|Zm| > nρ for two or more m = 1 − q, . . . , n+ q})

:= p1(n)+ p2(n)+ p3(n).

Clearly, for every ρ > 0,

lim
n→∞

p3(n)

nP(|Z| > n)
= 0.

Next, select 0 < θ < δ/(2q + 1), and introduce the event

Cn = {|Ai1,jZi1−j | > nθ for some i1 = 1, . . . , n, |j | ≤ q}.
Then

p1(n) ≤ P(Cn ∩ {|Zm| ≤ nρ for all m = 1 − q, . . . , n+ q})
+ P(Bn ∩ Cc

n ∩ {|Zm| ≤ nρ for all m = 1 − q, . . . , n+ q})
:= p11(n)+ p12(n).

By stationarity,

p11(n) ≤ (n+ 2q)P
(
|Z0| ≤ nρ, max|j |≤q |Aj,jZ0| > nθ

)

≤ (n+ 2q)P

(
max|j |≤q |Aj,j | 1

{
max|j |≤q |Aj,j | > θ

ρ

}
|Z0| > nθ

)
.

Therefore,

lim
n→∞

p11(n)

nP(|Z| > n)
= θ−α E

[
max|j |≤q |Aj,j |α 1

{
max|j |≤q |Aj,j | > θ

ρ

}]
,

and this expression can be made arbitrarily small by selecting ρ small in comparison with θ .
Furthermore, the choice of θ guarantees that, on the event Ccn, we automatically have

|Xqi | ≤ nδ for each i = 1, . . . , n.

Therefore,

p12(n) ≤ P

(
sup
k≤n

∣∣∣∣
k∑
i=1

Ai,0Zi 1{|Zi | ≤ nρ}
∣∣∣∣ > nγ

)
.

Set

mnρ = EZ 1{|Z| ≤ nρ} and S̃k =
k∑
i=1

Ai,0(Zi 1{|Zi | ≤ nρ} −mnρ),
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and take p > α such that E |A0,0|p < ∞. Then

P

(
max
k≤n

∣∣∣∣
k∑
i=1

Ai,0Zi 1{|Zi | ≤ nρ}
∣∣∣∣ > nγ

)

≤ P

(
max
k≤n |S̃k| > nγ

2

)
+ P

(
max
k≤n

∣∣∣∣
k∑
i=1

Ai,0mnρ

∣∣∣∣ > nγ

2

)
. (7.14)

By Markov’s inequality, the second term in (7.14) is bounded above by

P

( n∑
i=1

|Ai,0| > nγ

2|mnρ |
)

≤
(

nγ

2|mnρ |
)−p

E

( n∑
i=1

|Ai,0|
)p

≤
(

nγ

2|mnρ |
)−p

np−1 E
n∑
i=1

|Ai,0|p

=
(

γ

2|mnρ |
)−p

E |A0,0|p.

Since p > α > 1, E |A0,0|p < ∞, and |mnρ | ∼ Cnρ P(|Z| > nρ), it follows that

lim sup
n→∞

P(supk≤n | ∑k
i=1Ai,0mnρ | > nγ/2)

nP(|Z| > n)
≤ lim sup

n→∞
C

[nρ P(|Z| > nρ)]p
nP(|Z| > n)

= 0.

To handle the first term in (7.14), we divide it into two cases. For 1 < α < 2, we can takeα <
p < 2 and use the fact that S̃k is a martingale with respect to Fk = σ({Ai,0}ni=1, Z1, . . . , Zk).
Then the Burkholder–Davis–Gundy inequality implies that

P

(
max
k≤n |S̃k| > nγ

2

)
≤ C

(nγ )p
E([S̃]p/2n )

≤ C

(nγ )p
E

( n∑
i=1

|Ai,0|p|Zi 1{|Zi | ≤ nρ} −mnρ |p
)

≤ C

(nγ )p
nE |A0,0|p(E |Z|p 1{|Z| ≤ nρ} + |mnρ |p)

∼ C

(nγ )p
n(E |A0,0|p(nρ)p P(|Z| > nρ)+ |mnρ |p), (7.15)

where, in the last step, we used Karamata’s theorem. In particular,

lim
ρ→0

lim sup
n→∞

(C/(nγ )p)n(E |A0,0|p(nρ)p P(|Z| > nρ)+ |mnρ |p)
nP(|Z| > n)

= 0.

For α ≥ 2, a variant of the Fuk–Nagaev inequality (see Petrov (1995, Section 2.6.6, p. 79))
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implies that

P

(
max
k≤n |S̃k| > nγ

2

)
= E

[
P

(
max
k≤n |S̃k| > nγ

2

∣∣∣∣ {Ai,0}
)]

≤ E

[
C1(nγ )

−p
n∑
i=1

|Ai,0|p E |Zi 1{|Zi | ≤ nρ} −mnρ |p
]

+ E exp

{
−C2n

2
( n∑
i=1

A2
i,0 var(Z 1{|Z| ≤ nρ})

)−1}
.

The first of these terms can be bounded just as (7.15). To handle the second term, we write
Wn := ∑n

i=1A
2
i,0 and note that, since α ≥ 2, var(Z 1{|Z| ≤ nρ}) is a slowly varying function

(this quantity is even bounded when var(Z) < ∞). Therefore, it is bounded by nε for all
sufficiently large n, where we choose ε to satisfy β > (α − 1)/(1 − ε). Then it follows that,
for each λ > 0,

E[exp{−C2n
2(Wn var(Z 1{|Z| ≤ nρ}))−1}

≤ E

[
exp

{
−C3

n2−ε

Wn

}]

= E

[
exp

{
−C3

n2−ε

Wn

}
1
{
Wn ≤ λn2−ε

log n

}]
+ E

[
exp

{
−C3

n2−ε

Wn

}
1
{
Wn >

λn2−ε

log n

}]

≤ n−C3λ + P

(
Wn >

λn2−ε

log n

)
.

In particular, we may choose λ > (α − 1)/C3, which will imply that

n−C3λ

nP(|Z| > n)
→ 0 as n → ∞.

We also have, for large n, by the choice of ε,

P(Wn > λn2−ε/ log n)

nP(|Z| > n)
≤ n−β(2−ε)

nP(|Z| > n)
E

( n∑
i=1

A2
i,0

)β

≤ n−β(1−ε)

nP(|Z| > n)
EA2β

0,0

→ 0,

by assumption (7.13).
Finally, the term p2(n) can be treated in the same way as the term p1(n), if we note that

the single large value of Zm can contribute to at most 2q + 1 different Xi . If we choose
δ small enough so that (2q + 1)δ < γ , then these terms can be excluded from the sum∑k
i=1X

q
i 1{|Xqi | ≤ nδ} in the first place. Hence, the statement of the lemma follows.

Appendix A. Framework

Let E be a locally compact complete separable metric space and consider the space Np of
Radon point measures on E. In the main part of the paper E is the space [0, 1] × (Rd(q+1) \ {0})
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for some q ≥ 0 and d ≥ 1, but here it can be quite arbitrary. Let (hi)i≥1 be a countable dense
collection of functions in C+

K(E), the space of nonnegative continuous functions on E with
compact support, such that ξn(hi) → ξ(hi) as n → ∞ for each i ≥ 1 implies that ξn

v−→ ξ

in Np. Here ‘
v−→’ denotes vague convergence. The existence of such a sequence (hi)i≥1 is

established in Kallenberg (1983, Section 15.7.7) (see also Resnick (1987, Proposition 3.17)).
Note also that the functionshi may be chosen to be Lipschitz with respect to the metric on E. This
follows from the fact that the approximating functions in the version of the Urysohn lemma used
for the purpose of this construction are already Lipschitz (see Resnick (1987, Lemma 3.11)).
In particular, a measure ξ in Np is uniquely determined by the sequence (ξ(hi))i≥1. We may
and will assume that the collection (hi)i≥1 is closed under multiplication by positive rational
numbers.

We can identify Np with a closed subspace of [0,∞)∞ via the mapping h : Np → [0,∞)∞
given by h(ξ) = (ξ(hi))i≥1. To see that h(Np) is closed in [0,∞)∞, let (xni )i≥1 be a convergent
sequence in h(Np). That is, xni → xi for each i. Then there exist ξn ∈ Np such that ξn(hi) = xni
for each i ≥ 1. The collection (ξn)n≥1 is relatively compact in Np because

sup
n
ξn(hi) = sup

n
xni < ∞ for each i.

Hence, there is a convergent subsequence ξnk → some ξ . This ξ necessarily satisfies ξ(hi) =
xi and we conclude that (xi)i≥1 ∈ h(Np). Thus, h(Np) is closed.

The vague convergence on Np can be metrized via a metric d induced from [0,∞)∞, defined
by

d(x, y) =
∞∑
i=1

2−i |xi − yi |
1 + |xi − yi | (A.1)

for elements x = (xi)i≥1 and y = (yi)i≥1 in [0,∞)∞. This makes Np into a complete separable
metric space (since it is a closed subspace of the complete separable metric space [0,∞)∞).
The open ball of radius r > 0 in Np centered at ξ is denoted by Bξ,r . Recall that we denote by
∅ the null measure in Np.

We will consider convergence of Radon measures m on the space Np. The framework
considered here is that of Hult and Lindskog (2006) where the underlying space, denoted by S
in Hult and Lindskog (2006), is taken to be Np. The space of Radon measures on Np whose
restriction to Np \B∅,r is finite for each r > 0 is denoted by M0 = M0(Np). The convergence
mn → m in M0 is defined as the convergence mn(f ) → m(f ) for all f ∈ C0(Np), the space
of bounded continuous functions on Np that vanish in a neighborhood of ‘the origin’ ∅.

The typical situation in this paper is that we have a sequence of random point measures (Nn)
on E, and we are interested in the convergence

mn(·) := rn P(Nn ∈ ·) → m(·) in M0.

A.1. Convergence in MMM0(NNNp)

We start with relative compactness criteria. For measures on a general metric space, such
criteria are given in Theorem 2.7 of Hult and Lindskog (2006).

Theorem A.1. Let M ⊂ M0(Np). Then M is relatively compact if

(i) for each ε > 0,

sup
m∈M

m

(
ξ :

∞∑
i=1

2−iξ(hi)
1 + ξ(hi)

> ε

)
< ∞,
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and

(ii) for each h ∈ C+
K(E) and δ > 0, there exists R such that

sup
m∈M

m(ξ : ξ(h) > R) ≤ δ.

Proof. We need to check (2.2) and (2.3) in Theorem 2.7 of Hult and Lindskog (2006). Since
the metric on Np is given by (A.1), (i) immediately implies (2.2) in that reference.

Next note that any set of the form
∏∞
i=1[0, Ri] is a compact subset of [0,∞)∞. Hence,

C = {ξ : ξ(hi) ≤ Ri for each i} \ B∅,ε

is a compact subset of Np \ B∅,ε and

sup
m∈M

m(Np \ (B∅,ε ∪ C)) ≤ sup
m∈M

m(ξ : ξ(hi) > Ri some i ≥ 1)

≤ sup
m∈M

∞∑
i=1

m(ξ : ξ(hi) > Ri).

By (ii) we can take Ri such that

sup
m∈M

m(ξ : ξ(hi) > Ri) < 2−iδ,

which implies (2.3) of Hult and Lindskog (2006).

To show actual convergence, we need, in addition to relative compactness, to identify
subsequential limits. For this purpose, we define, for g1, g2 ∈ C+

K(E) and ε1, ε2 > 0, a
function Fg1,g2,ε1,ε2 : Np → [0,∞) by

Fg1,g2,ε1,ε2(ξ) = (1 − exp{−(ξ(g1)− ε1)+})(1 − exp{−(ξ(g2)− ε2)+}). (A.2)

Note that each Fg1,g2,ε1,ε2 is a bounded continuous function that vanishes on a neighborhood
of the null measure ∅.

Lemma A.1. Let m1 and m2 be measures in M0(Np). If the equality

m1(Fg1,g2,ε1,ε2) = m2(Fg1,g2,ε1,ε2)

holds for all Lipschitz functions g1, g2 ∈ C+
K(E) and ε1, ε2 > 0, then m1 = m2.

Proof. We use the assumption with gi = hji , i = 1, 2. Replacing hj1 by bhj1 and ε1 by
bε1 with positive rational b, and letting b → ∞ and ε2 → 0, we obtain∫

Np

1{ξ(hj1) ≥ ε1}e−ξ(hj2 )m1(dξ) =
∫

Np

1{ξ(hj1) ≥ ε1}e−ξ(hj2 )m2(dξ). (A.3)

Replacing, in (A.3), hj2 by bhj2 as above, and letting b → 0, we also obtain

m1(1{ξ(hj1) ≥ ε1}) = m2(1{ξ(hj1) ≥ ε1}). (A.4)
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Since the family (hi)i≥1 is dense in C+
K(E), we conclude that (A.3) holds with hj2 replaced

by any function in C+
K(E). To see that (A.3) and (A.4) imply that m1 = m2, we define, for any

j1 ≥ 1 and ε1 > 0, probability measures on Np by

m̃1(·) = m1(· ∩ {ξ : ξ(hj1) ≥ ε1})
m1(ξ : ξ(hj1) ≥ ε1)

,

m̃2(·) = m2(· ∩ {ξ : ξ(hj1) ≥ ε1})
m2(ξ : ξ(hj1) ≥ ε1)

.

The uniqueness property of the Laplace functionals (see Resnick (1987, Section 3.2)) (A.3)
implies that m̃1 and m̃2 coincide. Hence, m1 and m2 coincide on the set {ξ(hj ) ≥ ε} for any j
and ε. Letting ε → 0 we obtain the claim.

Finally, we are ready to state necessary and sufficient conditions for convergence in M0(Np).

Theorem A.2. Let m,m1,m2, . . . be measures in M0(Np). The condition

lim
n→∞mn(Fg1,g2,ε1,ε2) = m(Fg1,g2,ε1,ε2)

for all g1, g2 ∈ C+
K(E) and ε1, ε2 > 0 is necessary and sufficient for the convergencemn → m

in M0(Np). Furthermore, it is sufficient to check the condition only for the Lipschitz functions
in C+

K(E).

Proof. The necessity of the condition is obvious. For the sufficiency, we start by checking
that the sequence (mn)n≥1 is relatively compact in M0(Np), for which we check (i) and (ii) in
Theorem A.1.

Start by choosing a Lipschitz collection (hi)i≥1 as above. Take ε > 0. With

Jε = �− log2 ε� + 1

we have

mn

({
ξ :

∞∑
i=1

2−i ξ(hi)

1 + ξ(hi)
≥ ε

})
≤ mn

({
ξ :

Jε∑
i=1

2−i ξ(hi)

1 + ξ(hi)
>
ε

3

})

≤
Jε∑
i=1

mn

({
ξ : ξ(hi)

1 + ξ(hi)
>

ε

3Jε

})

≤
Jε∑
i=1

mn

({
ξ : ξ(hi) > 1

(3Jε/ε − 1)

})
.

Note that, for any h ∈ C+
K(E) and R > 0,

m(Fh,h,R/2,R/2) =
∫
(1 − e−(ξ(h)−R/2)+)2m(dξ) (A.5)

≥
∫
(1 − e−(ξ(h)−R/2)+)2 1{ξ(h) > R}m(dξ)

≥ (1 − e−R/2)2m(ξ : ξ(h) > R).
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For ε > 0, we choose R = R(ε) = 2/(3Jε/ε − 1). By the assumption of the proposition,
there is an n1 such that, for all n ≥ n1, the bound

mn(Fhi,hi ,R/2,R/2) ≤ m(Fhi,hi ,R/2,R/2)+ 1

holds for each i = 1, . . . , Jε. It follows from (A.5) that, for all such n,

mn

({
ξ ∈ Np :

∞∑
i=1

2−i ξ(hi)

1 + ξ(hi)
≥ ε

})
≤ (1 − e−R(ε))−2

Jε∑
i=1

[m(Fhi,hi ,R(ε)/2,R(ε)/2)+ 1],

which is finite, establishing (i) in Theorem A.1.
The next step is to check (ii) in Theorem A.1. For h ∈ C+

K(E) andR > 0, we have, by (A.5),

lim sup
n→∞

mn({ξ : ξ(h) > R}) ≤ lim sup
n→∞

(1 − e−R/2)−2mn(Fh,h,R/2,R/2)

= (1 − e−R/2)−2m(Fh,h,R/2,R/2).

The latter expression converges to 0 as R → ∞, which implies (ii) in Theorem A.1.
We conclude that (mn) is relatively compact in M0(Np).
Since the assumptions of Lemma A.1 are satisfied for any subsequential vague limit point

of the sequence (mn) and the measurem, we conclude that all subsequential vague limit points
of the sequence (mn) coincide with m and, hence, mn → m in M0(Np).

A.2. A mapping theorem

The general version of the mapping theorem is given in Theorem 2.5 of Hult and Lindskog
(2006). Here we will state a useful special case.

Lemma A.2. Suppose thatmn → m in M0(Np) and that f : E → R
d is a measurable function

with a bounded support, such that

m(ξ : ξ(Df ) > 0) = 0,

where Df is the set of discontinuities of the function f . Define T : Np → R
d by T (ξ) = ξ(f ).

Then

mn ◦ T −1(·) → m ◦ T −1(·) in M0(R
d).

Proof. This follows from Theorem 2.5 of Hult and Lindskog (2006) since T is discontinuous
on a set of measure m equal to 0, T (∅) = 0, and T is continuous at ξ0.
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Kwapień, S. and Woyczyński, W. (1992). Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser,

Boston, MA.
Mikosch, T. and Samorodnitsky, G. (2000). The supremum of a negative drift random walk with dependent heavy-

tailed steps. Ann. Appl. Prob. 10, 1025–1064.
Petrov, V. V. (1995). Limit Theorems of Probability Theory. Oxford University Press.
Rachev, S. (ed.) (2003). Handbook of Heavy Tailed Distributions in Finance. Elsevier, Amsterdam.
Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New York.
Resnick, S. I. (2006). Probabilistic and Statistical Modeling of Heavy Tail Phenomena. Springer, Berlin.
Tsonis, A. and Elsner, J. B. (2007). Nonlinear Dynamics in Geosciences. Springer, New York.

https://doi.org/10.1239/jap/1269610814 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610814

	1 Introduction
	2 Convergence and tail behavior
	3 Why are large deviations of point processes needed?
	4 Large deviations for point processes: the main result
	5 First applications
	6 Large deviations of the partial sums
	6.1 Checking the conditions of Theorem 6.1

	7 Ruin probabilities
	A Framework
	A.1 Convergence in 0=M00.0433em0 0(0=N00.0433em0 p)
	A.2 A mapping theorem

	Acknowledgements
	References

