xviii
The part within the bracket may be written

$$
\begin{aligned}
& \{1+(n-1) \quad\} p_{11} p_{22} \ldots p_{n-1, n-1} \\
& +\{(n-1)+(n-1)(n-2)\} p_{11} \ldots p_{n-2, n-2} q_{n-1, n-1} \\
& +\left\{\binom{n-1}{2}+(n-1)\binom{n-2}{2}\right\} p_{11} \ldots p_{n-3, n-3} q_{n-2, n-2} q_{n-1, n-2} \\
& +\{(n-1)+(n-1)\} p_{11} q_{22} \ldots q_{n-1,2} \\
& +\{1 \quad+\quad 0\} q_{11} \ldots q_{n-1,1} \text {. }
\end{aligned}
$$

Adding vertically we get two expressions, exactly similar to the first term, the second expression being multiplied by $(n-1) p_{11}$. Hence the part within the brackets is equal to $1+(n-1) p_{11}$, and so the coefficient of $\alpha^{2} / 2!$ in the moment G.F. is

$$
n p_{00}\left[1+(n-1) p_{11}\right]
$$

Transferring to the mean as origin by subtracting $\left(n p_{00}\right)^{2}$, we derive the second moment μ_{2} about the mean, or squared standard deviation σ^{2}, as

$$
\sigma^{2}=n p_{00} q_{00}-n(n-1) p_{00}\left(p_{00}-p_{11}\right)
$$

Thus the mean and standard deviation of this particular distribution are given in simple terms.

Example. For the distribution of one suit in a bridge hand, we have

$$
\begin{aligned}
& p_{00}=\frac{1}{4}, q_{00}=\frac{3}{4}, n=13, \quad p_{11}=\frac{12}{51}=\frac{4}{17} \\
& \text { Hence } \quad \begin{aligned}
\mu_{2}=\sigma^{2} & =\frac{39}{16}-\frac{39}{68} \\
& =\frac{507}{272}=1 \cdot 86 . \\
\text { and so } & \sigma=1 \cdot 36 .
\end{aligned}
\end{aligned}
$$

A Problem in Combinations

By A. C. Aitken.

1. If there are n individuals $A_{1}, A_{2}, \ldots, A_{n}$, in how many ways can they be put into groups? .For example, if there are three individuals A, B, C, they may be grouped as
$A+B+C ; \quad A+(B+C), B+(C+A), C+(A+B) ; \quad(A+B+C)$,
that is, in 5 ways, the respective subgroups, $1,3,1$ in number, corresponding to the partitions $1+1+1,1+2,3$ of the integer 3. Hence $P(3)$, say, is 5 .

We shall obtain various expressions for $P(n)$, and shall place the problem in relation to other questions of analysis.
2. Following MacMahon we shall denote partitions, e.g. those of 3 above, by $1^{3}, 1^{1} 2^{1}, 3^{1}$; in general, if the integer n is made up of a integers a, plus β integers b, and so on, $a<b<\ldots$, we shall write the corresponding partition as

$$
\begin{equation*}
a^{a} b^{\beta} \ldots \tag{1}
\end{equation*}
$$

In the example given above, the partition $1^{1} 2^{1}$. leads to three subgroups. The 3 here is $3!/(1!2!)$, and in general it is easy to see, by the elementary theory of combinations, that the number of subgroups corresponding to the partition $a^{\alpha} b^{\beta} \ldots$ of n is

$$
\begin{equation*}
n!/(a!b!\ldots a!\beta!\ldots .) \tag{2}
\end{equation*}
$$

Hence one answer to our problem is

$$
\begin{equation*}
P(n)=\Sigma n!/(a!b!\ldots a!\beta!\ldots) \tag{3}
\end{equation*}
$$

the summation being over all partitions of the integer n; but this is not a very helpful expression.
3. We seek therefore a generating function, in which $P(n)$ shall appear as coefficient of x^{n}, or perhaps of $x^{n} / n!$.

Consider first groups made up of single units. If there are r units in the partition (1) of n, then by (2) a factor r ! will be required in the denominator. Hence unit groups will be represented by a generating function

$$
\sum_{0}^{\infty} x^{r} / r!
$$

this is, by e^{x}.
Next, groups of two. By (2), any 2 requires a 2 ! in the denominator for each time it occurs, and if it occurs r times it requires an r ! as well. The generating function for groups of two is therefore

$$
e^{x / 2!}
$$

In the same way the generating function for groups of r is

$$
e^{x^{x_{r}+1}}
$$

Combining in multiplication all such generating functions, since groups of any size may be associated with groups of any other size, we have the required generating function for $P(n)$, namely

$$
\begin{equation*}
e^{x+x^{2} / 2!+x^{2} / 3!+\cdots}=e^{x^{x}-1} \tag{4}
\end{equation*}
$$

and we derive the interesting fact that $P(n)$ is the coefficient of x^{n} / n ! in this expansion, that is, by Maclaurin's theorem,

$$
\begin{equation*}
P(n)=\left[D^{n} e^{e^{x}-1}\right]_{x=0}, \text { where } D=\frac{d}{d x} \tag{5}
\end{equation*}
$$

4. This result is connected with the procedure of repeatedly differentiating a function of a function. For example we have

$$
\begin{align*}
& \frac{d}{d x} f(u)=f^{\prime}(u) \frac{d u}{d x} \\
& \left(\frac{d}{d x}\right)^{2} f(u)=f^{\prime \prime}(u)\left(\frac{d u}{d x}\right)^{2}+f^{\prime}(u) \frac{d^{2} u}{d x^{2}} \\
& \left(\frac{d}{d x}\right)^{3} f(u)=f^{\prime \prime \prime}(u)\left(\frac{d u}{d x}\right)^{3}+3 f^{\prime \prime}(u) \frac{d^{2} u}{d x^{2}} \cdot \frac{d u}{d x}+f^{\prime}(u) \frac{d^{3} u}{d x^{3}}, \tag{6}
\end{align*}
$$

and so on, and we notice that the coefficients $1,3,1$ in the third of these relations are the same as the numbers of subgroups in our first example.

In the expression for $\left(\frac{d}{d x}\right)^{n} f(u)$, let us put $f(u)=e^{u}, u=e^{x}$. Then the left hand side of the general relation of type (6) becomes

$$
\left(\frac{d}{d x}\right)^{n} e^{e^{x}}
$$

while the right hand side is a sum of terms involving

$$
e^{n x} e^{e^{x}}, e^{(n-1) x} e^{e^{x}}, \ldots, e^{x} e^{e^{x}}
$$

Putting $x=0$, we see that the sum of the numerical coefficients in the expansion of $\left(\frac{d}{d x}\right)^{n} f(u)$ is

$$
\begin{equation*}
\left[e^{-1}\left(\frac{d}{d x}\right)^{n} e^{e^{x}}\right]_{x=0}=P(n) . \tag{7}
\end{equation*}
$$

5. Another set of relations, involving the operator $x \frac{d}{d x}$ or $x D$ which occurs in the theory of homogeneous differential equations, has the same coefficients as the set (6). For example we have

$$
\begin{align*}
& (x D)^{2}=x^{2} D^{2}+x D \\
& (x D)^{3}=x^{3} D^{3}+3 x^{2} D^{2}+x D, \text { etc. } \tag{8}
\end{align*}
$$

Indeed, if $u=e^{x}$, the comparison between relations (6) and (8) becomes exact. For example the expression for $D^{4} f\left(e^{x}\right)$ is derived by term by term differentiation from that for $D^{3} f\left(e^{x}\right)$ by exactly the same formal operations as the expression for $(x D)^{4}$ is derived from that for $(x D)^{3}$; and so in general.

Inserting the operand e^{x} in the expression for $(x D)^{n}$ corresponding to (8), and then putting $x=1$, we derive a new expression for $P(n)$,

$$
\begin{equation*}
P(n)=\left[(x D)^{n} e^{x-1}\right]_{x=1} \tag{9}
\end{equation*}
$$

comparison of which with (5) yields the rather peculiar identity

$$
\begin{equation*}
\left[D^{n} e^{e^{x}-1}\right]_{x=0}=\left[(\overline{x+1} D)^{n} e^{x}\right]_{x=0} \tag{10}
\end{equation*}
$$

6. Since

$$
e^{e^{x}-1}=e^{-1}\left(1+e^{x}+e^{2 x} / 2!+e^{3 x} / 3!+\ldots\right)
$$

and $P(n)$ is the coefficient of $x^{n} / n!$ in the expansion of this, we derive yet another expression,

$$
\begin{equation*}
P(n)=e^{-1} \sum_{s=0}^{\infty}\left(s^{n} / s!\right) \tag{11}
\end{equation*}
$$

7. Next, let us write s^{n} in terms of factorials $s, s(s-1)$, and so on. To do this, let a table of differences be formed from $0^{n}, 1^{n}, \ldots, n^{n}$, the differences of 0^{n} being denoted by $\Delta^{r} 0^{n}$. By the Gregory-Newton interpolation formula we have

$$
s^{n}=0^{n}+s \Delta 0^{n}+\frac{s(s-1)}{2!} \Delta^{2} 0^{n}+\ldots+\binom{s}{n} \Delta^{n} 0^{n}
$$

Substituting this in (11) for $s=0,1,2, \ldots$, we obtain

$$
\begin{equation*}
\left.P(n)=e^{-1} \sum_{s=0}^{\infty}\left[\sum_{r=0}^{n} \Delta^{r} 0^{n} / \overline{(s-r}!r!\right)\right] \tag{12}
\end{equation*}
$$

xxii
On summation of expressions like $1 /(s-r)$! we obtain e in each case, and so (12) gives

$$
\begin{align*}
P(n) & =e^{-1} \sum_{r=1}^{n} e \Delta^{r} 0^{n} / r! \\
& =\sum_{r=1}^{n} \Delta^{r} 0^{n} / r! \tag{13}
\end{align*}
$$

which exhibits $P(n)$ as the sum of the "divided differences" of 0^{n}. As an equivalent for (11) this was given by Herschel.
7. The numbers of subgroups also crop up in these divided differences of zero. For example, if $n=3$, the table of divided differences is

0
l
$1 \quad 3$
7 1
$8 \quad 6$
19
27
the $1,3,1$ for this case appearing again. The theorem indicated here is a general one. To prove it we may operate on x^{n} with $(x D)^{n}$ and its equivalent in (8), the result being an interpolation formula for n^{n} in terms of 0^{n} and the differences of 0^{n}.
8. One of the easiest ways of finding the first dozen or so numerical values of $P(n)$ is by means of the recurrence relation which $P(n)$ satisfies. This relation is

$$
\begin{align*}
P(n+1) & =P(n)+n P(n-1)+\binom{n}{2} P(n-2)+\ldots+n P(1)+P(0) \tag{14}\\
& =(P+1)^{n} \tag{15}
\end{align*}
$$

symbolically if, after expansion, exponents of P are written as arguments. To prove this, we write

$$
P_{n+1}=e^{-1} D^{n+1}\left(e^{e^{x}}\right)=e^{-1} D^{n}\left[e^{x} \cdot e^{e^{x}}\right], \quad x=0 .
$$

Expanding the derivative of the product by Leibniz's theorem and then putting $x=0$, we have the result (14) at once.

Now the right side of (14) is in shape simply a GregoryNewton interpolation formula. Hence, since $P(0)=P(1)=1$, we see that if we construct a difference table from $P(1), P(2), P(3), \ldots$, then the values of $P(1), \Delta P(1), \Delta^{2} P(1), \ldots$ thereby given are simply $P(0), P(1), P(2), \ldots$, and so on. This gives perhaps the easiest way of all for finding the first several values of $P(n)$, namely
to build up the table, entering each $P(r)$, when found, as a fresh difference $\Delta^{r} P(1)$ with which to begin a new line of differences. For example we have, for the first few values,

\boldsymbol{P}	Δ	Δ^{2}	Δ^{3}	Δ^{4}	Δ^{5}
1	1				
2		2			
5	3	7	5		
15	10		20	15	52,
52	37	114	87		
203	151				

which puts in evidence the property mentioned.
9. The first ten values of $P(n)$ are

n	1	2	3	4	5	6	7	8	9	10
$P(n)$	1	2	5	15	52	203	877	4140	21147	115975.

Inspection shows that if n is a prime number $>1, p$ say, then $P(p)-2$ is divisible by p. For example $877-2$ is divisible by 7.

This is a result easily proved. For $\Delta 0^{p}=1$, and $\Delta^{p} 0^{p}=p$!, so that the $p^{\text {th }}$ divided difference of 0^{p} is also 1 . As for the differences of 0^{p} of order r, where $1<r<p$, it is an instant deduction from Fermat's theorem that

$$
\begin{array}{rlr}
\Delta^{r} 0^{p} & \equiv \Delta^{r} 0^{1} & \bmod p \\
& =0, \quad 1<r<p
\end{array}
$$

To obtain the divided differences, which must be integers, we divide the ordinary differences $\Delta^{r} 0^{p}$ by r !, which does not contain p, since p is a prime greater than r. Hence the divided differences for $1<r<p$ are also divisible by p. On summing these divided differences in (13), we obtain for $P(p)$ a multiple of p, plus 1 from each end term. Hence, as stated, $P(p)-2$ is divisible by p.
10. After these various diversions, it would have been pleasing to find an asymptotic expression to represent $P(n)$ for large values of n, but this has not so far materialized. The function $n^{\frac{1}{2} n}$ gives a fair representation for small values, up to $n=8$; for example $P(8)=4140$, while $8^{4}=4096$. For higher values $P(n)$ increases more rapidly; for example $P(10)=115975$, while $10^{5}=100000$.

