R. F. Webbink^{*} Department of Astronomy, University of Illinois, 1011 W. Springfield Ave., Urbana, IL 61801 and Joint Institute for Laboratory Astrophysics, University of Colorado and National Bureau of Standards, Boulder, CO 80309

ABSTRACT. Observed and derived structure parameters are tabulated for 154 galactic globular clusters, 7 dwarf spheroidal satellites of the Galaxy, and 6 globular clusters in the Fornax dwarf spheroidal. Observational parameters listed include equatorial coordinates, apparent level of the horizontal branch, reddening, subgiant branch color at the horizontal branch level, limiting and core angular radii, integrated magnitudes, and central surface brightnesses. Derived parameters include galactic coordinates, heliocentric and galactocentric distance, metallicity, limiting and core radii, central relaxation time scale, central mass density, central velocity dispersion, and central escape velocity.

1. INTRODUCTION

Nearly a decade has passed since the first comprehensive application of King's (1966) dynamical models of star clusters to the system of galactic globular clusters (Peterson and King 1975; Peterson 1976). The interim has seen a tremendous growth in the body of observational material available, particularly in integrated and surface photometry of individual clusters, and also in detailed color-magnitude studies of the more difficult clusters. At the same time, despite growing recognition of their shortcomings, the King models retain much of their attractiveness as tools in probing the dynamical structure of individual clusters by virtue of their great simplicity and ease of application. This paper incorporates this greatly increased body of observational data in a reanalysis of the galactic globular cluster system in terms of those models.

*1984-85 JILA Visiting Fellow.

541

J. Goodman and P. Hut (eds.), Dynamics of Star Clusters, 541-577. © 1985 by the IAU.

For the sake of completeness, a number of recently-discovered objects are included here as possible to certain globular clusters. These include: AM 1 = E 1 = ESO 201-SC 10 (Holmberg et al. 1975; Lauberts 1976; Cannon, Hawarden, and Tritton 1978; Madore and Arp 1979), Eridanus = ESO 551-SC 01 (Cesarsky et al. 1977; Lauberts et al. 1981b), Reticulum = Sé 40/3 = ESO 118-G 31 (Sérsic 1974; Holmberg et al. 1975), AM 2 = ESO 368-SC 07 (Holmberg et al. 1978b; Madore and Arp 1979), E 3 = ESO 037-SC 01 (Lauberts 1976; Holmberg et al. 1978a; Cannon, Hawarden and Tritton 1978), ESO 093-SC?08 (Holmberg et al. 1977), AM 4 (Madore and Arp 1982), BH 176 = ESO 224-SC 08 (van den Bergh and Hagen 1975; Holmberg et al. 1977; Cannon, Hawarden and Tritton 1978), ESO 452-SC 11 (Lauberts et al. 1981a), TJ 5 (Terzan and Ju 1980), TJ 16 (Terzan, Bernard, and Ju 1978b; Terzan and Bernard 1978; Terzan and Ju 1980), TJ 15 (Terzan and Ju 1980), TJ 17 (Terzan, Bernard, and Ju 1978a; Terzan and Bernard 1978; Terzan and Ju 1980), Grindlay 1 (Grindlay and Hertz 1981), Liller 1 (Liller 1976a,b), TJ 23 (Terzan and Ju 1980), UKS 1 (Malkan, Kleinmann and Apt 1980), and Kodaira 1 (Kodaira 1983). UKS 2 = ESO 166-SC 12 = BH 66? (van den Bergh and Hagen 1975; Holmberg et al. 1977; Malkan 1981) was discussed by Malkan (1981) as a globular cluster, and is included here, although in the opinion of Holmberg et al. (1977) and this author, it appears to be an open cluster. In addition to these objects, several previously known objects have been added to the list: Ruprecht 106 = ESO 218-SC 10 (Ruprecht 1959; Holmberg et al. 1977), Terzan 3 =ESO 390-SC 06 (Terzan 1968; Holmberg et al. 1978b; Cannon, Hawarden, and Tritton 1978), Terzan 8 = ESO 398-SC 21 (Terzan 1968; Cannon, Hawarden, and Tritton 1978; Lauberts et al. 1981a), and Terzan 10 =ESO 521-SC 16 (Terzan 1968; Lauberts et al. 1981a). In this author's opinion, only the last of these four objects remains in doubt as a true globular cluster.

The Reticulum cluster noted above, NGC 1466, and NGC 1841 are sometimes discussed as members of the Large Magellanic Cloud (LMC) complex. Although they share a very similar apparent distance modulus with the LMC, they have been included here among the galactic globular clusters, NGC 1466 because of the large velocity difference from the LMC found by Cowley and Hartwick (1981) (although Freeman, Illingworth and Oemler [1983] find a much smaller difference), and Reticulum and NGC 1841 because, at angular distances of more than 10° from the center of the LMC, they can scarcely now be bound to the LMC, even though they may well share a common origin with it.

In the following section, the methods are discussed by which the observational data were obtained which form the basis of this study. These data are catalogued in Table I. The basic assumptions employed in deriving the individual cluster structure parameters are discussed in the subsequent section, and these parameters are listed in Table II.

2. OBSERVATIONAL DATA

Table I is organized in three parts: Ia, the galactic globular clusters, Ib the dwarf spheroidal satellites of the Galaxy, and Ic the globular clusters in the Fornax dwarf spheroidal. The observational methods employed are explained below in the context of the galactic globular clusters, but the other two parts of this table differ only slightly, if at all, and those differences will be noted at the end of this section.

The following discussion includes as well some estimates of the typical errors in each of the measured quantities. Where a numerical value is quoted for this error or uncertainty, it is meant to indicate the standard deviation of results obtained by that technique, but only when the source material is of good quality. A colon (:) or double colon (::) indicates source material of poor or very poor quality, or poor or very poor suitability for the technique employed, and the corresponding uncertainties in the quoted results are likely to be substantially worse. It must be emphasized, however, that this notation has been used here in a relative fashion, within the context of the technique involved. Poor results obtained by a reliable method may still be better than good results obtained with a poor one.

References in the table refer to the numbered bibliography immediately following it. Where more than one method, or more than one reference, have been employed, these are enumerated in the notes to each part of the table. These notes are identified by cluster designation (from column 1), with the relevant column numbers indicated in boldface type. Where multiple methods are used, the sets of reference numbers corresponding to different methods are set off by semicolons.

Table Ia is arranged as follows:

<u>Cluster Designation</u>. The observed structure parameters of the galactic globular clusters are listed in order of right ascension. Each cluster is identified in column (1) by its designation in IAU coordinate format. Where an object has not yet received an official designation, one has been assigned here using the same convention. The common name or names in contemporaneous use for each cluster are listed in columns (2) and (3).

<u>Coordinates</u>. The right ascension and declination for equinox 1950, rounded off to the nearest 1^{S} or 0.1, are listed in columns (4) and (5), respectively. These have been compiled from numerous sources, dating from 1850 up through the recent measurements by Shawl and White (1984), and carry a median net uncertainty of 2.45 in the positions of the cluster centers. Individual uncertainties are in general closely comparable to ε_{v} , the expected root-mean-square difference in position between the cluster visual photocenter and its dynamical center. This difference is given by the expression

$$\varepsilon^{2} = \frac{\langle \mathbf{b}^{2} \rangle}{\langle \mathbf{b} \rangle} \frac{\int \mathbf{r}^{3} \sigma(\mathbf{r}) d\mathbf{r}}{\left[\int \mathbf{r} \sigma(\mathbf{r}) d\mathbf{r} \right]^{2}} , \qquad (1)$$

where b is the apparent brightness of an individual star, r the angular distance from dynamical cluster center, and $\sigma(r)$ the surface brightness. For V-band observations, a good approximation is

$$\varepsilon_{\rm v} = 24.2 \ {\rm c}^{-1.43} \ {}^{0.5 \ {\rm c} + 0.2(\sigma_{\rm c} - V_{\rm HB})}_{10} , \qquad (2)$$

where

 $c \equiv \log(\theta_t / \theta_c)$, (3)

(see columns 15 and 18), σ_c is the central surface brightness (V magnitudes per square arcminute: see column 22), and V_{HB} the apparent level of the horizontal branch (column 6).

Attention should be called to significant discrepancies, exceeding 0°l, discovered in published positions of several objects: NGC 1841, AM 4, Ton 2, Ter 10, and NGC 6749. These have been resolved here, and the standard errors in the positions of these clusters listed in Table I are 16" or smaller.

Horizontal Branch. Columns (6), (7), and (8) contain the apparent level of the cluster horizontal branch, the method of its determination, and the reference from which this determination was drawn, respectively. The horizontal branch is commonly used as the standard candle in establishing the globular cluster distance scale, and this convention is followed here. Its level is fixed at the blue edge of the RR Lyrae gap wherever possible, as in the earlier compilations by Harris (1976, 1980).

The methods listed in column (6) identify the observational feature from which this estimate derives. These are, in order of preference (together with their estimated errors for first-rank data):

- $CM color-magnitude diagram (\pm 0^{m}_{\bullet}05)$
- RR mean magnitudes of RR Lyrae variable (± 0.1)
- BG magnitudes of the brightest giants $(\pm 0^{\text{m}}_{\cdot}3)$
- IR combination of the index of richness (Kukarkin 1974), integrated apparent magnitude of the cluster, and estimated foreground reddening (± 0.46)
- A measured foreground reddening plus assumed reddening law $(\pm 1^m_{\cdot}4)_{\cdot}$

The quantitative calibrations of the first four of these methods are described in detail by Harris (1976, 1980). The fifth assumes the modified cosecant law specified below to infer the cluster distance modulus, and is useful only for very highly reddened clusters at extremely low galactic latitude.

<u>Reddening</u>. Color excesses, methods for their determination, and corresponding references may be found in columns (9), (10), and (11), respectively. A wide variety of methods have been employed, here, and considerable judgment was exercised in preferring the results of some methods over others. The first-echelon measures rely on the facts that the intrinsic colors of blue horizontal branch stars are nearly independent of metallicity, and that their downward tail in the colormagnitude diagram is essentially a bolometric effect. These measures are:

- HB two-color diagram of blue horizontal branch stars
- NB narrow-band photometry and spectroscopy of horizontal branch stars fit to model atmospheres
 - B color-magnitude diagram of blue horizontal branch stars fit to a fiducial curve.

With accurate photometry, the resulting estimates of E(B-V) are probably accurate to ± 0.000 or better.

The second-echelon measures rely on intrinsic colors of RR Lyrae stars. These are:

rr - Sturch's method, using RR Lyrae colors at minimum RR - mean RR Lyrae colors

Third-echelon measures employ comparisons with intrinsic flux distributions of individual red giant stars:

- Ψ slope of the red continuum of individual giants
- ΔU correlation of ultraviolet excesses of giant stars with the color of the subgiant sequence at the level of the horizon-tal branch.

These and the second-echelon measures are probably not greatly inferior to the first-echelon measures.

Fourth-echelon measures consist of asymptotic reddenings of foreground field stars:

- UB Johnson UBV photometry of field stars
- uy Strömgren uvby photometry of field stars
- XY Vilnius UPXYZVS photometry of field stars.

Because these estimates are essentially statistical in nature, they are normally significantly more uncertain than higher-echelon measures. If the field encompassed in the study is sufficiently small, however, an accuracy of $\pm 0.15 \ E_{B-V}$ can be achieved in most cases, giving quite satisfactory results for high-latitude clusters.

Fifth-echelon measures employ the blue and red edges of the RR Lyrae instability strip:

- GB blue edge of the RR Lyrae gap
- GR red edge of the RR Lyrae gap.

These are also statistical in nature, depending heavily on having a dense distribution of stars in this part of the Hertzsprung-Russell diagram. Superior methods of estimating reddenings are available for the majority of clusters to which this method is most suited; among the clusters for which it is used here, an accuracy of $\pm 0^{+}.04$ is probably the best that can be expected. It should be noted that there is increasing empirical evidence (see, for example, Sandage, Katem, and Sandage 1981; Sandage 1981; Bingham <u>et al</u>. 1984) that the edges of the instability strip are not constant in color, as this method assumes.

The sixth-echelon measures are those which depend on comparisons of integrated photometry of the cluster in question with the intrinsic colors of clusters of similar spectral type and known reddening. They are:

- CS integrated optical or near-ultraviolet colors
- IR integrated infrared colors.
- MI correlation of metallicity index (Cowley, Hartwick, and Sargent 1978) with integrated color.

Because the calibration of these methods depends upon cluster reddenings derived by the above methods, they have been adopted only in the absence of a determination by one of the above methods. Nevertheless, at their best, the reddening estimates obtain from integrated colorspectral type relations appear comparable in accuracy with the secondand third-echelon measures discussed above.

Calibrations of integrated colors exist in a number of different photometric systems; it is the weighted mean of these independent determinations which is quoted in Table I. For the sake of consistency, a single calibration has been used for each photometric system. These are listed below, in decreasing order of accuracy, as determined by comparison with clusters whose reddenings were derived by one of the above methods:

ANS (λλ 1550,1800,2200,2500,3300): van Albada, de Boer, and Dickens (1981) (±0^m030, n = 17)
Strömgren-Crawford (uvbyβ): Johnson and McNamara (1969) (±0^m036, n = 12)
Zinn-Gunn (uvgr,39B,39N): Zinn (1980); Zinn and West (1984) (±0^m039, n = 44)
Washington (CMT1T2): Harris and Canterna (1978) (±0^m040, n = 34)
Johnson (UBV): Racine (1973); Harris (1976); Harris and Racine (1979) (±0^m046, n = 48)
Kron-Mayall (PVI): Lohmann (1963) (±0^m048, n = 31)
Stebbins-Whitford (UVBGRI): Kron and Guetter (1976) (±0^m052, n = 39)
Vilnius (UPXYZVS): Zdanavičius (1983) (±0^m055, n = 24)
DDO (35,38,41,42,45,48): Bica and Pastoriza (1983) (±0^m065, n = 46).

Infrared photometric values are of rather lower precision $(\pm 0.11;$ Malkan 1981).

The third method of this group (MI) was calibrated using nine clusters with well-determined colors among those listed by Cowley, Hartwick and Sargent (1978). They give

$$(B-V)_{0} = 0.479 + 0.0933 \cdot MI (\pm 0.072) .$$
 (4)

There are a number of clusters for which individual reddening studies are still lacking. For those lying at galactic latitude, $|b| \ge 10^\circ$, use was made of the high-latitude extinction map of Burstein and Heiles (1982):

HI - neutral hydrogen column density plus galaxy counts.

Comparison with 43 clusters of known reddening indicates that these values are reasonably good ($\pm 0^{\oplus}_{-}060$). For clusters of lower galactic latitude, it was necessary to resort to a cosecant-like law:

CX - modified cosecant law.

The assumed form of this extinction law is intended to reflect the apparent absence of reddening at the galactic poles, and the finite scale height (assumed to be 150 pc) of obscuring matter in the galactic plane:

$$E_{B-V} = \frac{0.06}{\sin |b|} \left[1 - \exp(-R_0 \sin |b| / 0.15) \right] - 0.06$$
 (5)

where R_0 is the distance to the cluster in kpc. Where the exponential term in this expression is non-negligible, it is necessary to solve self-consistently for both reddening and distance. The accuracy of these estimates is only $\pm 0.4 \in (B-V)$.

It should be noted here that the values of reddening listed in Table I portray individual clusters as suffering uniform extinction. However, an examination of most of the clusters included in this table on deep-sky survey plates reveals that many clusters with $E(B-V) \ge 0.2$ show evidence of nonuniform extinction, and this is almost invariably the case among highly reddened ($E(B-V) \ge 0.5$) clusters. This variable extinction could conceivably introduce systematic errors in the mean reddening estimates of highly obscured clusters as derived from their integrated colors.

Subgiant Branch Color. Columns (12), (13) and (14) of Table I contain, respectively, the observed color of the cluster subgiant branch at its horizontal branch level, the method by which this color was determined, and the reference to the source material for that determination. Whenever possible, the subgiant branch color was estimated directly from the cluster color-magnitude diagram:

CM - color-magnitude diagram.

Comparison of the values measured here with the un-dereddened values of Sandage (1982), for 34 clusters with common color-magnitude diagrams, indicates an internal error of only ± 0.000 Uncertainties in the dereddened colors, (B-V)_{0,g}, are therefore dominated by uncertainties in the reddening correction and systematic errors in the photometry.

In the absence of a suitable color-magnitude diagram, several indirect methods were employed. These correlate the intrinsic color of the subgiant branch at the horizontal branch level with other properties of the cluster. In order of decreasing accuracy, they are:

ΔP - period difference of RR Lyrae variables at constant amplitude and effective temperature (see Sandage, Katem, and Sandage 1981)

- ΔS cluster metallicity determined by the difference in spectral types, as derived from metallic lines and from hydrogen lines, observed in individual RR Lyrae stars (see Butler 1975)
- UB integrated UBV colors of the cluster
- Q line-blanketing index derived from integrated narrow-band photometry of the cluster (see Zinn 1980)
- BV integrated BV colors of the cluster

The correlations actually used, and their respective uncertainties, are:

$$(B-V)_{0,g} = 0.839 + 1.81 (\Delta \log P)_{s}$$
 (±0^m_•041, n = 24) (6)

$$(B-V)_{0,g} = 1.038 + 0.172 [Fe/H]_{\Delta S}$$
 (±0^m.057, n = 26) (7)

$$(B-V)_{0,g} = 0.372 + 0.563 (B-V)_0 + 0.513 (U-B)_0$$

 $(\pm 0^{\rm m}_{\bullet}059, n = 65)$ (8)

$$(B-V)_{0,g} = 0.719 + 0.874 Q_{39}$$
 (±0^m₀₆₀, n = 55) (9)

$$(B-V)_{0,g} = 0.133 + 0.992 (B-V)_0 \qquad (\pm 0^m 0.065, n = 67) .$$
 (10)

To each of these values must be added the cluster reddening, E(B-V). In dereddening the observed integrated UBV colors of a cluster to apply equation (8), the ratio E(U-B)/E(B-V) has been calculated following Racine (1973).

Limiting and Core Radii. Columns (15), (16), and (17) contain the logarithm of the value (in arcminutes), method of its determination, and reference for the limiting radius of each cluster, with columns (18), (19), and (20) containing the corresponding quantities with respect to the core radius. Because the form of the surface brightness profile of the core of a strongly condensed cluster is only very weakly dependent on the degree of central concentration of the cluster, and likewise for the form of the surface brightness profile near its limiting radius, I have regarded these two quantites as independently determinable, and not attempt a reanalysis of all available data. Both determinations share many of the same methods, which are:

SC - star counts

- SP surface photometry
- AP concentric aperture photometry
- D correlation of apparent angular diameter with limiting radius (see, Kukarkin and Kireeva 1979)
- e eye estimate of the core radius.

At low surface densities, the ability to see stars several magnitudes fainter than those which contribute the bulk of the cluster

STRUCTURE PARAMETERS OF GALACTIC GLOBULAR CLUSTERS

light generally bestows superior statistical properties upon the star count method, in comparison with surface photometry or aperture photometry. It is therefore the method of choice for determining limiting radii. Unfortunately, the derived limiting radii are very sensitive to the adopted background star densities. Even in the best cases, they involve extrapolations of a factor of two or more in radius beyond the last measurable point, and the accuracies of the resulting radii appear to be no better than ± 0.10 in $\log \theta_t$. In comparison, it is indeed very surprising to find that a crude apparent angular diameter/ limiting radius correlation (method D) gives results which are not terribly inferior (± 0.17 in $\log \theta_t$, as deduced from the dispersion in cluster mean luminosity densities at fixed galactocentric distance -- see Innanen, Harris and Webbink [1983]).

In the cores of clusters, star counts provide an accurate description of the surface density distribution only in a very few, extremely open clusters. For the remainder, surface photometry is the method of choice, since it both provides more detailed information and is less sensitive to centering errors than either concentric aperture photometry or star counts. Provided that the cluster brightness profile is normal (see the remarks below), core radii derived from surface photometry appear to be accurate to ± 0.049 in log θ_c , those from star counts to ± 0.12 in log θ_c , and those from aperture photometry to ± 0.14 in log θ_c . Peterson and King (1975) determine an uncertainty of ± 0.16 for eye estimates of log θ_c , but this method requires photographic images of the cluster cores which are unsaturated.

It should be noted that the surface brightness distributions in the cores of some clusters are poorly represented by King models. Of particular interest are those which show central brightness excesses, the most famous of which is NGC 7078 (Newell and O'Neill 1978; Aurière and Cordoni 1981). Recent surface photometry studies by Djorgovski and King (1984), Kron, Hewitt, and Wasserman (1984), and Djorgovski and Penner (1985) have identified a number of other examples of this phenomenon, including NGC 4147, 6266, 6293, 6342, 6624, 6642, 6681, and 7099. The values of log θ_c (and of σ_c) listed in Table I for these clusters are, in effect, best fit values, but the deficiencies of the cluster model should be recognized here.

Integrated Magnitude and Central Surface Brightness. Columns (21), (22), (23), and (24) of Table I contain, respectively, the integrated V magnitude of the cluster, its central surface brightness (in V magnitudes per square arcminute), the method of their determination, and the source of the data or estimate for these values. The methods employed were:

- AP concentric aperture photometry
- Σ summation over the cluster color-magnitude diagram with corrections for faint stars and for stars lying outside the region studied
- R fit of the upper end of the cluster luminosity function to a fiducial luminosity function
- IR index of richness (see Kukarkin 1971, 1974).

549

Where the central surface brightness is enclosed in parentheses, it has been calculated from the integrated magnitude, using the King model appropriate to that cluster.

All available concentric aperture photometry of each cluster was collected and fit to a King model with core and limiting radii given by the values in columns (18) and (15), respectively. A complex weighting scheme was used which, in effect, weights most heavily those observations of greatest precision which involve the smallest extrapolation to find the integrated magnitude or central surface brightness, as the case may be. The median uncertainty in the derived integrated magnitude is $\pm 0^{m}.024$, and that in the central surface brightness is $\pm 0^{m}.035$, but these nominal errors do not include uncertainties in the limiting and core radii themselves.

For a number of highly obscured clusters, only infrared photometry is available. In these cases, the V magnitudes have been calculated by correcting the observed K magnitudes for the intrinsic $(V-K)_0$ color of the cluster (following Aaronson <u>et al</u>. 1978) appropriate to its deduced metallicity, and for reddening, with $E(V-R) \approx 2.82 \cdot E(B-V)$. The deduced integrated magnitudes in these cases are naturally of much lower precision than for other clusters with direct observations in the V band.

The remaining methods for estimating integrated magnitudes are of relatively low accuracy. Summation over color-magnitude diagrams gives values uncertain by an estimated ± 0.46 . Fitting of the luminosity function of bright stars is of similar accuracy. This procedure, as applied here, amounted merely to estimating the number of cluster stars within two magnitudes of the brightest member (where possible), and scaling the integrated intrinsic luminosity of the comparison cluster accordingly. For this purpose, the fiducial luminosity function adopted here is that of M3, as compiled by Sandage (1954, 1957), corrected for the value of apparent distance modulus listed in Table Ia. Lastly, the calibration of Kukarkin's index of richness (IR) employed here is that due to Harris (1980). Among the highly obscured clusters for which this estimate has been adopted, the uncertainty in integrated magnitude is of order $\pm 0^{m}_{\bullet}8_{\bullet}$

Cluster designations from column (1) are repeated in column (25) as a reference aid.

Table Ib differs slightly in format from Table Ia. Ellipticities of the dwarf spheroidals have been included in column (17). Because of their very low degree of central concentration, these objects are not amenable to independent determinations of core and limiting radii [columns (16) and (15), respectively], so a single method (column 18) and source (column 19) have been used for both of these quantities, as well as for their ellipticities. At the same time, they are poor subjects for concentric aperture photometry because of their very low surface brightnesses, and, not surprisingly, very little data of this sort exists. Surface photometry (SP) and other methods have therefore been widely used to measure integrated magnitudes (column 20) and central surface brightnesses (column 23), for which separate methods and references are given here (columns 21 and 24, and 22 and 25, respectively). Table Ic parallels Table Ia exactly, and requires no further explanation.

3. DERIVED PARAMETERS

Table II is arranged in three parts, paralleling Table I, and contains positional and structural data derived from the observational data of Table I.

There now exists compelling evidence (Sandage 1982; Frenk and White 1982) that the horizontal branch level, $V_{\rm HB}$, is not constant from cluster to cluster, but depends upon cluster metallicity. This phenomenon was anticipated from the early theoretical pulsation studies of Christy (1966), but the magnitude of the effect is not yet well established empirically, nor are its theoretical ramifications concerning differences in cluster ages and/or helium abundances well understood. Therefore, in fixing the cluster distance scale, a very conservative approach has been taken here, setting $M_V(HB) = +0.6$ (Harris 1976; Stothers 1983) without regard to metallicity, and adopting a ratio of total to selective absorption $R = A_V/E(B-V) = 3.2$. The distance from the Sun to the galactic center is assumed to be 8.8 kpc (Harris 1976).

The basis for calculating the internal structure parameters of individual globular clusters is the single-parameter family of King (1966) models. A mean mass-luminosity ratio $M/L_v = 1.6 M_{\odot}/L_v(\odot)$ (Illingworth 1976) has been adopted throughout. It should be noted that a χ^2 -test applied to Illingworth's results clearly indicates the presence of significant cluster-to-cluster differences in M/L_v , but they do not appear correlated in any obvious way with differences in cluster metallicity, core concentration, or galactocentric position. For purposes of estimating central relaxation time scales, a mean stellar mass (for those stars dominating the cluster light) of 0.65 M_{Θ} was assumed. Finally, we note that a King model is completely specified by any three of the four quantities: (i) limiting radius, (ii) core radius, (iii) integrated magnitude, and (iv) central surface brightness. Where all four of these quantities are available independently, the limiting radius has been discarded in favor of the other three parameters, as it appears most susceptible of observational errors.

The columns of Tables IIa and IIb contain the following data:

- (1) Cluster designation in IAU coordinate format (as in column 1 of Tables Ia and Ib)
- (2)-(3) Cluster name (as in Tables Ia and Ib)
- (4) Galactic longitude (in degrees)
- (5) Galactic latitude (in degrees)
- (6) Heliocentric distance (in kpc)
- (7)-(9) Galactocentric coordinates (in kpc). The (X,Y,Z)-axes of this coordinate system are parallel to the directions $(l,b) = (0^{\circ},0^{\circ}), (90^{\circ},0^{\circ}), \text{ and } (0^{\circ},90^{\circ}), \text{ respectively}$
- (10) Galactocentric distance (in kpc)

- (11) Logarithm of the metallicity, in solar units, derived from $(B-V)_{0,g}$ (see below)
- (12) Integrated absolute magnitude of the cluster
- (13) Core radius (in pc)
- (14) Limiting radius (in pc)
- (15) Core concentration parameter, $c \equiv \log(r_t/r_c)$, as derived implicitly from the apparent core radius, central surface brightness, and integrated magnitude, for those clusters having multiple aperture photometry
- (16) Logarithm of the central relaxation time scale (in yr)
- (17) Logarithm of the central mass density (in $M_{\Theta} \text{ pc}^{-3}$) (18) Central velocity dispersion (in km s⁻¹)
- (19) Central escape velocity (in km s^{-1})
- (20) Cluster designation (as in column 1)

With the exception of the metallicities (column 11), formulae and explanations for all of the structural parameters listed here may be found in the papers of King (1966) and Peterson and King (1975). It should be noted that the central velocity dispersion listed in column (18) is the true dispersion, which exceeds the projected dispersion by 4 percent or less for clusters with c > 1.0. The central escape velocity in column (19) is that calculated by treating the cluster as an isolated potential. This exceeds the escape velocity from cluster center to the potential corresponding to the cluster limiting radius by 8 percent or less for clusters with c > 1.0. The parameters listed in columns (18) and (19) are the same as those tabulated previously by Peterson and King (1975) and Peterson (1976).

The cluster metallicities calculated in column (11) were derived from the following correlation between dereddened subgiant colors and the high-dispersion spectroscopic metallicities on Cohen's scale, as tabulated by Zinn and West (1984):

$$[m/H] = -4.94 + 4.23 (B-V)_{0,g}$$
 (±0.28, n = 16) . (11)

This correlation does not differ significantly from that obtained from a larger, but more heterogeneous, data base by Zinn and West themselves. While clearly present, it is of modest accuracy, and although values derived from this correlation are listed for the dwarf spheroidal satellites of the Galaxy in Table IIb, it is well known (see, for example, Stetson 1980, 1984; Carney 1984) that metallicities derived for these objects from line-blanketing indicators are systematically much lower than those derived here.

Table IIc, referring to the globular clusters in Fornax, differs from Tables IIa and IIb only in that columns (6)-(10) refer to the following positional parameters:

- (6) Angular distance of the cluster from the center of the Fornax dwarf spheroidal (in arcminutes)
- (7) Position angle (eastward from North) of the cluster (in degrees)

- (8)-(9) Cartesian coordinates of the cluster in the plane of the sky (in pc). The +X-axis points eastward along the major axis of Fornax, the +Y-axis northward along its minor axis.
- (10) Projected linear distance (in pc) of the cluster from the center of Fornax.

The position angle of the semi-major axis of Fornax has been taken as $\theta = 49^{\circ}$ (Hodge and Smith 1974).

Although no formal error estimates have been made here for the derived cluster parameters, they are obviously no better than the data and assumptions upon which they are based. Except for the galactic coordinates (l,b), the values quoted here are unlikely to be accurate to more than two decimal places, even in the very best of cases. The reader should, of course, consult the entries in Table I and their accompanying discussion in judging the reliability of the derived parameters of Table II.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the many individuals who contributed in some way to this effort. My gratitude goes to the following individuals who provided data prior to publication: M. Aaronson, G. Alcaino, B. J. Anthony-Twarog, R. D. Cannon, B. W. Carney, K. M. Cudworth, G. S. Da Costa, J. C. Forte, R. Gratton, D. A. Hanes, H. C. Harris, W. E. Harris, D. A. Hunter, G. E. Kron, M. H. Liller, M. Mendez, C. J. Peterson, C. A. Pilachowski, A. Sandage, P. Seitzer, S. J. Shawl, H. A. Smith, V. Trimble, R. E. White, and R. Zinn. T am especially indebted to Bill Harris for calling my attention to a number of studies not yet published, and to Gwendy Romey for preparing this camera-ready typescript. This work was supported in part by National Science Foundation grants AST78-12309, AST80-18859, and AST83-17916 to the University of Illinois, and by a Visiting Fellowship from the Joint Institute for Laboratory Astrophysics, University of Colorado and National Bureau of Standards.

REFERENCES

Aaronson, M., Cohen, J. G., Mould, J., and Malkan, M. 1978, <u>Ap. J.</u>, 223, 824.
Aurière, M., and Cordoni, J.-P. 1981, <u>Astr. Ap.</u>, 100, 307.
Bica, E. L. D., and Pastoriza, M. G. 1983, <u>Ap. Space Sci.</u>, 91, 99.
Bingham, E. A., Cacciari, C., Dickens, R. J., and Fusi-Pecci, F. 1984, <u>M.N.R.A.S.</u>, 209, 765.
Burstein, D., and Heiles, C. 1982, <u>A. J.</u>, 87, 1165.
Butler, D. 1975, <u>Ap. J.</u>, 200, 68.
Cannon, R. D., Hawarden, T. G., and Tritton, S. B. 1978, unpublished.
Carney, B. W. 1984, invited paper presented at the 96th Annual Scientific Meeting of the Astronomical Society of the Pacific.

Cesarsky, D. A., Laustsen, S., Lequeux, J., Schuster, H.-E., and West, R. M. 1977, Astr. Ap., 61, L31. Christy, R. F. 1966, Ap. J., 144, 108. Cowley, A. P., and Hartwick, F. D. A. 1981, A. J., 86, 667. Cowley, A. P., Hartwick, F. D. A., and Sargent, W. L. W. 1978, Ap. J., 220, 453. Djorgovski, S., and King, I. R. 1984, Ap. J. (Lett.), 277, L49. Djorgovski, S., and Penner, H. 1985, in Dynamics of Star Clusters, I.A.U. Symp. No. 113, eds. J. Goodman and P. Hut (Dordrecht: D. Reidel), this volume. Freeman, K. C., Illingworth, G., and Oemler, A., Jr. 1983, Ap. J., 272, 488. Frenk, C. S., and White, S. D. M. 1982, M.N.R.A.S., 198, 173. Grindlay, J. E., and Hertz, P. 1981, Ap. J. (Lett.), 247, L17. Harris, H. C., and Canterna, R. 1977, A. J., 82, 798. Harris, W. E. 1976, A. J., 81, 1095. . 1980, in Star Clusters, I.A.U. Symp. No. 85, ed. J. E. Hesser (Dordrecht: D. Reidel), p. 81. Harris, W. E., and Racine, R. 1979, Ann. Rev. Astr. Ap., 17, 241. Hodge, P. W., and Smith, D. W. 1974, Ap. J., 188, 19. Holmberg, E. B., Lauberts, A., Schuster, H.-E., and West, R. M. 1975, Astr. Ap. Suppl., 22, 327. . 1977, Astr. Ap. Suppl., 27, 295. . 1978a, Astr. Ap. Suppl., 31, 15. 1978b, Astr. Ap. Suppl., 34, 285. Innanen, K. A., Harris, W. E., and Webbink, R. F. 1983, A. J., 88, 338. Johnson, S. L., and McNamara, D. H. 1969, P.A.S.P., 81, 415. King, I. R. 1966, <u>A. J.</u>, 71, 64. Kodaira, K. 1983, I.A.U. Circ., No. 3846. Kron, G. E., and Guetter, H. H. 1976, A. J., 81, 817. Kron, G. E., Hewitt, A. V., and Wasserman, L. H. 1984, P.A.S.P., 96, 198. Kukarkin, B. V. 1971, Astr. Zh., 48, 113 [English transl.: Soviet Astr., 15, 89]. . 1974, Globular Star Clusters (Moscow: Nauka) [English transl.: 1977, NASA TT F-16, 175]. Kukarkin, B. V., and Kireeva, N. N. 1979, Astr. Zh., 56, 465 [English transl.: Soviet Astr., 23, 261]. Lauberts, A. 1976, Astr. Ap., 52, 309. Lauberts, A., Holmberg, E. B., Schuster, H.-E., and West, R. M. 1981a, Astr. Ap. Suppl., 43, 307. 1981b, Astr. Ap. Suppl., 46, 311. Liller, W. 1976a, I.A.U. Circ., No. 2929. 1976b, I.A.U. Circ., No. 2936. Lohmann, W. 1963, Z. Ap., 57, 288. Madore, B. F., and Arp, H. C. 1979, Ap. J. (Lett.), 227, L103. Malkan, M. 1981, in Astrophysical Parameters for Globular Clusters, I.A.U. Collog. No. 68, eds. A. G. D. Philip and D. S. Hayes (Schenectady: L. Davis Press), p. 533. Malkan, M., Kleinmann, D. E., and Apt, J. 1980, Ap. J., 237, 432.

Newell, E. B., and O'Neill, E. J. 1978, Ap. J. Suppl., 37, 27. Peterson, C. J. 1976, A. J., 81, 617. Peterson, C. J., and King, I. R. 1975, A. J., 80, 427. Racine, R. 1973, A. J., 78, 180. Ruprecht, J. 1959, Bull. Astr. Inst. Czech., 12, no. 1, App. 2. Sandage, A. R. 1954, A. J., 59, 162. 1957, Ap. J., 125, 422. • . 1981, Ap. J., 248, 161. • 1982, Ap. J., 252, 553. Sandage, A., Katem, B., and Sandage, M. 1981, Ap. J. Suppl., 46, 41. Sérsic, J. L. 1974, Ap. Space Sci., 28, 365. Shawl, S. J., and White, R. E. 1984, A. J., in press. Stetson, P. B. 1980, A. J., 85, 398. . 1984, P.A.S.P., 96, 128. Stothers, R. B. 1983, Ap. J., 274, 20. Terzan, A. 1968, C. R. Acad. Sci. Paris, 267, 1245. . 1971, Astr. Ap., 12, 477. Terzan, A., and Bernard, A. 1978, Messenger, No. 15, p. 14. Terzan, A., Bernard, A., and Ju, K. H. 1978a, C. R. Acad. Sci. Paris, 287, sér. B, 157. • 1978b, C. R. Acad. Sci. Paris, 287, sér. B, 235. Terzan, A., and Ju, K. H. 1980, Messenger, No. 20, p. 6. van Albada, T. S., de Boer, K. S., and Dickens, R. J. 1981, M.N.R.A.S., 195, 591. van den Bergh, S., and Hagen, G. L. 1975, A. J., 80, 11. Zdanavičius, K. V. 1983, Astr. Zh., 60, 44 [English transl.: Soviet Astr., 27, 26]. Zinn, R. 1980, Ap. J. Suppl., 42, 19. Zinn, R., and West, M. J. 1984, Ap. J. Suppl., 55, 45.

TABLE Ia. OBSERVED PARAMETERS OF GALACTIC GLOBULAR CLUSTERS

Number	Name		^α 1950	^δ 1 95 0	V	нв			E _{B-V}	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
0021-723 0050-268 0100-711 0310-554 0325+794	NGC 104 NGC 288 NGC 362 NGC 1261 Pal 1	47 Tuc	00 21 53 00 50 19 01 01 32 03 10 53 03 25 59	-72 21.5 -26 51.0 -71 07.1 -55 24.1 +79 24.3	14.06 15.30 15.43 16.63 16.76	CM CM CM CM CM	136 160 91 8 51	0.04 0.04 0.04 0.00 0.15	UB HB UB CS HI	136 33 91 * 29
0344-718 0354-498 0422-213 0435-590 0443+313	NGC 1466 AM 1 Eri Ret Pal 2	SL 1 E 1 Sé 40/3	03 44 49 03 53 35 04 22 35 04 35 21 04 42 54	-71 49.7 -49 45.6 -21 18.1 -58 57.8 +31 17.5	18.8 20.93 20.24 19.17 20.9	CM CM CM CM	164 1 50 60 37	0.07 0.00 0.00 0.018 1.45:	UB HI HI UB MI	165 29 29 60 *
0444-840 0512-400 0522-245 0647-359 0734+390	NGC 1841 NGC 1851 NGC 1904 NGC 2298 NGC 2419	м 79	04 52 45 05 12 28 05 22 08 06 47 13 07 34 46	-84 04.8 -40 06.1 -24 34.2 -35 56.9 +38 59.7	18.88 16.05 16.20 16.20 20.50	rr Cm Cm Cm Cm	123 197 198 3 176	0.07 0.018 0.01 0.15 0.03	UB UY GB CS GB	165 197 198 * 176
0737-337 0911-646 0921-770 0923-545 1003+003	AM 2 NGC 2808 E 3 UKS 2 Pal 3	Sex C	07 36 53 09 11 04 09 21 31 09 23 43 10 02 58	-33 43.7 -64 39.4 -77 04.2 -54 30.1 +00 18.9	21.1: 16.20 16.15: 17.75 20.48	BG CM CM BG CM	146 88 * 215 *	0.53 0.22 0.30 0.74 0.05	CX UB UB IR UB	215 88 107 148 38
1015-461 1117-649 1126+292 1207+188 1223-724	NGC 3201 ESO 093-SC?08 Pal 4 NGC 4147 NGC 4372	UMa	10 15 34 11 17 34 11 26 37 12 07 33 12 22 51	-46 09.7 -64 56.8 +29 15.3 +18 49.2 -72 22.8	14.75 22.0:: 20.45 16.85 15.50	CM BG CM CM CM	137 215 28 186 102	0.21 0.79 0.00 0.02 0.45	СХ НІ Ψ ИВ	137 215 29 190 102
1235-509 1236-264 1256-706 1310+184 1313+179	Rup 106 NGC 4590 NGC 4833 NGC 5024 NGC 5053	M 68 M 53	12 35 53 12 36 49 12 56 12 13 10 28 13 13 59	-50 52.6 -26 28.2 -70 36.3 +18 26.0 +17 57.7	18.5 15.60 15.45 16.94 16.63	BG CM CM CM CM	215 85 152 48 184	0.24 0.03 0.32 0.00 0.01	HI GB GB ¥	29 85 152 190 *
1323-472 1339+286 1343-511 1353-269 1403+287	NGC 5139 NGC 5272 NGC 5286 AM 4 NGC 5466	ω Cen M 3	13 23 46 13 39 53 13 43 16 13 53 31 14 03 12	-47 13.0 +28 37.8 -51 07.5 -26 55.6 +28 46.1	14.52 15.68 16.20 18.2: 16.60	6 M M M M M M	35 183 97 118 26	0.11 0.00 0.21 0.06 0.00	★ HB CS HI Ψ	* 178 * 29 190
1427-057 1436-263 1452-820 1500-328 1513+000	NGC 5634 NGC 5694 IC 4499 NGC 5824 Pal 5	Ser	14 26 59 14 36 42 14 52 10 15 00 54 15 13 32	-05 45.3 -26 19.4 -82 00.8 -32 52.4 +00 03.9	17.75 18.4: 17.65 18.00 17.35	CM CM CM CM CM CM CM CM	174 93 42 85 181	0.05 0.10 0.24 0.14 0.03	CS CS -CS *	* 86 *
1514-208 1516+022 1524-505 1531-504 1535-499	NGC 5897 NGC 5904 NGC 5927 NGC 5946 BH 176	M 5	15 14 32 15 16 01 15 24 24 15 31 49 15 35 28	-20 49.6 +02 15.8 -50 30.0 -50 29.6 -49 52.9	16.25 15.11 16.70 17.2 22.6::	CM CM CM * BG	182 17 154 * 215	0.09 0.03 0.43 0.56 0.73	CS TT UB CS CX	* 151 154 * 215
1542-376 1608+150 1614-228 1620-720 1620-264	NGC 5986 Pal 14 NGC 6093 NGC 6101 NGC 6121	AvdB M 80 M 4	15 42 47 16 08 47 16 14 03 16 20 10 16 20 31	-37 37.4 +15 05.2 -22 51.2 -72 05.2 -26 24.4	16.50 20.08 15.82 16.76 13.35	8 8 8 8 8 8 8 8 8 8	97 * 95 141 135	0.25 0.03 0.22 0.04 0.36	CS HI UY CS *	* 29 45 * 31
1624-259 1624-387 1625-352 1629-129 1636-283	NGC 6144 NGC 6139 Ter 3 NGC 6171 ESO 452-SC 11	M 107	16 24 10 16 24 17 16 25 24 16 29 43 16 36 18	-25 54.7 -38 44.3 -35 14.2 -12 56.7 -28 18.0	16.46: 17.5 18.8 15.63 16.66	CM * BG CM CM	9 90 34 64 216	0.30 0.74 0.32 0.33 0.31	CS CS CX TT HI	* 215 151 29

STRUCTURE PARAMETERS OF GALACTIC GLOBULAR CLUSTERS

557

TABLE IA. OBSERVED PARAMETERS OF GALACTIC GLOBULAR CLUSTERS

	(B-V) _g			Log θ _t		1	og θ _c		v _t	σc			Number
(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
1.03	CM	136	1.65	SC	49	-0.41	SP	81	3.83	5.55	AP	*	0021-723
0.88	QM	160	1.19	SC	167	0.22	SP	167	8.11	11.02	AP	*	0050-268
0.88	CM	91	1.01	SC	117	-0.69	*	117	6.46	6.0/	AP	*	0100-/11
0.89	CM	8	0.90	SC	167	-0.40	AP	167	8.28	8./0	AP TP	122	0310-554
1.08:	CM	51	0.70:	SC	167	-0.80:	SC	167	13.02	(12.30)	IK	152	0325+794
0.73	CM	164	0.81	D	215	-0.61	е	215	10.66:	10.23	AP	212	0344-718
0.77	CM	1	0.38	SC	161	-0.55	SC	161	15.84	14.9/:	AP	1	0354-498
0.88	CM	50	0.54:	SC	217	-0.60	SC	162	14.70:	13.92	AP 5	21/	0422-213
0./1:	CM	60	1.00:	SC	169	0.00	SC	169	12.7	(14./0)	4 D	43	0433-390
2.22	UB	*	0.50	SC	09	-1.10	30	57	13.04	10.40.	A	45	04457515
0 .87	BV	*	0 .9 0	SC	123	-0.18	AP	168	10.90:	12.13	AP	*	0444-840
0.89	CM	197	0.91:	SC	117	-1.18	SP	65	7.15	5.23	AP	*	0512-400
0.83	CM	198	1.03	SC	167	-0.76	SP	130	/.81	/.38	AP	*	0522-245
0.83	CM	3	0.90:	*	133	-0.30	AP	10/	9.20	9.71	AP	÷	072/+300
0.73	CM	1/6	1.03	SC	167	-0.38	SP	130	10.32	10.99	Ar	~	0734+390
			0.77	D	146	0.19	е	215	14.0	(16.03)	R	146	0737-337
1.04	QM	88	1.15	SC	117	-0.60	*	117	6.13	6.28	AP	*	0911-646
1.24:	CM	*	1.02:	SC	211	0.27	SC	211	11.35	(14.21)	R	211	0921-770
1.82:	Q	148	0.55	D	215	-0.11	е	215	13.0	(13.75)	R	215	0923-545
0.82	CM	191	0.63	SC	167	-0.33	SC	78	13.92:	14.20	AP	168	1003+003
1.00	CM	137	1.56	SC	167	0.04	*	167	6.68	9.69	AP	*	1015-461
			0.64::	D	215	-1.21:	е	215	14.5:	(11.75)	R	215	1117-649
0.86	QM	28	0 .49	SC	167	-0.27	SC	167	14.20	(14.39)	Σ	96	1126+292
0.79	CM	186	0.86	SC	167	-0.89	SP	130	10.22	8.99	AP	*	1207+188
1.20	CM	102	1.5:	D	138	0.42:	AP	168	7.29:	11.54	AP	*	1223-724
			1.06	D	215	-0.02	е	215	10.9	(12.93)	R	215	1235-509
0.76	CM	85	1.47:	SC	167	-0.21	SP	130	7.74	9.62	AP	*	1236-264
1.02	CM	152	1.30	*	138	0.06	AP	167	7.03	9.54	AP	*	1256-706
0.72	CM	48	1.34	SC	167	-0.39	SP	130	7.48	8.51	AP	*	1310+184
0.70	CM	184	1.14	SC	167	0 .39	SC	167	9.94	13.45	AP	*	1313+179
0 .9 0	CM	35	1.64	SC	49	0.42	*	49	3.52:	7.85	AP	*	1323-472
0.86	CM	183	1.59	SC	167	-0.38	SP	130	5.92	7.40	AP	*	1339+286
1.00	QM	97	1.08	SC	166	-0.67	AP	166	7.18	7.05	AP	*	1343-511
0.70:	CM	118	0.60	D	215	-0.41	e	215	15.9	(15.86)	Σ	118	1353-269
0.73	CM	26	1.32:	SC	167	0.20	SC	20	8.95	12.08	AP	*	1403+287
0.80	*	*	0.88	D	133	-0.63	SP	130	9.38	8 .9 0	AP	*	1427-057
0.82	*	*	1.18	*	96	-1.30	SP	130	9.17:	7.31	AP	*	1436-263
0 .99 :	QM	70	1.20	SC	166	0.10	SC	166	9.42:	12.02	AP	*	1452-820
0.84	CM	85	1.30:	SC	167	-1.26	SP	65	7.84:	6.15	AP	*	1500-328
0.86	CM	181	1.26:	SC	181	0.46	SC	167	11.75	(15.67)	Σ	96	1513+000
0.91	CM	182	1.06	SC	167	0.11	SP	130	8.64	11.48	AP	*	1514-208
0.82	CM	17	1.46	SC	167	-0.36	SP	130	5.69	7.15	AP	*	1516+022
1.44	CM	154	1.14	*	133	-0.32	AP	167	8.02	9.11	AP	*	1524-505
1.41	*	*	1.0:	D	133	-0.78	AP	168	9.48	8.77	AP	*	1531-504
			0.79::	D	215	-0.35:	е	215	14.0:	(14.47)	R	215	1535-499
1.01	CM	97	1.10	SC	166	-0.32	SC	166	7.48	8.52	AP	*	1542-376
0.88	CM	*	0.67	SC	99	-0.12	SC	99	14.68	(15.68)	Σ	52	1608+150
0.88	CM	95	0.97	SC	117	-0.98	SP	65	7.33	6.12	AP	*	1614-228
0.81	*	*	1.2:	D	133	-0.10	AP	168	9.16:	11.05	AP	*	1620-720
1.27	CM	135	1.64	SC	167	0.09	SP	130	5.76	9.00	AP	*	1620-264
1.04	CM	9	1.07	*	133	0.0 9	SP	130	9.01	11.61	AP	*	1624-259
1.53	*	*	1.10	SC	166	-0.65	AP	166	8.91	8.52	AP	*	1624-387
			0.88	D	*	-0.08	e	215	12.0	(13.53)	R	215	1625-352
1.29	CM	64	1.36	SC	166	-0.14	SP	130	8.10	9.91	AP	*	1629-129
1.24:	CM	216	0.54	D	215	-0.41	е	215	12.0	(11.80)	7	210	1030-203

TABLE Ia. (cont'd.)

Number	Nan	ne	°°1950	^δ 1950	I	нв			E _{B-V}	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
1639+365 1644-018 1645+476	NGC 6205 NGC 6218 NGC 6229	M 13 M 12	16 39 54 16 44 38 16 45 34	+36 33.2 -01 51.6 +47 36.9	14.95 14.90 18.10	CM CM CM	179 172 190	0.03 0.21 0.00	HB uy Y	178 45 190
1650-220 1654-040	NGC 6235 NGC 6254	M 10	16 50 25 16 54 31	-22 05.7 -04 01.4	16.70 14.65	CM CM	139 97	0.38 0.25	GB ¥	139 190
1656-370	NGC 6256	Ter 12	16 56 10	-37 02.8	18.2:	CM	13	0.88:	GR HT	13 29
1658-300	NGC 6266	M 62	16 58 02	-30 02.5	15.95	CM	*	0.45	*	6
1659-262	NGC 6273	M 19	16 59 32	-26 11.8	16.95:	CM +	97	0.38	CS	*
1/01-246	NGC 6284		17 01 25	-24 41.8	16.55	* -	90	0.28	00	Ĵ
1702-226	NGC 6287 NGC 6293		17 02 09	-22 38.4 -26 31.2	16.52	*	90 90	0.31	CS	*
1708-271	TJ 5		17 08 08	-27 08.0				≥0.65:	UB	157
1711-294	NGC 6304		17 11 22	-29 24.4 -28 05.1	16.15	CM *	106	0.52	CS CS	*
1714-227	NGC 6325		17 14 57	-23 /2 8	17.3.	CM	85	0.86	CS	*
1715-277	TJ 16	TBJ 2	17 14 57	-27 43.4	1/• 5.	OPI	05	20.65:	UB	157
1715-262	TJ 15		17 15 25	-26 14.8				20.65:	UB	157
1715-278	TJ 17 NGC 6341	TBJ 1 M 92	17 15 33	-2/ 4/•1 +43 11•4	15.10	CM	179	20.65:	HB	178
1716-184	NCC 6333	M Q	17 16 16	-18 27.9	16.09	*	90	0.35	CS	*
1718-195	NGC 6342		17 18 13	-19 32.3	17.4	*	9 0	0.46	CS	*
1720-177	NGC 6356		17 20 40	-17 46.1	17.67	CM	187	0.30	CS	*
1720-263	NGC 6355 NGC 6352		17 20 52	-26 18.5	17.2	CM.	101	0.73	*	104
1724-307	Ter 2	НР 3	17 24 20	-30 45.6	19.8:	BG	79	1.31	IR	148
1725-050	NGC 6366		17 25 04	-05 02.1	15.70	CM	171	0.65	CS	86
1726-670	NGC 6362		17 26 45	-67 00.6	15.30	CM	2	0.08	*	69
1/2/-315	Ter 4 HP 1	HP 4	17 27 24	-31 33.5	21.6:: 20.0:	BG BG	215	1.55	CX	215
1728-338	Gri l		17 28 40	-33 47.9	26.2::	BG	80	3.2:	IR	80
1730-333	Li1 1		17 30 07	-33 21.3	24.4	A	215	2.91	IR	148
1731-390	NGC 6380	Ton 1	17 30 59	-39 01.9	18.0	BG	*	1.38		148
1732-304	NGC 6388	nr 2	17 32 34	-44 42.3	17.24	CM	10	0.31	CS	*
1733-390	Ton 2	Pis 26	17 32 43	-38 31.2	18.2	BG	34	0.91	СХ	215
1735-032	NGC 6402	M 14	17 34 59	-03 13.2	17.50	CM	126	0.58	CS	*
1735-238	NGC 6401		17 35 34	-23 53.0	17.3	BG C™	90 33	0.18	CS HB	*
1740-262	Pal 6		17 40 36	-26 12.1	12.90	BG	9 0	1.45	IR	148
1741-328	TJ 23		17 41 54	-32 45.1				1.73	СХ	215
1742+031	NGC 6426		17 42 25	+03 11.4	18.0	IR	90	0.37	CS	*
1745-247	Ter 5		17 45 00	-24 45.8	21.7	BG	150	2.14		148
1746-203	NGC 6440 NGC 6441		17 45 54	-37 02.3	17.10	CM	105	0.36	uy	104
1748-346	NGC 6453		17 47 32	-34 35.2	17.7	*	9 0	0.61	CS	*
1747-312	Ter 6	HP 5	17 47 32	-31 15.7	20.8::	BG	132	1.46	CX	215
1751-241	UKS 1 NGC 6496		17 51 24	-24 08.2	25.5	A *	90	3.07	CS	148
1758-268	Ter 9		17 58 31	-26 50.4	20.3:	BG	215	1.71	IR	148
1759-089	NGC 6517		17 59 06	-08 57.6	18.0:	CM	85	1.09	CS	*
1800-260	Ter 10		17 59 51	-26 04.1	21.9::	BG	215	1.71	CX	215
1801-003	NGC 6535		18 00 23	-30 02.2 -00 18.0	15.85	CM	*	0.33	GB	140
1801-300	NGC 6528		18 01 37	-30 03.6	16.75	CM	213	0.62	CS	*

	(B-V) _g]	Log θ _t		1	og θ _c		V _t	σ _c			Number
(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
0.82	QM	179	1.43	SC	167	-0.08	SP	130	5, 68	7.94	AP	*	1639+365
0.93	CM	172	1.26	SC	167	0.07	SP	130	6.77	9.44	AP	*	1644-018
0.84	*	*	0.75:	SC	167	-0.76	SP	130	9.36	8.31	AP	*	1645+476
1.17	CM	139	0.9:	D	133	-0.58	SP	66	9.99	9.87	AP	*	1650-220
1.06	CM	97	1.38	SC	167	-0.15	SP	130	6.55	8.78	AP	*	1654-040
1.68	CM	13	0.83	D	215	-0.42	e	215	11.29:	11.78:	AP	23	1656-370
0.99:	CM	99	0.73	SC	99	0.13	SC	99	14.2	(15.98)	Σ	99	1657-004
1.32:	CM	6	1.02	SC	117	-0.61	*	117	6.68	6.63	AP	*	1658-300
0.98:	CM	97	1.24	SC	166	-0.30	SP	130	6.73	7.95	AP	*	1659-262
1.13	*	*	1.00	*	133	-0.79	SP	130	8.85	8.07	AP	*	1701-246
1.27	*	*	0 . 98	*	133	-0.48	SP	130	9.31	9.69	AP	*	1702-226
1.08	*	*	1.17	*	133	-0.78	SP	130	8.15	7.75	AP	*	1707-265
			-0.22::	D	215	-1.11:	е	215					1708-271
1.56	CM	106	1.10	*	133	-0.58	SP	130	8.36	8.59	AP	*	1711-294
1.54	*	*	1.16	*	133	-0.76	SP	130	8.75	8.51	AP	*	1713-280
1.55:	CM	85	1.00:	*	133	-0.61	SP	130	10.56	10.30	AP	*	1714-237
			-0.29::	D	215	-1.34	е	205	16.3::	11.7::	AP	205	1715-277
			-0.22::	D	215	-1.01:	е	215					1715-262
1.80	BV	*	-0.05::	D	215	-1.27	е	205	16.58:	12.56:	: AP	203	1715-278
0.74	CM	27	1.22	SC	167	-0.51	SP	130	6.39	6.81	AP	*	1715+432
1.10	*	*	1.19	SC	166	-0.38	SP	130	7.61	8.33	AP	*	1716-184
1.45	*	*	0.94	*	133	-0.88	SP	130	9.84	9.03	AP	*	1718-195
1.19:	CM	187	1.06	*	133	-0.53	SP	130	8.18	8.29	AP	*	1720-177
1.58	*	*	0.88:	*	133	-0.72	SP	130	9.68	9.56	AP	*	1720-263
1.29	CM	101	1.08	*	133	-0.17	AP	168	8.13	9.93	AP	*	1721-484
2.35:	Q	148	0.49	D	133	-0.97	SP	81	14.29:	12.12:	AP	149	1724-307
1.65	QM	171	1.3:	D	133	0.34	SC	167	8.88:	12.47	AP	*	1725-050
1.08	CM	2	1.22	SC	167	0.20	SC	167	7.52	10.20	AP	*	1726-670
2.65:	Q	148	0.22:	D	133	≤-1.00	е	215	16.0:	(≤13.34)	R	215	1727-315
2.18:	BV	67	0.67	D	133	-0.68	е	133	12.49	(11.62)	IR	132	1727-299
			0.94::	D	215	-0.27:	е	215	17.66:	18.64:	SP	80	1728-338
4.01:	Q	148	0.52	D	215	-1.23	SP	81	15.84:	13.42:	AP	*	1730-333
2.24	*	*	0.75	D	133	-0.46	AP	168	11.12:	11.14	AP	168	1731-390
2.71:	Q	148	0.59	D	133	-1.01	е	215	15.9	(13.74)	R	215	1732-304
1.33	CM	10	0.92	SC	117	-0.83	*	117	6.73	5.71	AP	*	1732-447
			0.71	D	133	-0.14	е	215	12.24	(13.27)	IR	132	1733-390
1.23:	CM	126	1.00	SC	167	-0.10	SP	130	7.57	9.52	AP	*	1735-032
1.69	*	*	1.12	SP	130	-0.63	SP	130	9.45:	9.76	AP	*	1735-238
0.87	CM	33	1.585	SC	49	-0.11	AP	49	5.75	8.14	AP	*	1736-536
2.67:	*	*	0.87	D	133	-0.17	e	133	11.55:	12.77	AP	168	1740-262
			0.04::	D	215	-0.75:	e	215					1741-328
1.08	*	*	0.87	*	133	-0.45	SP	130	11.13	11.76	AP	*	1742+031
3.14:	*	*	0.61	D	133	-1.32:	е	133	13.85:	10.70:	AP	175	1745-247
2.15	*	*	1.08	*	133	-0.94	SP	65	9.05	8.13	AP	*	1746-203
1.51	CM	105	0.88:	SC	117	-0.86	SP	81	7.19	6.26	AP	*	1746-370
1.42	*	*	0.7:	D	133	-0.79	SP	130	9.78	8.74	AP	*	1748-346
			0.18:	D	133	-1.08	e	215	13.85:	(10.85)	IR	132	1747-312
3.95:	Q	148	0.//	ע	14/	-0.66	AP	149	17.29:	16.63:	AP	149	1751-241
1.10	*	π 1/0	1.0:	U D	133	0.25	AP	108	8.48:	11.18	AP	*	1/55-442
2.11:	Y.	148	0.43	ע	100	-0.91:	e	215	10.0:	(13.90)	к	215	1/58-268
1.91	*	*	1.02:	*	133	-0.99	SP	130	10.30	9.09	AP	*	1759-089
1 20	~	10	0.18:	U CD	202	-0.94:	e	215	14.9:	(12.39)	K	215	1800-260
1.12	CM CM	+ 19	1.00	ər *	133	-0.70	5P AD	169	0.30	ده ، / ۲۰ ۱۵	AP	*	1801-003
1.56.	CM	213	0.67	SP	130	-0.89	SP	130	9.51	8 30	AP AD	*	1801-300
· · · · ·	~ 1	~ x J	0.07	U 1	100		<u> </u>	100	/• J L	0.00	n .		1001-200

TABLE Ia. (cont'd.)

TABLE Ia. (cont'd.)

Number	Nan)e	^α 1950	⁸ 1950	7	и _{нв}			E _{B-V}	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
1802-075 1804-250 1804-437 1806-259 1807-317	NGC 6539 NGC 6544 NGC 6541 NGC 6553 NGC 6558		18 02 07 18 04 15 18 04 25 18 06 11 18 07 03	-07 35.4 -25 00.3 -43 43.4 -25 55.1 -31 46.4	16.6 15.0: 15.20 16.95 16.7	IR CM CM CM	90 12 7 100 90	1.10 0.73 0.12 0.80 0.43	CS CS CS CS CS	* * * *
1808-072 1809-227 1810-318 1812-121 1814-522	IC 1276 Ter 11 [·] NGC 6569 Kod 1 NGC 6584	Pal 7	18 08 03 18 09 14 18 10 23 18 12 19 18 14 38	-07 13.2 -22 45.3 -31 50.5 -12 04.2 -52 14.1	18.5 22.5:: 17.1 16.8	* BG *	90 215 90 90	0.92 1.57 0.55 3.8: 0.10	CS CX CS IR CS	86 215 * 125 *
1820-303 1821-249 1827-255 1828-323 1828-235	NGC 6624 NGC 6626 NGC 6638 NGC 6637 NGC 6642	M 69	18 20 28 18 21 28 18 27 51 18 28 07 18 28 52	-30 23.3 -24 53.8 -25 32.0 -32 23.1 -23 30.8	16.05 15.60 15.92 16.20 15.5	CM CM CM CM	144 11 14 87 90	0.29 0.37 0.37 0.17 0.37	CS GB CS CS CS	* 11 * *
1832-330 1833-239 1838-198 1840-323 1850-087	NGC 6652 NGC 6656 Pal 8 NGC 6681 NGC 6712	M 70	18 32 29 18 33 21 18 38 32 18 39 57 18 50 20	-33 01.9 -23 56.9 -19 52.5 -32 20.5 -08 46.2	16.7 14.20 18.9 15.60 16.11	BG CM * CM CM	90 5 37 * 185	0.10 0.35 0.33 0.05 0.48	CS uy CS CS *	* 104 * * 185
1851-305 1852-227 1856-367 1902+017 1906-600	NGC 6715 NGC 6717 NGC 6723 NGC 6749 NGC 6752	M 54 Pal 9	18 51 51 18 52 05 18 56 11 19 02 43 19 06 28	-30 32.6 -22 46.0 -36 41.9 +01 49.5 -60 03.9	17.71 15.7 15.48 19.2 13.80	CM CM CM * CM	85 76 153 37 36	0.14 0.20 0.02 0.96: 0.05	CS CS UB CS HB	* 153 96 *
1908+009 1914-347 1914+300 1916+184 1925-304	NGC 6760 Ter 7 NGC 6779 Pal 10 Arp 2		19 08 39 19 14 25 19 14 39 19 15 49 19 25 34	+00 56.8 -34 44.8 +30 05.5 +18 28.9 -30 27.7	16.5 18.6 16.20 19.4 18.21	* BG CM BG CM	90 34 21 37 192	0.88 0.06 0.20 1.15 0.11	CS HI Y CX HI	* 29 190 215 29
1936-310 1938-341 1942-081 1951+186 2003-220	NGC 6809 Ter 8 Pal 11 NGC 6838 NGC 6864	M 55 M 71 M 75	19 36 50 19 38 29 19 42 32 19 51 32 20 03 08	-31 04.6 -34 07.1 -08 07.7 +18 38.7 -22 03.9	14.40 19.4 17.38 14.42 17.45	CM BG CM CM CM	138 34 47 46 85	0.08 0.12 0.34 0.19 0.16	UB HI UB XY CS	138 29 38 119 *
2031+072 2050-127 2059+160 2127+119 2130-010	NGC 6934 NGC 6981 NGC 7006 NGC 7078 NGC 7089	M 72 M 15 M 2	20 31 45 20 50 43 20 59 09 21 27 33 21 30 53	+07 14.0 -12 43.6 +15 59.4 +11 56.8 -01 02.8	16.82 16.85 18.72 15.86 16.05	CM CM CM CM CM	94 62 188 179 85	0.11 0.03 0.05 0.10 0.02	Ψ ★ ₩ ₩	190 * 190 * 190
2137-234 2143-214 2304+124 2305-159	NGC 7099 Pal 12 Pal 13 NGC 7492	M 30 Cap Peg	21 37 32 21 43 50 23 04 14 23 05 49	-23 24.4 -21 29.0 +12 30.2 -15 52.9	15.09 17.10 17.70 17.00	CM CM CM CM	63 92 41 22	0.06 0.02 0.05 0.00	UB HI CS CS	63 29 86 86

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(B-V)g	5		log θ _t	:	1	og θ _c		v _t	σc			Number
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.02	*	*	1.12:	*	133	-0.28	SP	130	9.77	11.16	AP	*	1802-975
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.39:	CM	12	1.07:	*	133	-0.33	SP	130	8.07	9.07	AP	*	1804-250
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.81	CM	7	1.50:	SC	167	-0.55	SP	218	6.08	6.86	AP	*	1804-437
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.87:	CM	100	1.02:	*	133	-0.17	SP	130	8.06	9.27	AP	*	1806-259
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.24	*	*	0.8:	D	133	-0.81	AP	168	9.82	8.79	AP	*	1807-317
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.89:	UB	175	1.1:	D	133	0.10	*	167	10.34:	12.83	AP	175	1808-072
1.48 * 0.85: * 133 -0.46 SP 130 8.71 9.09 AP * 1810-318 0.90 * * 0.94 * 133 -0.40 AP 167 8.63 9.14 AP * 1814-522 1.26 CH 144 1.06 * 133 -0.42 * 167 8.63 9.14 AP * 1820-203 1.11 CH 14 0.77 * 166 -0.63 SP 130 9.05 8.34 AP * 1822-255 1.12 CH 87 1.02: * 133 -0.42 SP 130 7.56 7.93 AP * 1828-233 1.05 * * 0.89 * 133 -0.62 SP 130 8.76 7.70 AP * 1832-330 1.09 CH 5 1.52 SC 167 0.08 SP 130 8.76 7.70 AP * 1832-330 1.00				0.30:	D	133	-0.71:	е	215	16.4:	(14.86)	R	215	1809-227
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.48	*	*	0.85:	*	133	-0.46	SP	130	8.71	9.09	AP	*	1810-318
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										20.1::		AP	125	1812-121
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 .9 0	*	*	0.94	*	133	-0.40	AP	167	8.63	9.14	AP	*	1814-522
1.11 CM 11 1.18 * 133 -0.42 * 167 6.83 7.29 AP * 1821-249 1.32 CM 14 0.77 * 166 -0.63 SP 130 9.05 8.34 AP * 1827-255 1.12 CM 87 1.02: * 133 -0.48 SP 130 7.56 7.93 AP * 1828-323 1.23 * * 0.9: D 133 -1.13: SP 66 9.36 7.66 AP * 1832-330 1.09 CM 5 1.52 SC 167 0.08 SP 130 5.07 8.35 AP * 1832-339 1.38 * * 0.35 SC 37 -0.40 SC 37 11.15 10.78 AP * 1832-339 1.38 * * 0.35 SC 37 -0.40 SC 37 11.15 10.78 AP * 1833-198 1.00: CM 85 1.04 * 133 -0.17 SP 130 8.17 9.57 AP * 1850-087 0.87: CM 85 0.87 SC 117 -0.98 SP 130 7.57 6.00 AP * 1851-305 0.85: CM 76 0.9: D 133 -1.24 SP 66 9.18 7.29 AP * 1850-087 0.87: CM 85 0.87 SC 117 -0.98 SP 130 7.57 6.00 AP * 1851-305 0.85: CM 76 0.9: D 133 -1.24 SP 66 9.18 7.29 AP * 1852-227 0.93 CM 153 1.10 SC 167 -0.03 SP 130 7.17 8.85 AP * 1856-367 0.83 CM 36 1.49 SC 49 -0.30 * 49 5.48 6.85 AP * 1902+017 0.83 CM 36 1.49 SC 49 -0.30 * 49 5.48 6.85 AP * 1902+017 0.83 CM 36 1.49 SC 49 -0.30 * 49 5.48 6.85 AP * 1902+017 0.84 CM 192 0.75 D 133 -0.36 SP 130 8.26 9.33 AP * 1902+017 0.84 133 -0.36 SP 130 8.26 9.33 AP * 1902+017 0.84 CM 192 0.75 SC 37 -0.49 SC 37 13.22 (13.14) IR 132 1916+184 0.84 CM 192 0.75 SC 167 0.24 SC 167 6.36 9.97 AP * 1932-304 0.84 CM 192 0.75 SC 167 0.12 SC 167 9.80::: 11.92 AP 168 1942-081 1.29 CM 47 0.87 SC 167 0.24 SC 167 9.80::: 11.92 AP 168 1942-081 1.29 CM 47 0.87 SC 167 0.12 SC 167 9.80::: 11.92 AP 168 1942-081 1.29 CM 46 1.14 * 133 -0.08 SP 130 8.00 9.80 AP * 1936-310 0.94 AD * -0.11 e 215 12.4 (13.93) R 215 1938-341 0.84 CM 192 0.75 SC 167 -0.49 SC 167 9.80::: 11.92 AP 168 1942-081 1.29 CM 46 1.14 * 133 -0.08 SP 130 8.00 9.80 AP * 1936-310 0.94 AD * -0.12 SC 167 9.80::: 11.92 AP 168 1942-081 1.29 CM 47 0.87 SC 167 -0.47 SP 130 8.66 AP * 2037-200 0.97 CM 94 0.95 SC 167 -0.47 SP 130 8.66 AP * 2037-20 0.97 CM 94 0.95 SC 167 -0.47 SP 130 8.66 AP * 2037-20 0.97 CM 94 0.95 SC 167 -0.47 SP 130 8.52 6.68 AP * 2035-159 0.81 CM 188 0.80 SC 167 -0.47 SP 130 8.63 7.18 AP * 2137-234 0.92 CM 92 1.03 SC 166 -0.32 SC 166 11.71 12.85 AP * 2137-234 0.92 CM 92	1.26	CM	144	1.06	*	133	-1.06	SP	81	7.99	6.63	AP	*	1820-303
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.11	CM	11	1.18	*	133	-0.42	*	167	6.83	7.29	AP	*	1821-249
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.32	CM	14	0.77	*	166	-0.63	SP	130	9.05	8.34	AP	*	1827-255
1.23 * • 0.9: D 133 -1.13: SP 66 9.36 7.66 AP * 1828-235 1.05 * * 0.89 * 133 -0.82 SP 130 8.76 7.70 AP * 1832-330 1.09 CH 5 1.52 SC 167 0.08 SP 130 5.07 8.35 AP * 1833-239 1.38 * * 0.55 C37 -0.40 SC 37 11.15 10.78 AP * 1833-239 1.35 CH 85 1.04 * 133 -0.17 SP 65 7.95 6.85 AP * 1830-087 0.87: CH 85 0.87 SC 117 -0.98 SP 130 7.17 8.85 AP * 1852-227 0.83 CH 153 1.10 SC 167 -0.08 SP 130 7.17 8.85 AP * 1852-227 0.84 <t< td=""><td>1.12</td><td>CM</td><td>87</td><td>1.02:</td><td>*</td><td>133</td><td>-0.48</td><td>SP</td><td>130</td><td>7.56</td><td>7.93</td><td>AP</td><td>*</td><td>1828-323</td></t<>	1.12	CM	87	1.02:	*	133	-0.48	SP	130	7.56	7.93	AP	*	1828-323
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.23	*	*	0 .9:	D	133	-1.13:	SP	66	9.36	7.66	AP	*	1828-235
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.05	*	*	0.89	*	133	-0.82	SP	130	8.76	7.70	AP	*	1832-330
	1.09	QM	5	1.52	SC	167	0.08	SP	130	5.07	8.35	AP	*	1833-239
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.38	*	*	0.35	SC	37	-0.40	SC	37	11.15	10.78	AP	*	1838-198.
1.35 CM 185 1.04: * 133 -0.17 SP 130 8.17 9.57 AP * 1850-087 0.87: CM 85 0.87 SC 117 -0.98 SP 130 7.57 6.00 AP * 1851-305 0.83: CM 76 0.91 D 133 -1.24 SP 66 9.18 7.29 AP * 1852-227 0.93 CM 153 1.10 SC 167 -0.08 SP 130 7.17 8.85 AP * 1856-367 2.04 UB * 0.43 SC 37 -0.32 SC 37 12.44 12.32 AP * 1902+017 0.83 CM 36 1.49 SC 49 -0.30 * 49 5.48 6.85 AP * 1908+009 0.54 D 133 -0.36 SP 130 8.26 9.33 AP * 1914-340 0.82 CM 192	1.00:	CM	85	1.04	*	133	-1.03	SP	65	7.95	6.85	AP	*	1840-323
0.87: CM 85 0.87 SC 117 -0.98 SP 130 7.57 6.00 AP * 1851-305 0.85: CM 76 0.9: D 133 -1.24 SP 66 9.18 7.29 AP * 1852-227 0.93 CM 153 1.10 SC 167 -0.08 SP 130 7.17 8.85 AP * 1856-367 0.93 CM 36 1.49 SC 37 -0.32 SC 37 12.44 12.32 AP * 1902+017 0.83 CM 36 1.49 SC 49 -0.30 * 49 5.48 6.85 AP * 1908+009 0.54 D 133 -0.44 e 215 12.0 (11.76) R 215 1914-347 0.82 CM 21 1.08 * 133 -0.36 SP 130 9.08 10.03 AP * 1908+009 0.54 D 133 -0.44 e 215 12.0 (11.76) R 215 1914-347 0.82 CM 21 1.08 * 133 -0.36 SP 130 8.26 9.33 AP * 1914+300 0.75 SC 37 -0.49 SC 37 13.22 (13.14) IR 132 1916+184 0.84 CM 192 0.75 D 133 0.30 SC 166 12.3 (14.46) R 215 1925-304 0.88 CM 138 1.27 SC 167 0.24 SC 167 6.36 9.97 AP * 1936-310 0.94 D * -0.11 e 215 12.4 (13.93) R 215 1938-341 1.29 CM 47 0.87 SC 167 0.12 SC 167 9.80:: 11.92 AP 168 1942-081 1.25 CM 46 1.14 * 133 -0.08 SP 130 8.00 9.80 AP * 1936-310 0.94 D * 0.11 e 215 12.4 (13.93) R 215 1938-341 1.29 CM 47 0.87 SC 167 0.12 SC 167 9.80:: 11.92 AP 168 1942-081 1.25 CM 46 1.14 * 133 -0.08 SP 130 8.00 9.80 AP * 1936-310 0.94 D * 0.11 e 215 12.4 (13.93) R 215 1938-341 1.29 CM 47 0.87 SC 167 -0.69 SP 130 8.02 9.80 AP * 203-220 0.97 CM 94 0.95 SC 167 -0.69 SP 130 8.72 8.31 AP * 2031+072 0.83 CM 62 0.94 SC 167 -0.75 SP 130 10.46 9.44 AP * 2030-127 0.81 CM 188 0.80 SC 167 -0.75 SP 130 10.46 9.44 AP * 2059+160 0.78 CM 27 1.32 SC 167 -0.43 SP 81 6.02 5.90 AP * 2127+119 0.76 CM 85 1.21 SC 167 -0.44 SP 81 6.02 5.90 AP * 2127+119 0.76 CM 85 1.21 SC 167 -0.47 SP 130 6.36 7.18 AP * 2130-010 0.71 CM 63 1.20 SC 167 -0.47 SP 130 6.36 7.18 AP * 2130-010 0.74 92 1.03 SC 166 -0.32 SC 166 11.71 12.85 AP * 2130-010 0.74 CM 22 0.88 SC 167 -0.42 SC 163 13.80: 13.52: AP 175 2304+124 0.74 CM 22 0.88 SC 167 -0.9 SP 130 11.43 13.08 AP * 2135-159	1.35	CM	185	1.04:	*	133	-0.17	SP	130	8.17	9.57	AP	*	1850-087
0.85: CM 76 0.9: D 133 -1.24 SP 66 9.18 7.29 AP $*$ 1852-227 0.93 CM 153 1.10 SC 167 -0.08 SP 130 7.17 8.85 AP $*$ 1856-367 2.04 UB $*$ 0.43 SC 37 -0.32 SC 37 12.44 12.32 AP $*$ 1902+017 0.83 CM 36 1.49 SC 49 -0.30 $*$ 49 5.48 6.85 AP $*$ 1908+009 0.54 D 133 -0.44 e 215 12.0 (11.76) R 215 1914-347 0.82 CM 21 1.08 $*$ 133 -0.36 SP 130 8.26 9.33 AP $*$ 1908+009 0.54 D 133 -0.44 e 215 12.0 (11.76) R 215 1914-347 0.82 CM 21 1.08 $*$ 133 -0.36 SP 130 8.26 9.33 AP $*$ 1914+300 0.75 SC 37 -0.49 SC 37 13.22 (13.14) IR 132 1916+184 0.84 CM 192 0.75 D 133 0.30 SC 166 12.3 (14.46) R 215 1925-304 0.88 CM 138 1.27 SC 167 0.24 SC 167 6.36 9.97 AP $*$ 1936-310 0.94 D $*$ -0.11 e 215 12.4 (13.93) R 215 1938-341 1.29 CM 47 0.87 SC 167 0.12 SC 167 9.80:: 11.92 AP 168 1942-081 1.25 CM 46 1.14 $*$ 133 -0.08 SP 130 8.00 9.80 AP $*$ 1951+186 0.93 CM 85 0.78 SC 117 -1.02 SP 130 8.53 6.68 AP $*$ 203-220 0.97 CM 94 0.95 SC 167 -0.44 SP 130 9.32 9.91 AP $*$ 2031+072 0.83 CM 62 0.94 SC 167 -0.44 SP 130 9.32 9.91 AP $*$ 2031+072 0.81 CM 188 0.80 SC 167 -0.47 SP 130 8.72 8.31 AP $*$ 2031+072 0.83 CM 62 0.94 SC 167 -0.44 SP 130 9.32 9.91 AP $*$ 2059+160 0.78 CM 27 1.32 SC 167 -0.47 SP 130 8.72 8.31 AP $*$ 2031+072 0.81 CM 188 0.80 SC 167 -0.47 SP 130 8.72 8.31 AP $*$ 2031+072 0.81 CM 188 0.80 SC 167 -0.47 SP 130 8.72 8.31 AP $*$ 2031+072 0.83 CM 62 0.94 SC 167 -0.47 SP 130 8.72 8.31 AP $*$ 2031+072 0.81 CM 188 0.80 SC 167 -0.47 SP 130 8.72 8.31 AP $*$ 2031+072 0.81 CM 188 0.80 SC 167 -0.47 SP 130 8.72 8.31 AP $*$ 2031+072 0.81 CM 188 0.80 SC 167 -0.47 SP 130 10.46 9.44 AP $*$ 2059+160 0.78 CM 27 1.32 SC 167 -0.47 SP 130 10.46 9.44 AP $*$ 2137-234 0.992 CM 41 0.58 SC 167 -0.42 SC 166 11.71 12.85 AP $*$ 2137-234 0.992 CM 41 0.58 SC 167 -0.42 SC 166 11.71 12.85 AP $*$ 2137-234 0.992 CM 41 0.58 SC 167 -0.42 SC 166 11.71 12.85 AP $*$ 2137-234 0.992 CM 42 0.988 SC 167 -0.09 SP 130 11.43 13.08 AP $*$ 2137-234 0.992 CM 42 0.988 SC 167 -0.09 SP 130 11.43 13.08 AP $*$ 2305-159	0.87:	CM	85	0.87	SC	117	-0.98	SP	130	7.57	6.00	AP	*	1851-305
0.93 CM 153 1.10 SC 167 -0.08 SP 130 7.17 8.85 AP * 1856-367 2.04 UB * 0.43 SC 37 -0.32 SC 37 12.44 12.32 AP * 1902+017 0.83 CM 36 1.49 SC 49 -0.30 * 49 5.48 6.85 AP * 1906-600 1.85 * * 1.08 * 133 -0.36 SP 130 9.08 10.03 AP * 1908+009 0.54 D 133 -0.44 e 215 12.0 (11.76) R 215 1914-347 0.82 CM 21 1.08 * 133 -0.36 SP 130 8.26 9.33 AP * 1914+300 0.75 SC 37 -0.49 SC 37 13.22 (13.14) IR 132 1916+184 0.84 CM 192 0.75 D 133 0.30 SC 166 12.3 (14.46) R 215 1925-304 0.88 CM 138 1.27 SC 167 0.24 SC 167 6.36 9.97 AP * 1936-310 0.94 D * -0.11 e 215 12.4 (13.93) R 215 1938-341 1.29 CM 47 0.87 SC 167 0.12 SC 167 9.80:: 11.92 AP 168 1942-081 1.25 CM 46 1.14 * 133 -0.08 SP 130 8.00 9.80 AP * 1936+310 0.93 CM 85 0.78 SC 117 -1.02 SP 130 8.53 6.68 AP * 2003-220 0.97 CM 94 0.95 SC 167 -0.44 SP 130 9.32 9.91 AP * 2031+072 0.83 CM 62 0.94 SC 167 -0.44 SP 130 9.32 9.91 AP * 2031+072 0.83 CM 62 0.94 SC 167 -0.44 SP 130 9.32 9.91 AP * 2031+072 0.83 CM 62 0.94 SC 167 -0.47 SP 130 8.72 8.31 AP * 2031+072 0.83 CM 62 0.94 SC 167 -0.47 SP 130 10.46 9.44 AP * 2059+160 0.78 CM 27 1.32 SC 167 -0.47 SP 130 6.36 7.18 AP * 2137-234 0.76 CM 85 1.21 SC 167 -0.47 SP 130 6.36 7.18 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.42 SC 166 11.71 12.85 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.42 SC 166 11.71 12.85 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.42 SC 166 11.71 12.85 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.42 SC 166 11.71 12.85 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.42 SC 166 11.71 12.85 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.42 SC 166 11.74 13.808 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.42 SC 166 11.74 13.808 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.42 SC 166 11.74 13.808 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.42 SC 166 11.74 13.808 AP * 2305-159	0.85:	CM	76	0 .9:	D	133	-1.24	SP	66	9.18	7.29	AP	*	1852-227
2.04 UB * 0.43 SC 37 -0.32 SC 37 12.44 12.32 AP * 1902+017 0.83 CM 36 1.49 SC 49 -0.30 * 49 5.48 6.85 AP * 1906-600 1.85 * 1.08 * 133 -0.36 SP 130 9.08 10.03 AP * 1908+009 0.54 D 133 -0.44 e 215 12.0 (11.76) R 215 1914-347 0.82 CM 21 1.08 * 133 -0.36 SP 130 8.26 9.33 AP * 1914+300 0.75 SC 37 -0.49 SC 37 13.22 (13.14) IR 132 1916+184 0.84 CM 192 0.75 D 133 0.30 SC 166 12.3 (14.46) R 215 1925-304 0.88 CM 138 1.27 SC 167 0.24 SC 167 6.36 9.97 AP * 1936-310 0.94 D * -0.11 e 215 12.4 (13.93) R 215 1938-341 1.29 CM 47 0.87 SC 167 0.12 SC 167 9.80:: 11.92 AP 168 1942-081 1.25 CM 46 1.14 * 133 -0.08 SP 130 8.53 6.68 AP * 2003-220 0.97 CM 94 0.95 SC 167 -0.69 SP 130 8.53 6.68 AP * 2003-220 0.97 CM 94 0.95 SC 167 -0.69 SP 130 8.72 8.31 AP * 2031+072 0.83 CM 62 0.94 SC 167 -0.44 SP 130 9.32 9.91 AP * 2031+072 0.83 CM 62 0.94 SC 167 -0.47 SP 130 10.46 9.44 AP * 2059+160 0.78 CM 27 1.32 SC 167 -0.47 SP 130 10.46 9.44 AP * 2059+160 0.78 CM 27 1.32 SC 167 -0.47 SP 130 6.36 7.18 AP * 2157+119 0.76 CM 85 1.21 SC 167 -0.47 SP 130 6.36 7.18 AP * 2137-234 0.92 CM 92 1.03 SC 167 -0.47 SP 130 6.36 7.18 AP * 2137-234 0.92 CM 92 1.03 SC 167 -0.47 SP 130 6.36 7.18 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.47 SP 130 6.36 7.18 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.47 SP 130 6.36 7.18 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.47 SP 130 6.36 7.18 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.47 SP 130 6.36 7.18 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.47 SP 130 11.43 13.08 AP * 2137-234 0.99: CM 41 0.58 SC 167 -0.42 SC 163 13.80: 13.52: AP 175 2304+124 0.74 CM 22 0.88 SC 167 -0.09 SP 130 11.43 13.08 AP * 2305-159	0.93	CM	153	1.10	SC	167	-0.08	SP	130	7.17	8.85	AP	*	1856-367
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.04	UB	*	0.43	SC	37	-0.32	SC	37	12.44	12.32	AP	*	1902+017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.83	CM	36	1.49	SC	49	-0.30	*	49	5.48	6.85	AP	*	1906-600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.85	*	*	1.08	*	133	-0.36	SP	130	9.08	10.03	AP	*	1908+009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.54	D	133	-0.44	e	215	12.0	(11./6)	R	215	1914-34/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.82	CM	21	1.08	*	133	-0.36	SP	130	8.26	9.33	AP	*	1914+300
0.84 CM 192 0.75 D 133 0.30 SC 166 12.3 (14.46) R 215 1925-304 0.88 CM 138 1.27 SC 167 0.24 SC 167 6.36 9.97 AP \star 1936-310 0.94 D \star -0.11 e 215 12.4 (13.93) R 215 1938-341 1.29 CM 47 0.87 SC 167 0.12 SC 167 9.80:: 11.92 AP 168 1942-081 1.25 CM 46 1.14 \star 133 -0.08 SP 130 8.00 9.80 AP \star 1951+186 0.93 CM 85 0.78 SC 117 -1.02 SP 130 8.53 6.68 AP \star 2003-220 0.97 CM 94 0.95 SC 167 -0.69 SP 130 8.72 8.31 AP \star 2031+072 0.83 CM 62 0.94 SC 167 -0.44 SP 130 9.32 9.91 AP \star 2031+072 0.83 CM 62 0.94 SC 167 -0.44 SP 130 9.32 9.91 AP \star 2050-127 0.81 CM 188 0.80 SC 167 -0.47 SP 130 10.46 9.44 AP \star 2059+160 0.78 CM 27 1.32 SC 167 -0.47 SP 130 6.36 7.18 AP \star 2137-234 0.92 CM 92 1.03 SC 167 -1.13 SP 65 7.32 6.33 AP \star 2137-234 0.99: CM 41 0.58 SC 163 -0.42 SC 163 13.80: 13.52: AP 175 2304+124 0.74 CM 22 0.88 SC 167 -0.09 SP 130 11.43 13.08 AP \star 2305-159		-		0.75	SC	37	-0.49	SC	37	13.22	(13.14)	IR	132	1916+184
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.84	CM	192	0.75	D	133	0.30	SC	166	12.3	(14.46)	R	215	1925-304
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.88	CM	138	1.27	SC	167	0.24	SC	167	6.36	9.97	AP	*	1936-310
1.29 CM 47 0.87 SC 167 0.12 SC 167 9.80:: 11.92 AP 168 1942-081 1.25 CM 46 1.14 * 133 -0.08 SP 130 8.00 9.80 AP * 1951+186 0.93 CM 85 0.78 SC 117 -1.02 SP 130 8.53 6.68 AP * 2003-220 0.97 CM 94 0.95 SC 167 -0.69 SP 130 8.72 8.31 AP * 2031+072 0.83 CM 62 0.94 SC 167 -0.44 SP 130 9.32 9.91 AP * 2050-127 0.81 CM 188 0.80 SC 167 -0.45 SP 130 10.46 9.44 AP * 2059+160 0.78 CM 27 1.32 SC 167 -0.47 SP 130 6.36 7.18 AP * 2130-010 <t< td=""><td></td><td></td><td></td><td>0.94</td><td>D</td><td>*</td><td>-0.11</td><td>е</td><td>215</td><td>12.4</td><td>(13.93)</td><td>R</td><td>215</td><td>1938-341</td></t<>				0 .9 4	D	*	-0.11	е	215	12.4	(13.93)	R	215	1938-341
1.25CM461.14 $*$ 133 -0.08 SP130 8.00 9.80 AP $*$ 1951+1860.93CM850.78SC117 -1.02 SP130 8.53 6.68 AP $*$ 2003-2200.97CM940.95SC167 -0.69 SP130 8.72 8.31 AP $*$ 2031+0720.83CM620.94SC167 -0.44 SP130 9.32 9.91 AP $*$ 2050-1270.81CM1880.80SC167 -0.75 SP130 10.46 9.44 AP $*$ 2059+1600.78CM271.32SC167 -1.04 SP81 6.02 5.90 AP $*$ 2127+1190.76CM851.21SC167 -0.47 SP130 6.36 7.18 AP $*$ 2137-2340.92CM631.20SC166 -0.32 SC16611.7112.85AP $*$ 2137-2340.99:CM410.58SC163 -0.42 SC16313.80:13.52:AP $*$ 2137-2340.74CM220.88SC167 -0.99 SP13011.4313.08AP $*$ 2305-159	1.29	CM	47	0.87	SC	167	0.12	SC	167	9.80::	11.92	AP	168	1942-081
0.93 CM 85 0.78 SC 117 -1.02 SP 130 8.53 6.68 AP * 2003-220 0.97 CM 94 0.95 SC 167 -0.69 SP 130 8.72 8.31 AP * 2031+072 0.83 CM 62 0.94 SC 167 -0.44 SP 130 9.32 9.91 AP * 2050-127 0.81 CM 188 0.80 SC 167 -0.75 SP 130 10.46 9.44 AP * 2059+160 0.78 CM 27 1.32 SC 167 -1.04 SP 81 6.02 5.90 AP * 2127+119 0.76 CM 85 1.21 SC 167 -0.47 SP 130 6.36 7.18 AP * 2130-010 0.71 CM 63 1.20 SC 167 -1.13 SP 65 7.32 6.33 AP * 2137-234 0.92 CM 92 1.03 SC 166 -0.32 SC 166 11.71 12.85 AP * 2137-234 0.99: CM 41 0.58 SC 163 -0.42 SC 163 13.80: 13.52: AP 175 2304+124 0.74 CM 22 0.88 SC 167 -0.09 SP 130 11.43 13.08 AP * 2305-159	1.25	CM	46	1.14	*	133	-0.08	SP	130	8.00	9.80	AP	*	1951+186
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.93	CM	85	0.78	SC	117	-1.02	SP	130	8.53	6.68	AP	*	2003-220
0.83 CM 62 0.94 SC 167 -0.44 SP 130 9.32 9.91 AP * 2050-127 0.81 CM 188 0.80 SC 167 -0.75 SP 130 10.46 9.44 AP * 2059+160 0.78 CM 27 1.32 SC 167 -1.04 SP 81 6.02 5.90 AP * 2127+119 0.76 CM 85 1.21 SC 167 -0.47 SP 130 6.36 7.18 AP * 2130-010 0.71 CM 63 1.20 SC 167 -1.13 SP 65 7.32 6.33 AP * 2137-234 0.92 CM 92 1.03 SC 166 -0.32 SC 166 11.71 12.85 AP * 2137-234 0.99: CM 41 0.58 SC 163 -0.42 SC 163 13.80: 13.52: AP 175 2304+124 0.74 CM 22 0.88 SC 167 -0.09 SP 130 11.43 13.08 AP * 2305-159	0.97	CM	94	0.95	SC	167	-0.69	SP	130	8.72	8.31	AP	*	2031+072
0.81 CM 188 0.80 SC 167 -0.75 SP 130 10.46 9.44 AP * 2059+160 0.78 CM 27 1.32 SC 167 -1.04 SP 81 6.02 5.90 AP * 2127+119 0.76 CM 85 1.21 SC 167 -0.47 SP 130 6.36 7.18 AP * 2130-010 0.71 CM 63 1.20 SC 167 -1.13 SP 65 7.32 6.33 AP * 2137-234 0.92 CM 92 1.03 SC 166 -0.32 SC 166 11.71 12.85 AP * 2137-234 0.99: CM 41 0.58 SC 163 -0.42 SC 163 13.80: 13.52: AP 175 2304+124 0.74 CM 22 0.88 SC 167 -0.09 SP 130 11.43 13.08 AP * 2305-159	0.83	CM	62	0 .9 4	SC	167	-0.44	SP	130	9.32	9.91	AP	*	2050-127
0.78 CM 27 1.32 SC 167 -1.04 SP 81 6.02 5.90 AP * 2127+119 0.76 CM 85 1.21 SC 167 -0.47 SP 130 6.36 7.18 AP * 2130-010 0.71 CM 63 1.20 SC 167 -1.13 SP 65 7.32 6.33 AP * 2137-234 0.92 CM 92 1.03 SC 166 -0.32 SC 166 11.71 12.85 AP * 2143-214 0.99: CM 41 0.58 SC 163 -0.42 SC 163 13.80: 13.52: AP 175 2304+124 0.74 CM 22 0.88 SC 167 -0.09 SP 130 11.43 13.08 AP * 2305-159	0.81	CM	188	0.80	SC	167	-0.75	SP	130	10.46	9.44	AP	*	205 9+ 160
0.76 CM 85 1.21 SC 167 -0.47 SP 130 6.36 7.18 AP * 2130-010 0.71 CM 63 1.20 SC 167 -1.13 SP 65 7.32 6.33 AP * 2137-234 0.92 CM 92 1.03 SC 166 -0.32 SC 166 11.71 12.85 AP * 2143-214 0.99: CM 41 0.58 SC 163 -0.42 SC 163 13.80: 13.52: AP 175 2304+124 0.74 CM 22 0.88 SC 167 -0.09 SP 130 11.43 13.08 AP * 2305-159	0.78	CM	27	1.32	SC	167	-1.04	SP	81	6.02	5.90	AP	*	2127+119
0.71 CM 63 1.20 SC 167 -1.13 SP 65 7.32 6.33 AP * 2137-234 0.92 CM 92 1.03 SC 166 -0.32 SC 166 11.71 12.85 AP * 2143-214 0.99: CM 41 0.58 SC 163 -0.42 SC 163 13.80: 13.52: AP 175 2304+124 0.74 CM 22 0.88 SC 167 -0.09 SP 130 11.43 13.08 AP * 2305-159	0.76	CM	85	1.21	SC	167	-0.47	SP	130	6.36	7.18	AP	*	2130-010
0.92 CM 92 1.03 SC 166 -0.32 SC 166 11.71 12.85 AP * 2143-214 0.99: CM 41 0.58 SC 163 -0.42 SC 163 13.80: 13.52: AP 175 2304+124 0.74 CM 22 0.88 SC 167 -0.09 SP 130 11.43 13.08 AP * 2305-159	0.71	CM	63	1.20	SC	167	-1.13	SP	65	7.32	6.33	AP	*	2137-234
0.99: CM 41 0.58 SC 163 -0.42 SC 163 13.80: 13.52: AP 175 2304+124 0.74 CM 22 0.88 SC 167 -0.09 SP 130 11.43 13.08 AP * 2305-159	0.92	CM	92	1.03	SC	166	-0.32	SC	166	11.71	12.85	AP	*	2143-214
0.74 CM 22 0.88 SC 167 -0.09 SP 130 11.43 13.08 AP * 2305-159	0 .99:	CM	41	0.58	SC	163	-0.42	SC	163	13.80:	13.52:	AP	175	2304+124
	0.74	CM	22	0.88	SC	167	-0.09	SP	130	11.43	13.08	AP	*	2305-159

TABLE Ia. (cont'd.)

FOOTNOTES TO TABLE Ia (24): 24,49,72,82,117,127,128,168,207 0021-723 (24): 24,82,120,168 0050-268 (19): SP,AP (24): 24,82,117,128,168,207 0100-711 (11): 24,84,86,221 (24): 24,82,128,168,212 0310-554 (7): BG, IR (11): 43,44,89 (14): 43,89 0443+313 (14): 71,77,168,210 (24): 77,168,210 0444-840 (24): 24,82,117,128,168,209,212 0512-400 0522-245 (24): 24,82,128,168,177 0647-359 (11): 24,86,129,206,221 (16): AP,D (24): 24,82,98,128,168 0734+390 (24): 53,98,131,177 (19): SP,AP (24): 24,40,98,117,128,168,207 0911-646 0921-770 (8): 107,211 (14): 107,211 78,191 (8): 1003+003 1015-461 (19): (24): 24,128,168,207 SC,AP (24): 24,131,168,175,177,219 1207+188 1223-724 (24): 24,168,175 1236-264 (24): 23,24,43,131,168,207,220 1256-706 AP,D (16): (24): 24,82,128,168,207 24,122,131,168,177,207,220 1310+184 (24): (10): ¥;UB 1313+179 (11): 190;184 (24): 43,131,175,177 1323-472 (10): NB;rr (11): 158;30,199 (19): SP,AP (24): 24,49,72,82,83,128,168,207 1339+286 (24): 24,122,131,177,207,219,220 24,84,129,173,221 (24): 24,82,98,128,168,207 1343-511 (11): 1403+287 (24): 43,131,175 (11): 1427-057 24,84,86,129,145,221 (13): ∆P;∆S;UB;Q (14): 180;193;24,82,83,98,131, 168,212,219;221 (**24**): 24,82,98,131,168,212,219 24,86,129,145,221 (**13**): UB;Q (**14**): 24,82,83 1436-363 (11): (14): 24,82,83,98,131,168,212;223 (24): 24,82,98,131,168,212 (16): AP,D 168,175 1452-820 (24): 1500-328 (11): 24,86,129,145,220,221 (24): 24,82,98,131,168,220 1513+000 (10): ΔU;Ψ (11): 181;190 1514-208 (11): 24,84,145,220 (24): 24,82,131,168,219,220 24,40,82,120,122,131,168,177,207,219,220 1516+022 (24): AP,D (24): 24,82,128,168,207 1524-505 (16): (11): 1542-376 24,86,129,145,221 (24): 24,82,131,168,207 (14): 52,99 1608+150 (8): 52,99 (24): 1614-228 24,82,83,117,131,168,207,220 (13): UB;Q (14): 24,82,168,175;223 (24): 24,82,168,175 (24): 24,82,131,168,207,220 1620-720 (11): 24,86,223 1620-264 HB,rr,RR (10): 1624-259 (11): 24,86,145,223 (16): AP,D (24): 24,82,131,168,175 1624-387 (7): BG,IR (11): 24,86,129,221 (13): UB;Q (14): 24,82,83,98,128, 168;221 (24): 24,82,98,128,168 1625-352 (17): 34,201 1629-129 (24): 24,82,131,168,177,219,220 1639+365 (24): 24,120,122,131,219,220 1644-018 (24): 24,82,120,122,131,168,207,219,220 ∆P;UB;Q 1645+476 (13): (14): 180;24,98,131,177,219;221 (24): 24,131,177,219 1650-220 (24): 24,82,168,175 1654-040 (24): 24,120,122,131,168,207,219,220 (24): 24,82,117,131,168,207,220 1658-300 (8): 6,85 (10): GB,GR (19): SP,AP,SC 1659-262 (11): (24): 24,82,120,131,168,207,220 24,84,86,129,145,220,221 1701-246 RR,BG,IR (11): 24,86,129,145,221 (7): (13): Δ S,UB;Q (14): 193;24,67,82,83, (16): AP,D (24): 24,82,131,168 98,131,168;221 1702-226 (7): (11): 24,86,145,221 (13): UB;Q RR, BG, IR (14): 24,82,83,98,131, 168;221 (16): AP,D (24): 24,82,98,131,168 RR,BG,IR (11): 24,86,129,145,220,221 (13): UB;Q (14): 24,82,83,120, 131,168,207;223 (16): AP,D (24): 24,82,120,131,168,207,220 24,84,129,145,173,220,221 (16): AP,D (24): 16,23,24,82,120,131,168, 1707-265 (7): RR, BG, IR 1711-294 (11): 207,220 BG,IR (11): 24,86,145,221 175;223 (16): 17 1713-280 (7): BG,IR (13): UB;Q (14): 24,67,82,120,168, (16): AP,D (24): 24,131,168,175 (11): 24,86,145,221 1714-237 (16): AP,D (24): 24,131,168,175 (14): 203,204 1715-278 1715+432 (24): 24,120,122,131,177,219,220

FOOTNOTES TO TABLE Ia (cont'd.)

1716-184	(7):	RR, BG, IR (11): $24, 86, 129, 145, 220, 221$ (13): $\Delta P; UB; Q$ (14): $180; 24, 180; 24$
		82,83,131,168,177,207;221 (24): 24,82,131,168,177,207,220
1718-195	(7):	BG,IR (11) 24,86,145,221 (13): UB;Q (14): 24,82,98,131,168,175;223
	(16):	AP,D (24): 24,82,131,168,175
1720-177	(11):	24,84,96,121,129,145,220,221 (16): AP,D (24): 16,24,82,131,168,1//,
1700 0/0	/7)	
1/20-263	(\prime) :	BG_1R (11): 24,86,145,221 (13): UB_2Q (14): 24,82,83,131,168,175,223
1701 /0/	(10):	AP_{J} (24): 24,82,131,168,175
1721-484	(10):	uy, ub (10): AP, D (24): 24,82,128,168,175,207
1725-050	(24):	
1720-070	(10):	bb, GR (2€): 24, 62, 126, 100, 207 124 140
1731-390	(24).	124,147 / 3/ / 13/ · BU// / 16/ · 168 · 1/8
1732-447	(1)	4, 34 (13), $50, 30, 30, 100, 100, 100, 100, 100, 100,$
1735-032	(11):	24 , 84, 86, 121, 129, 145, 220, 221 (24): 24, 82, 120, 131, 168, 207, 219, 220
1735-238	(11):	86.145.223 (13): IB:0 (14): 23.82.168.175:223 (24): 23.82.131.168.175
1736-536	(24):	24.49.82.128.168.207
1740-262	(13):	BV:0 (14): 168:148
1742+031	(11):	86,145,221 (13): AP:UB:O (14): 180;43,98,131,168,219;221
	(16):	AP.D (24): 43,131,168,219
1745-247	(8):	175,194 (13): BV;0 (14): 175;148
1746-203	(11):	24,96,129,145,221 (13): UB;Q (14): 24,67,82,83,98,131,168,175,209;223
	(24):	24,82,98,131,168,175,209
1746-370	(24):	24,82,117,128,168,207,209
1748-346	(7):	RR,BG,IR (11): 24,96,145,223 (13): UB;Q (14): 24,168,175;223
	(24):	24,131,168,175
1755-442	(7):	BG,IR (11): 24,86,223 (13): BV;Q (14): 24,168,175;223
	(24):	24,168,175
1759-089	(11):	24,86,145,223 (13): UB;Q (14): 24,67,98,120,131,175,219;223
	(16):	AP,D (24): 24,120,131,168,175,219
1800-300	(11):	18,208 (24): 24,82,120,131,168,207,220
1801-003	(8):	15,140 (14): $15,140$ (16): AP,D (24): $24,120,108,177,219$
1801-300	(11);	24, 54, 76, 129, 143, 221 (24): $24, 62, 131, 100, 173oc 145 993 (13). UD o (14). 131 146 175 177 210, 223 (14). AD D$
1802-075	(11);	00,143,223 (13): $05;0$ (14): $131,100,173,177,219;223$ (10): Ar,D
1804-250	(24); (11);	131,100,177,217 24 96 120 145 220 221 (16)· AD D (26)· 24 92 131 168 175 220
1804-437	(11).	24,90,125,145,220,221 (10). At D (24). $24,92,151,100,175,220$
1806-259	(11):	24, 84, 86, 129, 145, 220, 221 (16), $4p = (74)$, $24, 88, 129, 143, 168, 175, 220$
1807-317	(7):	R , B (11): 24, 86, 221 (13): UB: 0 (14): 24, 82, 83, 120, 131, 168, 175; 223
	(16):	AP.D (24): 24.82.120.131.168.175
1814-522	(7):	BG.IR (11): 24.84.86.221 (13): UB:0 (14): 24.82.83.128.168.207:221
	(16):	AP,D (24): 24,82,128,168,207
1820-303	(11):	24,86,129,145,206,220,221 (16): AP,D (24): 19,24,32,82,103,120,131,
		168,207,209,220
1821-249	(16):	AP,D (19): AP,e (24): 24,82,120,131,168,207,220
1827-255	(11):	24,84,86,129,145,221 (16): SC,AP (24): 23,24,82,120,131,168,175
1828-323	(11):	24,84,86,129,145,206,220,221 (16): AP,D (24): 24,82,131,168,207,220
1828-235	(7):	RR,BG (11): 24,86,129,220,223 (13): UB;Q (14): 24,82,83,168,175;223
	(24):	24,82,168,175,220
1832-330	(Π) :	24,84,86,129,145,220,221 (13): UB;Q (14): 24,82,83,131,168,207;223
1022 220	(10):	AP, D (Z 4): 24,82,131,168,207,220
1833-239	(24):	24, 62, 120, 131, 108, 207, 220 BC TD (10), 96 202 (12), UD, 0 (14), 160, 175, 222 (24), 160, 175
18/0-323	(8)	$B_{5,1,4,3} = (10), 00,223 = (13); 05, (14); 100,173; 223 = (24); 100,173 = (25); (14); 120, 120, 120, 120, 120, 120, 120, 120,$
1040-323	(0).	168.207.220
1850-087	(10):	B.UB.GB.GR (16): AP.D (24): 24.82.131.168.177.207.209.219.220
1851-305	(11):	24.86.129.145.206.220.221 (24): 24.82.117.131.168.207.220
1852-227	(11):	86,223 (24): 76,82,168,175
1856-367	(24):	24,74,82,131,168,207
1902+017	(7):	BG, IR (14): 168, 175, 219 (24): 168, 175, 219
1 9 06-600	(11):	39,159 (19): SP,AP (24): 24,49,74,82,128,168,207
1908+009	(7):	RR,BG,IR (11): 24,84,86,145,221 (13): UB;Q (14): 24,67,82,83,98,
		131,168,177,219;223 (16): AP,D (24): 24,82,131,168,177,219
1914+300	(16):	AP,D (24): 24,131,177,220

FOOTNOTES TO TABLE Ia (cont'd.)

1936-310	(24):	24,82,120,131,168,207,220
1938-341	(17):	34,201
1951+186	(16):	AP,D (24): 24,131,168,207,219,220
2003-220	(11):	24,86,129,145,206,220,221 (24): 24,82,117,131,168,207,220
2031+072	(24):	24,43,82,131,168,177,219
2050-127	(10):	Ψ;UB (11): 190;62 (24): 24,43,82,131,168,177,219
2059+160	(24):	24,43,120,131,168,177,219
2127+119	(10):	HB;rr (11): 27;25 (24): 24,120,122,131,168,207,219,220
2130-010	(24):	24,82,120,122,131,168,207,219,220
2137-234	(24):	24,82,120,131,168,207,220
2143-214	(24):	168,175
2305-159	(24):	120,168,175

TABLE Ib. OBSERVED PARAMETERS OF GALACTIC DWARF SPHEROIDALS

Number	Name		^α 1950	⁸ 1950	v _{HB}			E _{B-V}		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
0057-340	Sc 1		00 57 44	-34 00.4	20.13	CM	134	0.02	*	*
0237-347	For		02 37 50	-34 44.4	21.4:	CM	214	0.00	HI	29
0640-509	Car		06 40 24	-50 55.0	20.52	CM	155	0.03	HI	29
1005+126	Leo I	DDO 74	10 05 46	+12 33.2	22.3	BG	115	0.02	HI	29
1110+224	Leo II	DDO 93	11 10 50	+22 26.1	22.45:	CM	59	0.01	HI	29
1508+674	UM1	DDO 199	15 08 12	+67 23.0	20.00	CM	189	0.06	*	189
1 719+58 0	Dra	DDO 208	17 19 13	+57 57.5	20.07	CM	195	0.03	uy	196

FOOTNOTES TO TABLE ID

0057-340	(10):	uy,UB	(20):	170;68
1110+224	(22):	56,113	(25):	56,113
1508+674	(10):	UB,GB		

TABLE IC. OBSERVED PARAMETERS OF THE FORNAX GLOBULAR CLUSTERS

Number Name		^α 1 9 50	⁸ 1950	v _{HB}			E _{B-V}			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
0235-344	For 1		02 34 57	-34 24.0	21.4:	CM	214	0.00	HI	29
0236-350	For 2		02 36 40	-35 01.5	21.4:	CM	214	0.00	HI	29
0237-345	For 3	NGC 1049	02 37 44	-34 28.3	21.4:	CM	214	0.00	HI	29
0238-348	For 4		02 38 05	-34 45.2	21.4:	CM	214	0.00	HI	29
0240-343	For 5		02 40 17	-34 18.9	21.4:	CM	214	0.00	HI	29
0238-346	For 6		02 38 06	-34 38.8	21.4:	CM	214	0.00	HI	29

FOOTNOTES TO TABLE IC

0235-344	(14):	110,112 (24): 110,112
0236-350	(14):	55,57,110,112 (24): 55,57,77,110,112,222
0237-345	(14):	55, 57, 73, 77, 110, 112, 131 (17): 77, 112, 131
	(24):	55, 57, 77, 110, 112, 222
0238-348	(14):	55, 57, 73, 77, 110, 112 (17): 55, 77, 112 (24): 55, 57, 77, 110, 112, 222
0240-343	(14):	55,57,110,112 (17): 55,112 (24): 55,57,77,110,112,222

0	B-V)g		log θ _t	log θ _c	ε				v _t			σ _c		Number
(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)
0 .79	CM	134	1.76	1.01	0.35	SC	75	8.13	SP	111	14.55	SP	111	0057-340
0.83:	CM	214	1.76	1.10	0.35	SC	75	8.41	SP	54	14.42	SP	114	0237-347
0.78	CM	155	1.67	0.98	0.31	SC	75	10.74	Σ	58	17.13	Σ	155	0640-509
			1.11	0.64	0.31	SC	75	10.46	SP	116	(13.98))		1005+126
0.84:	CM	59	1.00	0.36	0.01	SC	75	12.18:	AP	*	15.18	AP	*	1110+224
0.75	CM	189	1.67	1.12	0.55	SC	75	10.69	R	108	(16.41))		1508+674
0.80	CM	195	1.54	0.97	0.29	SC	75	10.78	R	109	(16.31))		1719+580

TABLE Ib. OBSERVED PARAMETERS OF GALACTIC DWARF SPHEROIDALS

TABLE IC. OBSERVED PARAMETERS OF THE FORNAX GLOBULAR CLUSTERS

	(B-V)	g	1	^{og θ} t		1	^{og θ} c		v _t	σ _c			Number
(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)
0.65	UB	*	0.18	D	215	-0,62	e	215	15.57	13.89	AP	*	0235-344
0.75	UB	*	0.28	AP	55	-0.84	SP	55	13.50	11.42:	AP	*	0236-350
0.73	UB	*	0.20	AP	*	-1.63:	е	77	12.61	7.72:	AP	*	0237-345
0.83	UB	*	0.04	AP	*	-1.79:	e	77	13.57	7.87:	AP	*	0238-348
0.74	UB	*	0.10	AP	*	-1.16	е	77	13.42	10.01:	AP	*	0240-343
0.7::	CM	214	-0.24:	D	215	-1.15:	e	215	14.34	10.43:	AP	112	0238-346

REFERENCES FOR TABLE I

Aaronson, M., Schommer, R. A., and Olszewski, E. W. 1984, Ap. J., 276, 221. 1 Alcaino, G. 1972, Astr. Ap., 16, 220. 2 1974, Astr. Ap. Suppl., 13, 55. 3 1977a, Astr. Ap. Suppl., 27, 255. 1977b, Astr. Ap. Suppl., 29, 383. 1978, Astr. Ap. Suppl., 32, 379. 4 5 6 1979a, Astr. Ap. Suppl., 35, 233. 7 1979b, Astr. Ap. Suppl., 38, 61. 1980, Astr. Ap. Suppl., 39, 316. 1981a, Astr. Ap. Suppl., 44, 33. 8 9 10 1981b, Astr. Ap. Suppl., 44, 191. 11 1983a, Astr. Ap. Suppl., 52, 105. 12 1983b, Astr. Ap. Suppl., 53, 47. 13 Alcaino, G., and Liller, W. 1983, A. J., 88, 1166. 14 Anthony-Twarog, B. J., and Twarog, B. A. 1984, preprint. 15 Arp, H. C. 1958, <u>A. J.</u>, **63**, 118. . 1962, <u>Ap. J.</u>, **135**, 311. . 1965, <u>Ap. J.</u>, **141**, 43. 16 17 18 Bahcall, N. A. 1976, Ap. J. (Lett.), 204, L83. 19 Bahcall, N. A., and Hausman, M. A. 1977, Ap. J., 213, 93. 20 21 Barbon, R. 1965, Contr. Oss. astrofis. Univ. Padova, Asiago, No. 175. Barnes, S. A. 1968, A. J., 73, 579. 22 Bernard, A. 1976, <u>Astr. Ap. Suppl.</u>, **25**, 281. Bica, E. L. D., and Pastoriza, M. G. 1983, <u>Ap. Space Sci</u>., **91**, 99. 23 24 25 Bingham, E. A., Cacciari, C., Dickens, R. J., and Fusi Pecci, F. 1984, M.N.R.A.S., 209, 765. 26 Buonanno, R., Buscema, G., Corsi, C. E., Iannicola, G., and Fusi Pecci, F. 1984, Astr. Ap. Suppl., 56, 79. 27 Buonanno, R., Corsi, C. E., and Fusi Pecci, F. 1984, Astr. Ap., submitted. 28 Burbidge, E. M., and Sandage, A. R. 1958, Ap. J., 127, 527. Burstein, D., and Heiles, C. 1982, A. J., 87, 1165. 29 Butler, D., Dickens, R. J., and Epps, E. 1978, <u>Ap. J</u>., 225, 148. Cacciari, C. 1979, <u>A. J.</u>, 84, 1542. 30 31 Canizares, C. R., Grindlay, J. E., Hiltner, W. A., Liller, W., and McClintock, J. E. 32 1978, Ap. J., 224, 39. Cannon, R. D. 1974, M.N.R.A.S., 167, 551. 33 Cannon, R. D., Hawarden, T. G., and Tritton, S. B. 1978, unpublished. Cannon, R. D., and Stobie, R. S. 1973a, <u>M.N.R.A.S.</u>, 162, 207. 34 35 36 ___. 1973b, M.N.R.A.S., 162, 227. 37 Canterna, R., and Rosino, L. 1981, Astr. Ap. Suppl., 45, 53. Canterna, R., and Schommer, R. 1978, Ap. J. (Lett.), 219, L119. Carney, B. W. 1979, <u>A. J.</u>, 84, 515. 38 39 Chun, M. S., and Freeman, K. C. 1979, Ap. J., 227, 93. 40 Ciatti, F., Rosino, L., and Sussi, M. G. 1965, Kleine Veröff. Remeis-Sternw., Bamberg, 41 4, Nr. 40, p. 228. 42 Clement, C. C., Dickens, R. J., and Bingham, E. E. 1979, A. J., 84, 217. Corwin, H. G., Jr. 1977, <u>A. J.</u>, **82**, 193. Cowley, A. P., Hartwick, F. D. A., and Sargent, W. L. W. 1978, <u>Ap. J.</u>, **220**, 453. 43 44 45 Crawford, D. L., and Barnes, J. V. 1975, P.A.S.P., 87, 65. Cudworth, K. M. 1984, <u>A. J.</u>, submitted. Cudworth, K. M., Schommer, R. A., and Canterna, R. 1984, in preparation. 46 47 48 Cuffey, J. 1965, A. J., 70, 732. Da Costa, G. S. 1979, A. J., 84, 505. 49 50 . 1984, Ap. J., submitted. Da Costa, G. S., Mould, J., and Kristian, J. 1984, in preparation. Da Costa, G. S., Ortolani, S., and Mould, J. 1982, <u>Ap. J.</u>, 257, 633. de Vaucouleurs, G. 1959, <u>Lowell Obs. Bull.</u>, 4, 105. 51 52 53 54 de Vaucouleurs, G., and Ables, H. D. 1968, Ap. J., 151, 105. . 1970, <u>Ap. J., 159, 425.</u> de Vaucouleurs, G., de Vaucouleurs, A., and Buta, R. 1981, <u>A. J.</u>, 86, 1429. 55 56 Demers, S. 1969, Ap. Lett., 3, 175. 57 58 Demers, S., Beland, S., and Kunkel, W. E. 1983, P.A.S.P., 95, 354. Demers, S., and Harris, W. E. 1983, <u>A. J.</u>, **88**, 329.
Demers, S., and Kunkel, W. E. 1976, <u>Ap. J.</u>, **208**, 932.
Demers, S., Kunkel, W. E., and Hardy, E. 1979, <u>Ap. J.</u>, **232**, 84.

62 Dickens, R. J. 1972a, M.N.R.A.S., 157, 281. . 1972b, M.N.R.A.S., 157, 299. 63 b) 1972b, H.N.K.A.D., DJ, 200.
b) Dickens, R. J., and Rolland, A. 1972, M.N.R.A.S., 160, 37.
b) jorgovski, S., and King, I. R. 1984, Ap. J. (Lett.), 277, L49.
b) Jorgovski, S., and Penner, H. 1985, in Dynamics of Star Clusters, I.A.U. Symp. No. 113, eds. J. Goodman and P. Hut (Dordrecht: D. Reidel), this volume. Dufay, J., and Bigay, J. H. 1959, C. R. Acad. Sci. Paris, 248, 2162. 67 68 Eggen, O. J. 1970, Ap. J. Suppl., 22, 289. Jogen, J. S. (1974, Perem. Zvezdy Pril., 2, 18.
 Fourcade, C. R., Laborde, J. R., and Arias, J. C. 1974, Perem. Zvezdy Pril., 2, 3.
 Gascoigne, S. C. B. 1966, M.N.R.A.S., 134, 59. 72 Gascolgne, S. C. B., and Burr, E. J. 1956, M.N.R.A.S., 116, 570. 73 Gascolgne, S. C. B., and Kron, G. E. 1952, P.A.S.P., 64, 196. 74 Gascoigne, S. C. B., and Ogston, F. A. 1963, Observatory, 83, 64. 75 Godwin, P. J. 1985, in Dynamics of Star Clusters, I.A.U. Symp. No. 113, eds. J. Goodman and P. Hut (Dordrecht: D. Reidel), this volume. 76 Goranskii, V. P. 1979, Astr. Zh., 56, 510 [English transl.: Soviet Astr., 23, 284]. 77 Gordon, K. C., and Kron, G. E. 1983, P.A.S.P., 95, 461. 78 Gratton, R. G., and Ortolani, S. 1984, <u>Astr. Ap. Suppl.</u>, 57, 177.
79 Grindlay, J. E. 1978, <u>Ap. J. (Lett.)</u>, 224, L107.
80 Grindlay, J. E., and Hertz, P. 1981, <u>Ap. J. (Lett.)</u>, 247, L17. 81 Grindlay, J. E., Hertz, P., Steiner, J. E., Murray, S. S., and Lightman, A. P. 1984, Ap. J. (Lett.), 282, L13. 82 Hanuy, M. 1984, <u>Astr. Ap. Suppl.</u>, **57**, 91. 83 Hanes, D. A., and Brodie, J. P. 1984, <u>M.N.R.A.S.</u>, submitted. 84 Harris, H. C., and Canterna, R. 1977, <u>A. J.</u>, **82**, 798. 85 Harris, W. E. 1975, <u>Ap. J. Suppl.</u>, 29, 397. 86 ______. 1976, <u>A. J.</u>, <u>81</u>, 1095. 1977, P.A.S.P., 89, 482. 1978, P.A.S.P., 90, 45. 87 . 88 1980a, P.A.S.P., 92, 43. 89 1980b, in Star Clusters, I.A.U. Symp. No. 85, ed. J. E. Hesser (Dordrecht: D. 90 Reidel), p. 81. . 1982, <u>Ap. J. Suppl.</u>, **50**, 573. Harris, W. E., and Canterna, R. 1980, <u>Ap. J.</u>, **239**, 815. 91 92 93 Harris, W. E., and Hesser, J. 1976, P.A.S.P., 88, 377. Harris, W. E., and Racine, R. 1973, A. J., 78, 242. 94 . 1974, <u>A.</u> J., **79**, 472. . 1979, <u>Ann. Rev. Astr. Ap., 17</u>, 241. Harris, W. E., <u>Racine</u>, R., and de Roux, J. 1976, <u>Ap. J. Suppl.</u>, **31**, 13. 95 96 97 Harris, W. E., and van den Bergh, S. 1974, A. J., 79, 31. 98 1984, preprint. 99 Hartwick, F. D. A. 1975, <u>P.A.S.P.</u>, 87, 77.
 Hartwick, F. D. A., and Hesser, J. E. 1972, <u>Ap. J.</u>, 175, 77. 1973, Ap. J., 186, 1171. 102 103 Harvel, C. A., and Martins, D. H. 1977, Ap. J. (Lett.), 213, L49. Hesser, J. E. 1976, P.A.S.P., 88, 849. 104 Hesser, J. E., and Hartwick, F. D. A. 1976a, Ap. J., 203, 97. 105 . 1976b, <u>Ap. J.</u>, 203, 113. Hesser, J. E., McClure, R. D., Hawarden, T. G., Cannon, R. D., von Rudloff, R., Kruger, 106 107 B., and Egles, D. 1984, P.A.S.P., 96, 406. Hodge, P. W. 1964a, A. J., 69, 438. 108 1964b, <u>A. J.</u>, **69**, 853. 1965, <u>Ap. J.</u>, 141, 308. 1966, <u>A. J.</u>, **71**, 204. 109 ___• 110 111 1969, P.A.S.P., 81, 875. 112 _. 113 _____. 1982, <u>A. J.</u>, **87**, 1668. 114 Hodge, P. W., and Smith, D. W. 1974, <u>Ap. J.</u>, **188**, 19. Hodge, P. W., and Wright, F. W. 1978, A. J., 83, 228. 115 Holmberg, E. B. 1958, Medd. Lunds Astr. Obs., ser. 2, No. 136. 116 Illingworth, G., and Illingworth, W. 1976, Ap. J. Suppl., 30, 227. 117 Inman, R. T., and Carney, B. W. 1984, in preparation. 118 Janulis, R., and Straižys, V. 1984, Ap. Space Sci., 100, 95. 119 120 Johnson, H. L. 1959, Lowell Obs. Bull., 4, 117. 121 Johnson, S. L., and McNamara, D. H. 1969, P.A.S.P., 81, 415.

REFERENCES FOR TABLE I (cont'd.)

- 122 King, I. R. 1966, A. J., 71, 276.
- Kinman, T. D., Stryker, L. L., and Hesser, J. E. 1976, P.A.S.P., 88, 393.
 Kleinmann, D. E., Kleinmann, S. G., and Wright, E. L. 1977, <u>Ap. J. (Lett.)</u>, 210, L83.
- Kodaira, K. 1983, I.A.U. Circ., No. 3846. 125
- Kogon, C. S., Wehlau, A., and Demers, S. 1974, A. J., 79, 387. 126
- Kron, G. E. 1966, P.A.S.P., 78, 143. 127
- Kron, G. E., and Gordon, K. C. 1984, in preparation.
 Kron, G. E., and Guetter, H. H. 1976, <u>A. J.</u>, 81, 817.
- 130 Kron, G. E., Hewitt, A. V., and Wasserman, L. H. 1984, P.A.S.P., 96, 198.
- Kron, G. E., and Mayall, N. U. 1960, A. J., 65, 581. 131
- 132 Kukarkin, B. V. 1974, Globular Star Clusters (Moscow: Nauka) [English transl.: 1977, NASA TT F-16, 157].
- Kukarkin, B. V., and Kireeva, N. N. 1979, Astr. Zh., 56, 465 [English transl.: Soviet 133 Astr., 23, 261].
- 134 Kunkel, W. E., and Demers, S. 1977, Ap. J., 214, 21.
 135 Lee, S.-W. 1977a, Astr. Ap. Suppl., 27, 367.
- 136
- . 1977b, Astr. Ap. Suppl., 27, 381. . 1977c, Astr. Ap. Suppl., 27, 381. . 1977d, Astr. Ap. Suppl., 28, 409. . 1977d, Astr. Ap. Suppl., 29, 1. Liller, M. H. 1980a, A. J., 85, 673. 137
- 138
- 139
- . 1980b, <u>A.</u> J., **85**, 1480. . 1981, <u>A.</u> J., **86**, 1204. . 1983a, <u>A.</u> J., **88**, 104. . 1983b, <u>A.</u> J., **88**, 1463. 140
- 141
- 142
- 143
- Liller, M. H., and Carney, B. W. 1978, Ap. J., 224, 383. 144
- 145
- Lohmann, W. 1963, <u>Z. Ap</u>., 57, 288. Madore, B. F., and Arp, H. C. 1979, <u>Ap. J. (Lett.)</u>, 227, L103. 146
- 147 Malkan, M. 1978, paper presented at the NATO Advanced Study Institute on Globular Clusters, Cambridge, England.
- 148 . 1981, in Astrophysical Parameters for Globular Clusters, I.A.U. Colloq. No. 68, eds. A. G. D. Philip and D. S. Hayes (Schenectady: L. Davis Press), p. 533.
- 149
- Malkan, M., Kleinmann, D. E., and Apt, J. 1980, <u>Ap. J.</u>, **237**, 432. Martins, D. H., Harvel, C. A., and Miller, D. H. 1980, <u>A. J.</u>, **85**, 521. 150
- 151 McNamara, D. H., and Langford, R. 1969, P.A.S.P., 81, 141.
- 152 Menzies, J. W. 1972, M.N.R.A.S., 156, 207.

- 153
 . 1974a, M.N.R.A.S., 168, 177.

 154
 . 1974b, M.N.R.A.S., 169, 79.

 155
 Mould, J., and Aaronson, M. 1983, Ap. J., 273, 530.
- 156 Mould, J., Cannon, R. D., Aaronson, M., and Frogel, J. A. 1982, Ap. J., 254, 500.
- Neckel, Th., and Klare, G. 1980, Astr. Ap. Suppl., 42, 251. 157
- 158
- 159
- Newell, E. B., Rodgers, A. W., and Searle, L. 1969, <u>Ap. J.</u>, 158, 699. Newell, E. B., and Sadler, E. M. 1978, <u>Ap. J.</u>, 221, 825. Olszewski, E. W., Canterna, R., and Harris, W. E. 1984, <u>Ap. J.</u>, 281, 158. 160
- Ortolani, S. 1984, Astr. Ap., in press. 161
- 162 Ortolani, S., and Gratton, R. 1984, Astr. Ap., in press.
- Ortolani, S., Rosino, L., and Sandage, A. 1984, in preparation. Penny, A. J. 1975, M.N.R.A.S., 172, 65P. 163
- 164
- Persson, S. E., Aaronson, M., Cohen, J. G., Frogel, J. A., and Matthews, K. 1983, Ap. 165 J., 266, 105.
- 166 Peterson, C. J. 1976, A. J., 81, 617.
- 167 Peterson, C. J., and King, I. R. 1975, A. J., 80, 427.
- Peterson, C. J., and Knipp, D. 1985, in <u>Dynamics of Star Clusters</u>, <u>I.A.U. Symp. No. 113</u>, eds. J. Goodman and P. Hut (Dordrecht: D. Reidel), this volume. 168
- Peterson, C. J., and Kunkel, W. E. 1977, <u>P.A.S.P.</u>, **89**, 634. Philip, A. G. D. 1974, <u>Ap. J.</u>, **190**, 573. Pike, C. P. 1976, <u>M.N.R.A.S.</u>, **177**, 257. 169
- 170
- 171
- Racine, R. 1971, A. J., 76, 331. 172
- . 1973, <u>A. J., 78,</u> 180. 173
- 1974, unpublished (see Harris 1976). 174 -----•
- 175 _____. 1975, <u>A. J.</u>, **80**, 1031. 176 Racine, R., and Harris, W. E. 1975, <u>Ap. J</u>., **196**, 413. 177
- Rousseau, J. 1964, Ann. Ap., 27, 681.
- 178
 Sandage, A.
 1969, \underline{Ap} . J., 157, 515.

 179
 .
 1970, \underline{Ap} . J., 157, 515.

 180
 _____.
 1982, \underline{Ap} . J., 252, 553.

REFERENCES FOR TABLE I (cont'd.)

181 Sandage, A., and Hartwick, F. D. A. 1977, A. J., 82, 459. Sandage, A., and Katem, B. 1968, Ap. J., 153, 569. 182 183 . 1982, <u>A. J.</u>, **87**, 537. Sandage, A., Katem, B., and Johnson, H. L. 1977, A. J., 82, 389. Sandage, A., and Smith, L. L. 1966, <u>Ap. J.</u>, 144, 886. Sandage, A., and Walker, M. F. 1955, <u>A. J.</u>, 60, 230. 184 185 186 Sandage, A., and Wallerstein, G. 1960, Ap. J., 131, 598. 187 188 Sandage, A., and Wildey, R. 1967, Ap. J., 150, 469. 189 Schommer, R. A., Olszewski, E. W., and Kunkel, W. E. 1978, in The HR Diagram, I.A.U. Symp. No. 80, eds. A. G. D. Philip and D. S. Hayes (Dordrecht: D. Reidel), p. 269. Searle, L., and Zinn, R. 1978, Ap. J., 225, 357.
Seitzer, P., Da Costa, G. S., and Mould, J. 1984, in preparation. 192 Seitzer, P., and Phillips, M. 1984, in preparation.
193 Smith, H. A., and Perkins, G. J. 1982, <u>Ap. J.</u>, 261, 576. 194 Spinrad, H., Smith, M. G., and Harlan, E. 1974, Ap. J., 192, 405. 195 Stetson, P. B. 1979a, A. J., 84, 1149. 196 ____ . 1979b, <u>A. J.</u>, **84**, 1167. . 1981, <u>A. J.</u>, **86**, 687. 197
 Stetson, P. B., and Harris, W. E. 1977, A. J., 82, 954.

 199 Sturch, C. R. 1978, P.A.S.P., 90, 264.
 200 Terzan, A. 1965, Ann. Ap., 28, 935. . 1968, C. R. Acad. Sci. Paris, 267, 1245. 201 . 1971, <u>Astr. Ap., 12, 477.</u> Terzan, A., and Bernard, A. 1978, <u>Messenger</u>, No. 15, p. 14. Terzan, A., Bernard, A., and Ju, K. H. 1978a, <u>C. R. Acad. Sci. Paris</u>, **287**, sér. B, 157. 202 203 204 205 . 1978b, C. R. Acad. Sci. Paris, 287, ser. B, 235. 206 207 208 20**9** 1981, Astr. Ap. Suppl., 46, 79. 210 211 van den Bergh, S., Demers, S., and Kunkel, W. E. 1980, Ap. J., 239, 112. 212 van den Bergh, S., and Hagen, G. L. 1968, <u>A. J.</u>, 73, 569. 213 van den Bergh, S., and Younger, F. 1979, <u>A. J.</u>, 84, 1305. 214 Verner, G., Demers, S., Hardy, E., and Kunkel, W. E. 1981, <u>A. J.</u>, 86, 357. 215 Webbink, R. F. 1985, this paper. 216 Webbink, R. F., and Hunter, D. A. 1981, unpublished. 217 West, R. M., and Bartaya, R. A. 1979, <u>Astr. Ap. Suppl.</u>, 38, 69.
218 Williams, T. B., and Bahcall, N. A. 1979, <u>Ap. J.</u>, 232, 754.
219 Zaitseva, G. V., Lyutyi, V. M., and Kukarkin, B. V. 1974, <u>Astr. Zh.</u>, 51, 438 [English transl.: Soviet Astr., 18, 257]. 220 Zdanavičius, K. V. 1983, Astr. Zh., 60, 44 [English transl.: Soviet Astr., 27, 26]. 221 Zinn, R. 1980, <u>Ap. J. Suppl.</u>, **42**, 19. 222 Zinn, R., and Persson, S. E. 1981, <u>Ap. J.</u>, **247**, 849. 223 Zinn, R., and West, M. J. 1984, <u>Ap. J. Suppl.</u>, **55**, 45.

~	7	n
э	1	U

R. F. WEBBINK

TABLE IIa.	DERIVED	PARAMETERS	OF	GALACTIC	GLOBULAR	CLUSTERS
------------	---------	------------	----	----------	----------	----------

					-				
Number	Name	:	l	b	Ro	x	Y	Z	R _{GC}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
0021-723	NGC 104	47 Tuc	305.895	-44.889	4.6	-6.9	-2.7	-3.3	8.1
0050-268	NGC 288		151.147	-89.377	8.2	-8.9	0.0	-8.2	12.1
0100-711	NGC 362		301.533	-46.247	8.7	-5.6	-5.1	-6.3	9.9
0310-554	NGC 1261		270.539	-52.127	16.1	-8.7	-9.9	-12.7	18.3
0325+794	Pal l		130.067	+19.023	13.7	-17.1	9.9	4.5	20.3
0344-718	NGC 1466	SL 1	286.700	-39.537	39.4	-0.1	-29.1	-25.1	38.4
0354-498	AM 1	E 1	258.360	-48.472	116.4	-24.4	-75.6	-8/.2	11/.9
0422-213	Eri		218.108	-41.331	84.7	-58.9	-39.3	-56.0	90.2
0435-590	Ret	Sé 40/3	268.664	-40.269	50.4	-9.7	-38.5	-32.6	51.3
0443+313	Pal 2		170.532	-09.070	13.6	-22.0	2.2	-2.1	22.2
0444-840	NGC 1841		2 97. 016	-30.147	40 .9	7.2	-31.5	-20.5	38.3
0512-400	NGC 1851		244.512	-35.036	12.0	-13.0	-8.9	-6.9	17.2
0522-245	NGC 1904	M 79	227.231	-29.3 50	13.0	-16.5	-8.3	-6.4	19.5
0647-359	NGC 2298		245.629	-16.007	10.6	-13.0	-9.3	-2.9	16.2
0734+390	NGC 2419		180.370	+25.242	91.4	-91.4	-0.5	39.0	99.4
0737-337	AM 2		248.126	-05.876	57.7	-30.2	-53.2	-5.9	61.5
0911-646	NGC 2808		282.193	-11.252	9.5	-6.8	-9.1	-1.9	11.6
0921-770	E 3		292.269	-19.018	8.3	-5.8	-7.2	-2.7	9.7
0923-545	UKS 2		276.003	-03.008	9.0	-7.9	-9. 0	-0.5	11.9
1003+003	Pal 3	Sex C	240.142	+41.866	87.9	-41.4	-56.8	58.7	91.5
1015-461	NGC 3201		277.229	+08.641	5.0	-8.2	-4.9	0.7	9.5
1117-649	ESO 093-SC?08	1	293.508	-04.041	59.5	14.9	-54.4	-4.2	56.6
1126+292	Pal 4	UMa	202.293	+71.801	93.3	-35.8	-11.1	88.7	96.2
1207+188	NGC 4147		252.848	+77.189	17.3	-9.9	-3.7	16.8	19.9
1223-724	NGC 4372		300.995	-09.881	4.9	-6.3	-4.2	-0.8	7.6
1235-509	Rup 106		300.888	+11.670	26.7	4.6	-22.4	5.4	23.5
1236-264	NGC 4590	M 68	299.625	+36.051	9.6	-5.0	-6.7	5.6	10.1
1256-706	NGC 4833		303.604	-08.014	5.8	-5.6	-4.8	-0.8	7.4
1310+184	NGC 5024	M 53	332.965	+79.764	18.5	-5.9	-1.5	18.2	19.2
1313+179	NGC 5053		335.675	+78.946	15.8	-6.0	-1.3	15.5	16.7
1323-472	NGC 5139	ω Cen	309.100	+14.971	5.2	-5.6	-3.9	1.3	7.0
1339+286	NGC 5272		042.218	+78.707	10.4	-7.3	1.4	10.2	12.6
1343-511	NGC 5286		311.614	+10.568	9.7	-2.5	-7.1	1.8	7.7
1353-269	AM 4		320.280	+33.506	30.3	10.6	-16.2	16.7	25.6
1403+287	NGC 5466		042.137	+73.593	15.8	-5.5	3.0	15.2	16.4
1427-057	NGC 5634		342.210	+49.260	25.0	6.7	-5.0	18.9	20.7
1436-263	NGC 5694		331.056	+30.360	31.3	14.9	-13.1	15.8	25.4
1452-820	IC 4499		307.354	-20.473	18.0	1.5	-13.4	-6.3	14.9
1500-328	NGC 5824		332.555	+22.071	24.6	11.4	-10.5	9.2	18.0
1513+000	Pal 5	Ser	000.847	+45.853	21.4	6.1	0.2	15.4	16.5
1514-208	NGC 5897		342.948	+30.294	11.8	1.0	-3.0	6.0	6.7
1516+022	NGC 5904	M 5	003.860	+46.797	7.6	-3.6	0.4	5.6	6.6
1524-505	NGC 5927		326.605	+04.859	8.8	-1.5	-4.8	0.7	5.1
1531-504	NGC 5946		327.582	+04.192	9.2	-1.1	-4.9	0.7	5.1
1535-499	BH 176		328.417	+04.344	85.7	64.0	-44.7	6.5	78.3
1542-376	NGC 5986		337.028	+13.273	10.5	0.6	-4.0	2.4	4.7
1608+150	Pal 14	AvdB	028.755	+42.177	75.3	40.1	26.8	50.6	69.9
1614-228	NGC 6093	M 80	352.674	+19.462	8.0	-1.3	-1.0	2.7	3.1
1620-720	NGC 6101		317.751	-15.828	16.1	2.7	-10.4	-4.4	11.6
1620-264	NGC 6121	M 4	350.975	+15.974	2.1	-6.8	-0.3	0.6	6.8
1624-259	NGC 6144		351.929	+15.702	9.5	0.3	-1.3	2.6	2.9
1624-387	NGC 6139		342.365	+06.939	8.1	-1.2	-2.4	1.0	2.9
1625-352	Ter 3		345.083	+09.190	27.2	17.2	-6.9	4.4	19.0
1629-129	NGC 6171	M 107	003.371	+23.012	6.2	-3.1	0.3	2.4	3.9
1636-283	ESO 452-SC 11		351.912	+12.097	10.3	1.2	-1.4	2.2	2.8

TABLE IIa. DERIVED PARAMETERS OF GALACTIC GLOBULAR CLUSTERS

-									
[m/H]	Mv	r _c	rt	^c der	log T _r	log ρ _ο	σο	vesc	Number
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
-0.75	-9.63	0.52	60.3	2 08	7 870	5.024	13.15	56.8	0021-722
-1.39	-5.05	3.96	37 0	2.00	9 037	2 017	2 84	10.0	0021-723
-1.39	-0.53	0.52	25.0	1 71	7 776	4 829	10.29	41.8	0100-208
-1.39	-0.37	1 96	23.3	1.70	9 6 1 9	4.025	5 46	20.7	0210 554
-1.01	-7.75	1.00	3/ • 1	1.20	7 007	3.100	0.74	20.7	0310-334
-1.01	-2.54	0.03	19.9		/.09/	2.575	0.74	2.9	0323+794
-2.15	-7.54	2.81	73.9		8.818	2.477	3.69	14.3	0344-718
-1.68	-4.49	9.54	81.2	0.93	9.270	-0.001	0.68	2.4	0354-498
-1.22	-4.94	6.19	85.5	1.14	8.997	0.584	0 .9 0	3.3	0422-213
-2.01	-5.87	14.66	146.6		9.740	-0.064	0.98	3.5	0435-590
-1.68	-7.26	0.31	12.5	1.63	7 .29 0	5.090	8.39	33.7	0443+313
-1.56	-7.38	7.85	94.4	1.08	9.548	1,292	2.54	9.3	0444-840
-1.25	-8.30	0.23	28.3	2.16	7.086	5.480	9.77	42.9	0512-400
-1 47	_7 79	0.66	40 5	1 80	7 786	4 160	6.06	25 3	0522-245
-2.06	-6 40	1 24	40.5	1.09	8 200	3 120	3 62	13.6	0522-245
-2.00	-0.40	1. 34	24.4	1.20	0.209	3.120	5.02	10.0	07341300
-1.98	-9.58	11.08	284.8	1.38	10.053	1.528	4.80	18.8	0734+390
	-6.50	25.97	98.7		10.401	-0.087	1.38	4.6	0737-337
-1.47	-9.47	0.70	39.2	1.76	8.132	4.845	14.13	57.9	0911-646
-0.96	-4.20	4.48	25.2		8.803	1.049	0.99	3.4	0921-770
-0.37	-4.15	2.04	9.3		8.326	2.167	1.55	5.2	0923-545
-1.68	-5.96	11.96	109.1	0.96	9.634	0.269	1.17	4.2	1003+003
-1 60	-7 47	1 58	52 4	1 55	8 400	3,118	4.36	17.3	1015-461
	-6.90	1.07	75.5	1.55	7.974	3, 198	3, 26	13.5	1117-649
-1 30	-5.65	14 58	83.0		9 790	0 081	1 06	3 7	1126+292
-1.68	-5.05	0.65	36 /	1 80	7 520	3 536	2 91	12.0	1207+188
-1.77	-7.61	3 76	45 3	1.00	9,103	2.332	4.05	14.9	1223-724
1.,,	/•01	5.70	47.5	1.05	J•105	2.552	4.05	14.7	1225 724
	-7.00	7.42	89.2		9.451	1.216	2.20	8.1	1235-509
-1.85	-7.26	1.72	82.1	1.63	8.400	2.878	3.60	14.4	1236-264
-1.98	-7.82	1.95	33.8	1.13	8.696	3.249	6.05	22.4	1256-706
-1.89	-8.86	2.20	118.0	1.66	8.809	3.175	6.50	26.2	1310+184
-2.02	-6.09	11.31	63.6	0.77	9.690	0.577	1.47	5.1	1313+179
-1.60	-10.40	3.96	65.7	1.15	9.583	3.347	13.79	51.2	1323-472
-1.30	-9.16	1.26	117.4	1.89	8.428	3.856	8.19	34.3	1339+286
-1.60	-8.42	0.60	33.8	1.80	7.854	4.587	9.07	37.4	1343-511
-2.23	-1.70	3.43	35.1	1.00	8,196	0.152	0.30	1.1	1353-269
-1.85	-7.05	7.31	96.3	1.08	9.448	1,253	2.27	8.3	1403+287
		/ 51	2013	1.00	20140	10100			
-1.77	-7.77	1.71	55.2	1.45	8.520	3.200	5.14	20.1	1427-057
-1.89	-8.63	0.46	138.0	2.40	7.479	4.453	5.95	27.5	1436-263
-1.77	-7.63	6.61	83.2	1.06	9.482	1.630	3.15	11.5	1452-820
-1.98	-9.56	0.39	142.6	2.39	7.532	5.034	9.98	46.0	1500-328
-1.43	-5.00	17.97	113.4		9.808	-0.495	0.69	2.4	1513+000
-1.47	-7.01	4.43	39.5	1.19	9.087	1.818	2.67	10.0	1514-208
-1.60	-8.82	0.97	64.1	1.83	8.223	4.109	8.44	34.9	1516+022
-0.67	-8.08	1.23	35.4	1.46	8, 352	3.745	6.93	27.1	1524-505
-1.34	-7.12	0.44	26.6	1.79	7.452	4.482	5.90	24.3	1531-504
	-8.00	11.13	153.6		9.860	1.044	2.74	10.1	1535-499
	0.00	1 1 1	20000	1 / 0	0 500	2	7 (1)	20 4	15/0 075
-1.72	-8.42	1.40	38.3	1.43	8.529	3.0/0	/•01	29.6	1542-376
-1.34	-4.80	16.62	102.5	0.01	9.730	-0.463	0.66	2.3	1608+150
-2.15	-7.89	0.24	21./	2.04	7.105	5.360	8.99	38.6	1614-228
-1.68	-7.00	3.72	/4.2	1.26	8.953	1.997	2.17	10.5	1620-720
-1.09	-6.99	0.75	26.5	1.53	/.839	3.912	5.14	20.3	1620-264
-1.81	-6.85	3.42	32.6	1.09	8.918	2.154	3.00	11.0	1624-259
-1.60	-7.99	0.52	29.5	1.58	7.756	4.742	9.40	37.5	1624-387
	-6.20	6.59	60.1		9.283	1.142	1.75	6.3	1625-352
-0.88	-6.93	1.31	41.5	1.34	8.244	3.272	4.28	16.4	1629-129
-1.01	-4.06	1.17	10.4		7.833	2.549	1.57	5.6	1636-283

TABLE IIa. (cont'd.)

Number	Na	ame	l	b	R _o	X	Y	Z	R _{GC}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1639+365 1644-018 1645+476 1650-220 1654-040	NGC 6205 NGC 6218 NGC 6229 NGC 6235 NGC 6254	M 13 M 12	059.006 015.715 073.638 358.918 015.138	+40.914 +26.313 +40.306 +13.520 +23.074	7.1 5.3 31.6 9.5 4.5	-6.0 -4.2 -2.0 0.4 -4.8	4.6 1.3 23.1 -0.2	4.6 2.4 20.5 2.2 1.8	8.9 5.0 30.9 2.3 5.3
1656-370 1657-004 1658-300 1659-262 1701-246	NGC 6256 Pal 15 NGC 6266 NGC 6273 NGC 6284	Ter 12 M 62 M 19	347.791 018.873 353.575 356.869 358.347	+03.307 +24.293 +07.317 +09.381 +09.939	9.1 69.7 6.1 10.6 10.3	0.0 51.3 -2.8 1.7 1.3	-1.9 20.5 -0.7 -0.6 -0.3	0.5 28.7 0.8 1.7 1.8	2.0 62.3 3.0 2.5 2.2
1702-226 1707-265 1708-271 1711-294	NGC 6287 NGC 6293 TJ 5 NGC 6304 NGC 6316		000.132 357.620 357.261 355.825	+11.023 +07.834 +07.283 +05.374	7.2 7.7 6.0	-1.7 -1.2 -2.9	0.0 -0.3 -0.4	1.4 1.0 0.6	2.2 1.6 2.9
1714-237 1715-277 1715-262 1715-278	NGC 6325 TJ 16 TJ 15 TJ 17	TBJ 2 TBJ 1	000.973 357.713 358.939 357.688	+03.703 +08.003 +05.636 +06.468 +05.564	6.2	-2.7	0.1	0.9	2.8
1715+432 1716-184 1718-195 1720-177 1720-263 1721-484	NGC 6341 NGC 6333 NGC 6342 NGC 6356 NGC 6355 NGC 6352	M 92 M 9	068.339 005.544 004.899 006.723 359.585 341.421	+34.858 +10.705 +09.725 +10.220 +05.428 -07.164	7.7 7.5 11.6 16.7 7.1 6.6	-6.5 -1.5 2.6 7.5 -1.7 -2.6	5.9 0.7 1.0 1.9 -0.1 -2.1	4.4 1.4 2.0 3.0 0.7 -0.8	9.8 2.2 3.4 8.3 1.8 3.4
1724-307 1725-050 1726-670 1727-315 1727-299	Ter 2 NGC 6366 NGC 6362 Ter 4 HP 1	HP 3 HP 4	356.320 018.411 325.555 356.024 357.423	+02.298 +16.041 -17.569 +01.308 +02.113	10.0 4.0 7.7 16.1 9.5	1.2 -5.1 -2.7 7.3 0.7	-0.6 1.2 -4.2 -1.1 -0.4	0.4 1.1 -2.3 0.4 0.4	1.4 5.4 5.5 7.4 0.9
1728-338 1730-333 1731-390 1732-304 1732-447	Gri 1 Lil 1 NGC 6380 Ter 1 NGC 6388	Ton 1 HP 2	354.304 354.841 350.182 357.558 345.557	-00.151 -00.161 -03.414 +00.992 -06.738	11.8 7.9 4.0 10.6 13.5	2.9 -0.9 -4.9 1.8 4.2	-1.2 -0.7 -0.7 -0.5 -3.3	0.0 0.0 -0.2 0.2 -1.6	3.2 1.2 5.0 1.9 5.6
1733-390 1735-032 1735-238 1736-536 1740-262	Ton 2 NGC 6402 NGC 6401 NGC 6397 Pal 6	Pis 26 M 14	350.797 021.322 003.451 338.165 002.092	-03.419 +14.803 +03.978 -11.959 +01.779	8.7 10.2 7.1 2.2 5.9	-0.3 0.4 -1.7 -6.8 -2.9	-1.4 3.6 0.4 -0.8 0.2	-0.5 2.6 0.5 -0.5 0.2	1.5 4.5 1.8 6.9 2.9
1741-328 1742+031 1745-247 1746-203 1746-370	TJ 23 NGC 6426 Ter 5 NGC 6440 NGC 6441		356.676 028.088 003.838 007.729 353.532	-01.916 +16.233 +01.687 +03.800 -05.006	17.5 7.1 7.1 11.7	6.0 -1.7 -1.8 2.8	7.9 0.5 0.9 -1.3	4.9 0.2 0.5 -1.0	11.1 1.8 2.1 3.3
1748-346 1747-312 1751-241 1755-442 1758-268	NGC 6453 Ter 6 UKS 1 NGC 6496 Ter 9	HP 5	355.717 358.572 005.125 348.026 003.603	-03.873 -02.163 +00.764 -10.012 -01.988	10.7 12.8 10.4 6.3 7.0	1.9 3.9 1.5 -2.8 -1.8	-0.8 -0.3 0.9 -1.3 0.4	-0.7 -0.5 0.1 -1.1 -0.2	2.1 4.0 1.8 3.2 1.9
1759-089 1800-260 1800-300 1801-003 1801-300	NGC 6517 Ter 10 NGC 6522 NGC 6535 NGC 6528		019.225 004.421 001.026 027.176 001.138	+06.762 -01.864 -03.929 +10.435 -04.175	6.1 14.6 6.6 6.9 6.8	-3.1 5.8 -2.3 -2.8 -2.0	2.0 1.1 0.1 3.1 0.1	0.7 -0.5 -0.4 1.2 -0.5	3.8 5.9 2.3 4.3 2.1

TABLE IIa. (cont'd.)

[m/H]	Mv	r _c	r _t	^C der	log T _r	log P _o	٥	vesc	Number
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
-1.60	-8.67	1.72	55.5	1.44	8.672	3.556	7.79	30.4	1639+365
-1.89	-7.53	1.82	28.1	1.21	8.584	3.173	5.22	19.6	1644-018
-1.39	-8.14	1.60	51.7	1.51	8.524	3.398	6.07	23.9	1645+476
-1.60	-6.11	0.73	21.9	1.53	7.685	3.603	3.49	13.8	1650-220
-1.51	-7.50	0.92	31.2	1.66	8.023	3.765	5.37	21.6	1654-040
-1.56	-6.31	1.00	17.8	1.39	7.957	3.343	3.55	13.8	1656-370
-1.26	-5.40	27.35	108.9		10.245	-0.625	0 .79	2.6	1657-004
-1.26	-8.67	0.43	18.4	1.67	7.716	5.209	13.29	53.7	1658-300
-2.40	-9.62	1.55	53.8	1.49	8.752	4.042	12.36	48.5	1659-262
-1.34	-7.10	0.48	29.8	1.77	7.511	4.364	5.64	23.1	1701-246
-1.72	-6.61	0.69	20.0	1.53	7.733	3.860	4.49	17.8	1702-226
-1.85	-7.39	0.37	32.9	1.95	7.328	4.695	6.33	26.7	1707-265
									1708-271
-0.54	-7.19	0.46	21.9	1.75	7.496	4.488	6.15	25.2	1711-294
-0.62	-8.45	0.65	53.8	1.98	7.850	4.365	7.58	32.2	1713-280
-2.02	-6.14	0.44	17.9	1.53	7.362	4.262	4.53	17.9	1714-237
									1715-277
									1715-262
<-0.07									1715-278
-1.89	-8.11	0.69	37.2	1.65	7.938	4.381	8.22	33.1	1715+432
-1.77	-7.88	0.91	33.7	1.42	8.136	4.087	7.59	29.5	1716-184
-0.75	-6.96	0.45	29.5	2.00	7.370	4.242	4.53	19.3	1718-195
-1.17	-8.89	1.43	55.7	1.51	8.573	3.838	9.02	35.6	1720-177
-1.34	-6.92	0.39	15.7	1.94	7.302	4.429	4.98	21.0	1720-263
-0.07	-6.42	1.30	23.1	1.44	8.134	3.021	3.19	12.4	1721-484
-0.54	-4.91	0.31	9.0		6.973	4.261	3.20	12.5	1724-307
-0.71	-6.22	2.56	23.3	0.94	8.678	2.402	2.89	10.3	1725-050
-0.71	-7.18	3.57	37.4	0.83	9.089	2.454	4.13	14.4	1726-670
-0.29	-5.00	≤0.47	7.8		≤7.306	≥3.915	≥3.18	≥11.9	1727-315
-1.68	-6.91	0.58	12.9		7.703	4.329	6.35	24.4	1727-299
	-7.94	1.84	29.9	1.21	8.659	3.313	6.23	23.4	1728-338
-0.29	-7.96	0.14	7.6	2.06	6.726	6.139	12.23	52.6	1730-333
-1.30	-6.28	0.40	6.5	1.21	7.398	4.649	6.27	23.5	1731 -39 0
+0.10	-4.10	0.30	12.0		6.804	3.891	2.04	8.1	1732-304
-0.62	-9.91	0.58	32.6	1.75	8.089	5.268	19.13	78.2	1732-447
	-5.36	1.83	12.9		8.354	2.577	2.45	8.6	173 3-39 0
-2.19	-9.33	2.36	29.7	1.30	9.025	3.496	9.91	37.8	1735-032
-1.01	-7.25	0.49	27.4	1.93	7.492	4.297	5.27	22.2	1735-238
-2.02	-6.55	0.50	24.7	1.63	7.484	4.198	4.79	19.2	1736-536
+0.22	-6.95	1.16	12.8		8.246	3.635	5.56	20.3	1740-262
									1741-328
-1.94	-6.27	1.81	37.8	1.59	8.288	2.435	2.27	9.1	1742+031
-0.71	-7.25	0.10	8.4		6.454	6.380	11.76	49.4	1745-247
-0.54	-8.75	0.24	24.7	2.08	7.206	5.708	13.01	56.2	1746-203
-0.07	-9.31	0.47	25.9	1.89	7.814	5.200	14.41	60.2	1746-370
-1.51	-7.32	0.51	15.6	1.61	7.616	4.504	6.88	27.6	1748-346
	-6.35	0.31	5.6		7.229	4.977	7.11	26.9	1747-312
-1.22	-7.61	0.66	17.7		7.881	4.387	7.79	30.3	1751-241
-0.71	-5.82	3.23	18.2	0.72	8.854	2.156	2.52	8.6	1755-442
-0.45	-3.70	0.25	5.5		6.682	4.137	2.21	8.5	1758-268
-1.47	-7.10	0.18	18.5	2.06	6.778	5.416	7.10	30.6	1759-089
	-6.40	0.49	6.4		7.573	4.490	6.33	23.4	1800-260
-1.56	-7.30	0.34	19.1	1.69	7.333	4.965	7.88	31.9	1800-300
-1.56	-4.77	0.40	20.1	1.84	7.022	3.629	2.01	8.3	1801-003
-0.96	-6.64	0.26	9.3	1.81	7.012	4.984	6.08	25.1	1801-300

TABLE IIa. (cont'd.)

Number	Na	me	l	b	Ro	X	Y	Z	R _{GC}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1802-075	NGC 6539		020.795	+06.775	3.1	-5.9	1.1	0.4	6.0
1804-250	NGC 6544		005.837	-02.201	2.6	-6.2	0.3	-0.1	6.2
1804-437	NGC 6541		349.286	-11.189	7.0	-2.1	-1.3	-1.4	2.8
1806-259	NGC 6553		005.253	-03.029	5.7	-3.1	0.5	-0.3	3.2
1807-317	NGC 6558		000.200	-06.024	8.8	0.0	0.0	-0.9	0.9
1808-072	IC 1276	Pal 7	021.832	+05.666	9.8	0.3	3.6	1.0	3.8
1809-227	Ter 11		008.357	-02.100	23.7	14.7	3.4	-0.9	15.1
1810-318	NGC 6569		000.481	-06.681	8.9	0.0	0.1	-1.0	1.0
1812-121	Kod 1		018.072	+02.415					
1814-522	NGC 6584		342.144	-16.413	15.0	4.9	-4.4	-4.2	7.8
1820-303	NGC 6624		002.788	-07.913	8.0	-0.9	0.4	-1.1	1.5
1821-249	NGC 6626		007.799	-05.580	5.8	-3.1	0.8	-0.6	3.2
1827-255	NGC 6638		007.897	-07.153	6.7	-2.2	0.9	-0.8	2.5
1828-323	NGC 6637	M 69	001./22	-10.269	10.3	1.3	0.3	-1.8	2.3
1828-235	NGC 0042		009.814	-06.439	3•3	-3.4	0.9	-0.6	3.0
1832-330	NGC 6652		001.535	-11.377	14.3	5.2	0.4	-2.8	6.0
1833-239	NGC 6656		009.890	-07.552	3.1	-5.7	0.5	-0.4	5.8
1838-198	Pal 8		014.103	-06.797	28.1	18.3	6.8	-3.3	19.8
1840-323	NGC 6681	M 70	002.853	-12.510	9.3	0.3	0.5	-2.0	2.1
1850-087	NGC 6712		025.353	-04.318	6.2	-3.2	2.7	-0.5	4.2
1851-305	NGC 6715	M 54	005.607	-14.088	21.5	12.0	2.0	-5.2	13.2
1852-227	NGC 6717	Pal 9	012.876	-10.901	7.8	-1.3	1.7	-1.5	2.6
1856-367	NGC 6723		000.072	-17.298	9.2	0.0	0.0	-2.7	2.7
1902+017	NGC 6749		036.201	-02.204	12.8	1.5	7.5	-0.5	7.7
1906-600	NGC 6752		336.495	-25.628	4.1	-5.4	-1.5	-1.8	5.9
1908+009	NGC 6760		036.108	-03.924	4.1	-5.5	2.4	-0.3	6.0
1914-347	Ter 7		003.387	-20.063	36.4	25.4	2.0	-12.5	28.4
1914+300	NGC 6779		062.659	+08.336	9.8	-4.3	8.6	1.4	9.8
1916+184	Pal 10		052.437	+02.726	10.6	-2.4	8.4	0.5	8.7
1925-304	Arp 2		008.543	-20.787	28.3	17.4	3.9	-10.0	20.4
1936-310	NGC 6809	M 55	008.798	-23.272	5.1	-4.2	0.7	-2.0	4.7
1938-341	Ter 8		005.758	-24.558	48.2	34.8	4.4	-20.0	40.4
1942-081	Pal ll		031.806	-15.577	13.8	2.5	7.0	-3.7	8.3
1951+186	NGC 6838	M 71	056.742	-04.562	4.4	-6.4	3.7	-0.3	7.4
2003-220	NGC 6864	M 75	020.304	-25.748	18.5	6.8	5.8	-8.0	12.0
2031+072	NGC 6934		052.105	-18.894	14.9	-0.1	11.1	-4.8	12.1
2050-127	NGC 6981	M 72	035.163	-32.683	17.0	2.9	8.2	-9.2	12.7
2059+160	NGC 7006		063.769	-19.407	39.1	7.5	33.1	-13.0	36.3
2127+119	NGC 7078	M 15	065.013	-27.313	9.7	-5.1	7.8	-4.5	10.4
2130-010	NGC 7089	M 2	053.371	-35.770	11.9	-3.0	7.8	-7.0	10.9
2137-234	NGC 7099	M 30	027.179	-46.835	7.2	-4.4	2.3	-5.3	7.2
2143-214	Pal 12	Cap	030.510	-47.680	19.4	2.4	6.6	-14.3	16.0
2304+124	Pal 13	Peg	087.104	-42.699	24.4	-7.9	-17.9	-16.6	25.7
2305-159	NGC 7492		053.392	-63.479	19.1	-3.7	6.8	-17.0	18.7

[m/H]	Mv	r _c	rt	^C der	log T _r	log ρ _ο	σο	vesc	Number
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
-1.05	-6.23	0.48	12.0	1.53	7.430	4.189	4.52	17.9	1802-075
-2.15	-6.33	0.35	8.8	1.44	7,269	4.688	5.89	22.9	1804-250
-2.02	-8.52	0.57	64.1	1.97	7.786	4.567	8.45	35.8	1804-437
-0.41	-8.29	1.13	17.4	1.04	8.445	4.218	10.52	38.3	1806-259
-1.51	-6.28	0.40	16.2	1.68	7.279	4.356	4.57	18.5	1807-317
-0.84	-7.56	3.59	35.9		9.094	2.449	4.34	15.7	1808-072
	-5.50	1.35	13.8		8.124	2.892	2.72	9.8	1809-227
-1.01	-7.79	0.89	18.3	1.46	8.102	4.043	7.13	27.9	1810-318
									1812-121
-1.56	-7.57	1.74	38.0	1.34	8.528	3.164	5.00	19.2	1814-522
-0.84	-7.46	0.20	26.8	2.15	6.880	5.323	7.19	31.5	1820-303
-1.81	-8.17	0.64	25.5	1.37	7.967	4.681	10.60	40.9	1821-249
-0.92	-6.27	0.46	11.5	1.29	7.466	4.411	5.52	21.0	1827-255
-0.92	-8.04	0.99	31.3	1.52	8.192	3.976	7.31	28.9	1828-323
-1.30	-5.54	0.12	12.8	2.15	6.247	5.244	3.86	16.9	1828-235
-0.92	-7.34	0.63	32.3	1.70	7.742	4.168	5.86	23.7	1832-330
-1.81	-8.53	1.10	30.2	1.59	8.319	3.991	8.27	33.0	1833-239
-0.50	-7.15	3.25	18.3	0.80	9.035	2,587	4.34	15.1	1838-198
-0.92	-7.05	0.25	29.6	2.19	6.941	4.833	5.08	22.4	1840-323
-1.26	-7.34	1.23	19.9	1.16	8.310	3.641	6.00	22.3	1850-087
-1.85	-9.54	0.65	46.4	1.86	8.073	4.880	13.85	57.6	1851-305
-2.19	-5.92	0.13	18.0	2.28	6.308	5.134	3.72	16.8	1852-227
-1.09	-7.71	2.22	33.6	1.05	8.789	3.091	5.69	20.7	1856-367
-0.37	-6.16	1.78	10.0	0.73	8.511	3.058	3.94	13.5	1902+017
-1.64	-7.72	0.59	36.5	1.59	7.789	4.475	7.79	31.1	1906-600
-0.84	-6.82	0.53	14.5	1.51	7.590	4.319	5.77	22.7	1908+009
	-6.00	3.85	36.8		8.895	1.746	2.06	7.4	1914-347
-2.32	-7.34	1.25	34.3	1.59	8.214	3.351	4.50	18.0	1914+300
	-5.58	0.99	17.3		7.877	3.157	2.81	10.6	1916+184
-1.85	-5.31	16.42	46.3		10.004	0.269	1.13	3.7	1925-304
-1.56	-7.44	2.59	27.7	1.27	8.784	2.637	4.03	15.3	1936-310
	-6.40	10.89	122.2		9.614	0.497	1.41	5.1	1938-341
-0.92	-6.98	5.27	29.7	0.75	9.344	1.947	3.29	11.3	1942-081
-0.45	-5.82	1.06	17.6	1.13	7,986	3.242	3.27	12.1	1951+186
-1.68	-8.32	0.51	32.5	1.82	7.731	4.739	9.24	38.2	2003-220
-1.30	-7.50	0.89	38.7	1.70	7.989	3.7 9 0	5.32	21.6	2031+072
-1.56	-6.93	1.80	43.1	1.53	8.401	2.744	3.22	12.7	2050-127
-1.72	-7.66	2.02	71.7	1.49	8.604	2.908	4.37	17.2	2059+160
-2.06	-9.24	0.26	59.1	2.54	7.133	5.263	8.55	40.9	2127+119
-1.81	-9.09	1.18	56.4	1.77	8.408	4.001	9.04	37.1	2130-010
-2.19	-7.17	0.16	33.4	2.40	6.554	5.260	5.15	23.8	2137-234
-1.13	-4.79	2.70	60.4	1.50	8.350	1.380	1.00	4.0	2143-214
-0.96	-3.30	2.70	27.0	0.90	8.285	1.196	0.75	2.7	2304+124
-1.81	-4.97	4.51	42.0	1.06	8.815	1.065	1.12	4.1	2305-159

TABLE IIa. (cont'd.)

Number	Na	ime	٤	b	R _o	x	Y	Z	R _{GC}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
0057-340	Sc 1		287.685	-83.133	78.	-6.	-9.	-78.	78.
0237-347	For		237.294	-65.654	145.	-41.	-50.	-132.	147.
0640-509	Car		260.113	-22.223	92.	-23.	-84.	-35.	94.
1005+126	Leo I	DDO 74	225.980	+49.109	212.	-105.	-100.	161.	217.
1110+224	Leo II	DDO 93	220.143	+67.236	231.	-77.	-58.	213.	234.
1508+674	UMI	DDO 199	104.969	+44.843	69.	-22.	48.	49.	72.
1719+580	Dra	DDO 208	086.363	+34.746	75.	-5.	61.	43.	75.

TABLE IIb. DERIVED PARAMETERS OF GALACTIC DWARF SPHEROIDALS

TABLE IIC. DERIVED PARAMETERS OF THE FORNAX GLOBULAR CLUSTERS

Number	l	Name	r	b	ρ	θ	X	Y	R _F
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
0235-344	For 1		236.724	-66.298	41.1	299.5	-343.	1694.	1729.
0236-350	For 2		238.082	-65.838	22.4	220.1	-941.	-15.	941.
0237-345	For 3	NGC 1049	236.660	-65.721	16.2	355.3	475.	486.	679.
0238-348	For 4		237.303	-65.609	3.2	104.7	59.	-119.	133.
0240-343	For 5		236.089	-65.226	39.5	50.0	1641.	-260.	1662.
0238-346	For 6		237.021	-65.629	6.4	29.3	264.	55.	270.

[m/H]	Mv	rc	r _t	^c der	log T _r	log ρ _ο	σο	vesc	Number
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
-1.68	-11.40	232.	1309.	0.91	12.346	-1.098	3.74	13.3	0057-340
-1.43	-12.39	529.	2420.	0.55	13.248	-1.323	5.28	17.4	0237-347
-1.77	-9.18	256.	1255.	0.94	12.039	-2.176	1.24	4.4	0640-509
	-11.24	270.	796.		12.690	-0.801	4.62	15.1	1005+126
-1.43	-9.67	154.	672.	0.63	12.055	-1.203	2.34	7.8	1110+224
-2.02	-8.71	266.	945.		12.044	-1.665	1.49	4.9	1508+674
-1.68	-8.69	203.	756.		11.999	-1.656	1.48	4.9	1719+580

TABLE IIb. DERIVED PARAMETERS OF GALACTIC DWARF SPHEROIDALS

TABLE IIC. DERIVED PARAMETERS OF THE FORNAX GLOBULAR CLUSTERS

[m/H]	Mv	r _c	rt	^c der	log T _r	log ρ _ο	σο	vesc	Number
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
-2.19	-5.23	10.09	63.6	0.71	9.508	0.454	1.10	3.7	0235-344
-1.77	-7.30	6.08	80.1	1.08	9.37 0	1.598	2.80	10.3	0236-350
-1.85	-8.19	0.99	66.6	1.83	8.132	3.836	6.26	25.9	0237-345
-1.43	-7.23	0.68	46.1	1.82	7.742	3.936	4.86	20.1	0238-348
-1.81	-7.38	2.91	52.9	1.26	8.854	2.469	3.73	14.1	0240-343
-1.98	-6.46	2 .9 8	24.2		8.824	2.324	3.05	10.8	0238-346