THE D-PROPERTY AND THE SORGENFREY LINE

YIN-ZHU GAO and WEI-XUE SHI

(Received 6 October 2008)

Abstract

We show that for the Sorgenfrey line \(S \), the minimal dense linearly ordered extension of \(S \) is a D-space, but not a monotone D-space; the minimal closed linearly ordered extension of \(S \) is not a monotone D-space; the monotone D-property is inversely preserved by finite-to-one closed mappings, but cannot be inversely preserved by perfect mappings.

Keywords and phrases: Sorgenfrey line, real line, linearly ordered topological space, monotone D-space.

1. Introduction

The notion of D-spaces was introduced by van Douwen and interesting results for the D-property and the Sorgenfrey line were demonstrated in [7].

A neighborhood assignment for a space \(X \) is a function \(\varphi \) from \(X \) to the topology of \(X \) such that \(x \in \varphi(x) \) for all \(x \in X \). A space \(X \) is a D-space if, for each neighborhood assignment \(\varphi \) for the space \(X \), there exists a closed discrete subset \(F \) of \(X \) satisfying \(X = \bigcup \{ \varphi(x) \mid x \in F \} \).

A space \(X \) is a monotone D-space ([5]) if, for each neighborhood assignment \(\varphi \) for \(X \), we can pick a closed discrete subset \(F(\varphi) \) of \(X \) with \(X = \bigcup \{ \varphi(x) \mid x \in F(\varphi) \} \) such that if \(\psi \) is a neighborhood assignment for \(X \) and \(\varphi(x) \subseteq \psi(x) \) for all \(x \), then \(F(\psi) \subseteq F(\varphi) \). Monotone D-spaces are D-spaces, but the converse is not true (see [5]).

The Sorgenfrey line \(S \) (that is, the set of all real numbers topologized by letting all half-open intervals \([a, b) \) be a base) is one of the most important elementary examples in general topology. In [7], it is shown that the Sorgenfrey line \(S \) is a D-space. However, the Sorgenfrey line \(S \) is not a monotone D-space [5].

The main result of this note is as follows:

(1) the minimal dense linearly ordered extension of the Sorgenfrey line is a D-space, but not monotonically D;

The project is supported by NSFC (No.10571081).

© 2009 Australian Mathematical Publishing Association Inc. 0004-9727/2009 $16.00

233
(2) the minimal closed linearly ordered extension of Sorgenfrey line is not a monotone D-space;
(3) the monotone D-property is inversely preserved by finite-to-one closed mappings, but cannot be inversely preserved by perfect mappings.

Throughout the note, spaces are topological spaces and are Hausdorff. Mappings are continuous. We reserve the symbols \mathbb{R} and \mathbb{Z} for the sets of all real numbers and all integers, respectively. For a neighborhood assignment φ for the space X and $F \subset X$, we denote $\bigcup \{\varphi(x) \mid x \in F\}$ by $\varphi(F)$. Undefined terminology and symbols will be found in [2].

2. Main results

Let $\ell(S) = \mathbb{R} \times \{0, -1\}$ be with the linearly ordered topology generated by the lexicographical order \preceq on $\ell(S)$.

Note that the Sorgenfrey line S is homeomorphic to the dense subspace $\mathbb{R} \times \{0\}$ of the space $\ell(S)$. By [4, Theorem 2.1], the space $\ell(S)$ is the minimal dense linearly ordered extension of S.

Theorem 1. The minimal dense linearly ordered extension $\ell(S)$ of the Sorgenfrey line S is a D-space.

Proof. Note that the subset $\mathbb{R} \times \{0\}$ of $\ell(S)$ with the restricted order $\preceq |_{\mathbb{R} \times \{0\}}$ is a linearly ordered set. By the linearly ordered topological space $\mathbb{R} \times \{0\}$ we mean the subset $\mathbb{R} \times \{0\}$ of $\ell(S)$ with the open interval topology generated by the linear order $\preceq |_{\mathbb{R} \times \{0\}}$. Obviously the linearly ordered topological space $\mathbb{R} \times \{0\}$ is homeomorphic to the real line \mathbb{R} (the set \mathbb{R} with the Euclidean topology).

Let φ' be a neighborhood assignment for $\ell(S)$. We now define a neighborhood assignment φ for the linearly ordered topological space $\mathbb{R} \times \{0\}$ as follows. For any $x \in \mathbb{R}$, take an $s_x \in \mathbb{R}$ such that $x < s_x$ and the open interval $((x, 0), (s_x, 0)) \subset \varphi'((x, 0))$. We can also take an $a_x \in \mathbb{R}$ such that $a_x < x$ and $[(a_x, 0), (x, 0)) \subset \varphi'((x, -1))$. Define $\varphi((x, 0)) = (a_x, s_x) \times \{0\}$.

Since metrizability implies the D-property, the real line \mathbb{R} is a D-space. So for φ there exists a closed discrete subset F of the real line \mathbb{R} such that $\varphi(F \times \{0\}) = \mathbb{R} \times \{0\}$.

Put $F' = F \times \{0, -1\}$. Then F' is closed in $\ell(S)$.

In fact, for any $x' = \langle x, i \rangle \in \ell(S) \setminus F'$, since $x \not\in F$ and F is closed in the real line \mathbb{R} there exist real numbers a_x and s_x with $a_x < x < s_x$ such that $(a_x, s_x) \cap F = \emptyset$. Then the open neighborhood $I_{x'} = ((a_x, 0), (s_x, -1))$ of x' satisfies $I_{x'} \cap F' = \emptyset$.

To show that F' is discrete, let $x' = \langle x, i \rangle \in F'$. Then $x \in F$ and thus there exists an open interval (c_x, d_x) containing x such that $(c_x, d_x) \cap F = \{x\}$ since F is discrete in the real line \mathbb{R}. If $i = 0$, put $U_{x'} = ((x, -1), (d_x, -1))$. If $i = -1$, put $U_{x'} = ((c_x, 0), (x, 0))$. Then the open neighborhood $U_{x'}$ of x' satisfies $U_{x'} \cap F' = \{x'\}$.

Finally, we will show that $\{\varphi(x') \mid x' \in F'\}$ covers $\ell(S)$. For any $y' = \langle y, i \rangle \in \ell(S) \setminus F'$, since $\varphi(F \times \{0\}) = \mathbb{R} \times \{0\}$ there exists an $x \in F$ such that

https://doi.org/10.1017/500049727090000215 Published online by Cambridge University Press
The following are true:
\[(y, 0) \in \varphi((x, 0)). \]
Since \(y \neq x \), by the definition of \(\varphi \) we have the following: if \(x < y \), then \(y' \in \varphi'((x, 0)) \); if \(y < x \), then \(y' \in \varphi'((x, -1)) \). So \(\varphi'(F') = \ell(S) \) and thus \(\ell(S) \) is a \(D \)-space.

The minimal closed linearly ordered extension \(S^* \) of \(S \) is defined as follows. Put
\[S^* = \mathbb{R} \times \{ k \in \mathbb{Z} | k \leq 0 \}. \]
Let the linear order \(\preceq \) be the lexicographic order on \(S^* \). Equip \(S^* \) with the linearly ordered topology generated by the order \(\preceq \) on \(S^* \) (that is, the topology on \(S^* \) is generated by \(\{(a, \rightarrow) | a \in S^*\} \cup \{(\leftarrow, a) | a \in S^*\} \) as a subbase), where \((a, \rightarrow) = \{x \in S^* | a < x\} \) and \((\leftarrow, a) = \{x \in S^* | x < a\} \).

The Sorgenfrey line \(S \) is homeomorphic to the closed subspace \(\mathbb{R} \times \{0\} \) of the linearly ordered topological space \(S^* \). The space \(S^* \) is called a closed linearly ordered extension of \(S \) (see [3]). By [6, Theorem 9], the space \(S^* \) is the minimal closed linearly ordered extension of \(S \).

Theorem 2. The following are true:
1. the space \(S^* \) is not a monotone \(D \)-space;
2. the space \(\ell(S) \) is not a monotone \(D \)-space.

Proof. (1) Assume that \(S^* \) is a monotone \(D \)-space. Since the monotone \(D \)-property is hereditary with respect to closed subspaces (see [5, Theorem 1.7]) and \(S \) is homeomorphic to the closed subspace \(\mathbb{R} \times \{0\} \) of \(S^* \), \(S \) is a monotone \(D \)-space. By [5, Theorem 2.4] \(S \) is not a monotone \(D \)-space, which is a contradiction.

(2) Assume that the space \(\ell(S) \) is a monotone \(D \)-space. Define a mapping \(f : \ell(S) \to \mathbb{R} \), where \(\mathbb{R} \) is the real line, as follows. For each \((x, i) \in \ell(S), f(x') = x \).

Then \(f \) is continuous and closed surjective mapping. In fact, for an open interval \((a, b) \) of the real line \(\mathbb{R} \), \(f^{-1}((a, b)) \) is obviously open in \(\ell(S) \), so \(f \) is continuous.

Let \(F' \) be a closed subset of \(\ell(S) \) and \(x \notin f(F') \). Then \(f^{-1}(x) = \{(x, 0), (x, -1)\} \) and \(f^{-1}(x) \cap F' = \emptyset \). Thus there exist open intervals \(U = ((a_x, 0), (x, 0)) \) and \(V = ((x, -1), (b_x, 0)) \) of \(\ell(S) \) with \((x, -1) \in U \), \(U \cap F' = \emptyset \) and \((x, 0) \in V \), \(V \cap F' = \emptyset \), where \(a_x, b_x \in \mathbb{R} \). Thus \(x \in (a_x, b_x) \) and \((a_x, b_x) \cap f(F') = \emptyset \). Hence \(f(F') \) is closed.

Since the image of a monotone \(D \)-space under a continuous closed mapping is monotonically \(D \) ([5, Theorem 1.7]), the real line \(\mathbb{R} \) is a monotone \(D \)-space. Thus the closed subspace \([0, 1] \) of \(\mathbb{R} \) is monotonically \(D \), which contradicts the fact that closed unit interval \([0, 1] \) is not monotonically \(D \) (see [5, Theorem 2.3]).

It is shown that the closed image of a \(D \)-space is a \(D \)-space, and the perfect inverse image of a \(D \)-space is a \(D \)-space (see [1]), For the monotone \(D \)-property, although it is also preserved by closed mappings (see [5]), it cannot be inversely preserved by perfect mappings.

Example 3. There exists a perfect mapping \(f \) from \(X \) onto \(Y \) with \(Y \) a monotone \(D \)-space, but where \(X \) not a monotone \(D \)-space.
Let \(S_0 \) be a countable subspace of the Sorgenfrey line \(S \). Put \(X = S_0 \times [0, 1] \) and \(Y = S_0 \), where \([0, 1]\) is the usual unit closed interval. Define \(f : X \to Y \) such that, for each \(x = (s, t) \in X \), \(f(x) = s \). Clearly \(f \) is perfect. By \([5, \text{Theorem 2.4}]\), the countable subspace \(Y \) of the Sorgenfrey line \(S \) is a monotone \(D \)-space. Take an \(s \in S_0 \). Since the closed subspace \(\{s\} \times [0, 1] \) of \(X \) is homeomorphic to \([0, 1]\) and \([0, 1]\) is not a monotone \(D \)-space (see \([5, \text{Theorem 2.3}]\)), \(X \) is not monotonically \(D \).

Recall that a mapping \(f : X \to Y \) is called finite-to-one if, for each \(y \in Y \), \(f^{-1}(y) \) is finite.

Theorem 4. Let a closed mapping \(f : X \to Y \) be finite-to-one and surjective. If \(Y \) is a monotone \(D \)-space, then so is \(X \).

Proof. Let \(\varphi \) be a neighborhood assignment for \(X \). For each \(y \in Y \), put \(U_y = \bigcup \{ \varphi(x) \mid x \in f^{-1}(y) \} \) and \(\varphi'(y) = Y \setminus f(X \setminus U_y) \). Then \(\varphi' \) is a neighborhood assignment for \(Y \). Since \(Y \) is a monotone \(D \)-space, there exists a closed discrete subset \(D_{\varphi'} \) of \(Y \) such that \(Y = \bigcup \{ \varphi'(t) \mid t \in D_{\varphi'} \} \). Then \(D_{\varphi} = \bigcup \{ f^{-1}(t) \mid t \in D_{\varphi'} \} \) is a closed discrete subset of \(X \) and \(X = \bigcup \{ \varphi(x) \mid x \in D_{\varphi} \} \). Hence \(X \) is a monotone \(D \)-space.

Acknowledgement

We wish to express our thanks to the referee for helpful suggestions.

References

YIN-ZHU GAO, Department of Mathematics, Nanjing University, Nanjing 210093, PR China
e-mail: yzgao@jsmail.com.cn

WEI-XUE SHI, Department of Mathematics, Nanjing University, Nanjing 210093, PR China
e-mail: wxshi@nju.edu.cn

https://doi.org/10.1017/S0004972709000215 Published online by Cambridge University Press