Bull. Aust. Math. Soc. **80** (2009), 233–236 doi:10.1017/S0004972709000215

THE D-PROPERTY AND THE SORGENFREY LINE

YIN-ZHU GAO[™] and WEI-XUE SHI

(Received 6 October 2008)

Abstract

We show that for the Sorgenfrey line S, the minimal dense linearly ordered extension of S is a D-space, but not a monotone D-space; the minimal closed linearly ordered extension of S is not a monotone D-space; the monotone D-property is inversely preserved by finite-to-one closed mappings, but cannot be inversely preserved by perfect mappings.

2000 *Mathematics subject classification*: primary 54D20; secondary 54F05, 54G15, 54C25. *Keywords and phrases*: Sorgenfrey line, real line, linearly ordered topological space, monotone *D* -space.

1. Introduction

The notion of D-spaces was introduced by van Douwen and interesting results for the D-property and the Sorgenfrey line were demonstrated in [7].

A neighborhood assignment for a space X is a function φ from X to the topology of X such that $x \in \varphi(x)$ for all $x \in X$. A space X is a D-space if, for each neighborhood assignment φ for the space X, there exists a closed discrete subset F of X satisfying $X = \bigcup \{\varphi(x) \mid x \in F\}$.

A space X is a monotone D-space ([5]) if, for each neighborhood assignment φ for X, we can pick a closed discrete subset $F(\varphi)$ of X with $X = \bigcup \{\varphi(x) \mid x \in F(\varphi)\}$ such that if ψ is a neighborhood assignment for X and $\varphi(x) \subset \psi(x)$ for all x, then $F(\psi) \subset F(\varphi)$. Monotone D-spaces are D-spaces, but the converse is not true (see [5]).

The Sorgenfrey line S (that is, the set of all real numbers topologized by letting all half-open intervals [a, b) be a base) is one of the most important elementary examples in general topology. In [7], it is shown that the Sorgenfrey line S is a D-space. However, the Sorgenfrey line S is not a monotone D-space [5].

The main result of this note is as follows:

(1) the minimal dense linearly ordered extension of the Sorgenfrey line is a *D*-space, but not monotonically *D*;

The project is supported by NSFC (No.10571081).

^{© 2009} Australian Mathematical Publishing Association Inc. 0004-9727/2009 \$16.00

- (2) the minimal closed linearly ordered extension of Sorgenfrey line is not a monotone *D*-space;
- (3) the monotone *D*-property is inversely preserved by finite-to-one closed mappings, but cannot be inversely preserved by perfect mappings.

Throughout the note, spaces are topological spaces and are Hausdorff. Mappings are continuous. We reserve the symbols \mathbb{R} and \mathbb{Z} for the sets of all real numbers and all integers, respectively. For a neighborhood assignment φ for the space X and $F \subset X$, we denote $\bigcup \{\varphi(x) \mid x \in F\}$ by $\varphi(F)$. Undefined terminology and symbols will be found in [2].

2. Main results

Let $\ell(S) = \mathbb{R} \times \{0, -1\}$ be with the linearly ordered topology generated by the lexicographical order \leq on $\ell(S)$.

Note that the Sorgenfrey line S is homeomorphic to the dense subspace $\mathbb{R} \times \{0\}$ of the space $\ell(S)$. By [4, Theorem 2.1], the space $\ell(S)$ is the minimal dense linearly ordered extension of S.

THEOREM 1. The minimal dense linearly ordered extension $\ell(S)$ of the Sorgenfrey line S is a D-space.

PROOF. Note that the subset $\mathbb{R} \times \{0\}$ of $\ell(S)$ with the restricted order $\leq |_{\mathbb{R} \times \{0\}}$ is a linearly ordered set. By the linearly ordered topological space $\mathbb{R} \times \{0\}$ we mean the subset $\mathbb{R} \times \{0\}$ of $\ell(S)$ with the open interval topology generated by the linear order $\leq |_{\mathbb{R} \times \{0\}}$. Obviously the linearly ordered topological space $\mathbb{R} \times \{0\}$ is homeomorphic to the real line \mathbb{R} (the set \mathbb{R} with the Euclidean topology).

Let φ' be a neighborhood assignment for $\ell(S)$. We now define a neighborhood assignment φ for the linearly ordered topological space $\mathbb{R} \times \{0\}$ as follows. For any $x \in \mathbb{R}$, take an $s_x \in \mathbb{R}$ such that $x < s_x$ and the open interval $(\langle x, 0 \rangle, \langle s_x, 0 \rangle) \subset \varphi'(\langle x, 0 \rangle)$. We can also take an $a_x \in \mathbb{R}$ such that $a_x < x$ and $(\langle a_x, 0 \rangle, \langle x, 0 \rangle) \subset \varphi'(\langle x, -1 \rangle)$. Define $\varphi(\langle x, 0 \rangle) = (a_x, s_x) \times \{0\}$.

Since metrizablity implies the *D*-property, the real line \mathbb{R} is a *D*-space. So for φ there exists a closed discrete subset *F* of the real line \mathbb{R} such that $\varphi(F \times \{0\}) = \mathbb{R} \times \{0\}$.

Put $F' = F \times \{0, -1\}$. Then F' is closed in $\ell(S)$.

In fact, for any $x' = \langle x, i \rangle \in \ell(S) \setminus F'$, since $x \notin F$ and F is closed in the real line \mathbb{R} there exist real numbers a_x and s_x with $a_x < x < s_x$ such that $(a_x, s_x) \cap F = \emptyset$. Then the open neighborhood $I_{x'} = (\langle a_x, 0 \rangle, \langle s_x, -1 \rangle)$ of x' satisfies $I_{x'} \cap F' = \emptyset$.

To show that F' is discrete, let $x' = \langle x, i \rangle \in F'$. Then $x \in F$ and thus there exists an open interval (c_x, d_x) containing x such that $(c_x, d_x) \cap F = \{x\}$ since F is discrete in the real line \mathbb{R} . If i = 0, put $U_{x'} = (\langle x, -1 \rangle, \langle d_x, -1 \rangle)$. If i = -1, put $U_{x'} = (\langle c_x, 0 \rangle, \langle x, 0 \rangle)$. Then the open neighborhood $U_{x'}$ of x' satisfies $U_{x'} \cap F' = \{x'\}$.

Finally, we will show that $\{\varphi'(x') \mid x' \in F'\}$ covers $\ell(S)$. For any $y' = \langle y, i \rangle \in \ell(S) \setminus F'$, since $\varphi(F \times \{0\}) = \mathbb{R} \times \{0\}$ there exists an $x \in F$ such that

234

D-spaces

 $\langle y, 0 \rangle \in \varphi(\langle x, 0 \rangle)$. Since $y \neq x$, by the definition of φ we have the following: if x < y, then $y' \in \varphi'(\langle x, 0 \rangle)$; if y < x, then $y' \in \varphi'(\langle x, -1 \rangle)$. So $\varphi'(F') = \ell(S)$ and thus $\ell(S)$ is a *D*-space.

The minimal closed linearly ordered extension S^* of S is defined as follows. Put

$$S^* = \mathbb{R} \times \{k \in \mathbb{Z} \mid k \le 0\}.$$

Let the linear order \leq be the lexicographic order on S^* . Equip S^* with the linearly ordered topology generated by the order \leq on S^* (that is, the topology on S^* is generated by $\{(a, \rightarrow) \mid a \in S^*\} \cup \{(\leftarrow, a) \mid a \in S^*\}$ as a subbase), where $(a, \rightarrow) = \{x \in S^* \mid a \prec x\}$ and $(\leftarrow, a) = \{x \in S^* \mid x \prec a\}$.

The Sorgenfrey line *S* is homeomorphic to the closed subspace $\mathbb{R} \times \{0\}$ of the linearly ordered topological space *S*^{*}. The space *S*^{*} is called a closed linearly ordered extension of *S* (see [3]). By [6, Theorem 9], the space *S*^{*} is the minimal closed linearly ordered extension of *S*.

THEOREM 2. The following are true:

(1) the space S^* is not a monotone D-space;

(2) the space $\ell(S)$ is not a monotone D-space.

PROOF. (1) Assume that S^* is a monotone *D*-space. Since the monotone *D*-property is hereditary with respect to closed subspaces (see [5, Theorem 1.7]) and *S* is homeomorphic to the closed subspace $\mathbb{R} \times \{0\}$ of S^* , *S* is a monotone *D*-space. By [5, Theorem 2.4] *S* is not a monotone *D*-space, which is a contradiction.

(2) Assume that the space $\ell(S)$ is a monotone *D*-space. Define a mapping $f : \ell(S) \to \mathbb{R}$, where \mathbb{R} is the real line, as follows. For each $x' = \langle x, i \rangle \in \ell(S), f(x') = x$. Then f is continuous and closed surjective mapping. In fact, for an open interval (a, b) of the real line \mathbb{R} , $f^{-1}((a, b))$ is obviously open in $\ell(S)$, so f is continuous. Let F' be a closed subset of $\ell(S)$ and $x \notin f(F')$. Then $f^{-1}(x) = \{\langle x, 0 \rangle, \langle x, -1 \rangle\}$ and $f^{-1}(x) \cap F' = \emptyset$. Thus there exist open intervals $U = (\langle a_x, 0 \rangle, \langle x, 0 \rangle)$ and $V = (\langle x, -1 \rangle, \langle b_x, 0 \rangle)$ of $\ell(S)$ with $\langle x, -1 \rangle \in U, U \cap F' = \emptyset$ and $\langle x, 0 \rangle \in V, V \cap F' = \emptyset$, where $a_x, b_x \in \mathbb{R}$. Thus $x \in (a_x, b_x)$ and $(a_x, b_x) \cap f(F') = \emptyset$. Hence f(F') is closed.

Since the image of a monotone *D*-space under a continuous closed mapping is monotonically D ([5, Theorem 1.7]), the real line \mathbb{R} is a monotone *D*-space. Thus the closed subspace [0, 1] of \mathbb{R} is monotonically *D*, which contradicts the fact that closed unit interval [0, 1] is not monotonically *D* (see [5, Theorem 2.3]).

It is shown that the closed image of a D-space is a D-space, and the perfect inverse image of a D-space is a D-space (see [1]), For the monotone D-property, although it is also preserved by closed mappings (see [5]), it cannot be inversely preserved by perfect mappings.

EXAMPLE 3. There exists a perfect mapping f from X onto Y with Y a monotone D-space, but where X not a monotone D-space.

[4]

PROOF. Let S_0 be a countable subspace of the Sorgenfrey line *S*. Put $X = S_0 \times [0, 1]$ and $Y = S_0$, where [0, 1] is the usual unit closed interval. Define $f : X \to Y$ such that, for each $x = \langle s, t \rangle \in X$, f(x) = s. Clearly *f* is perfect. By [5, Theorem 2.4], the countable subspace *Y* of the Sorgenfrey line *S* is a monotone *D*-space. Take an $s \in S_0$. Since the closed subspace $\{s\} \times [0, 1]$ of *X* is homeomorphic to [0, 1] and [0, 1] is not a monotone *D*-space (see [5, Theorem 2.3]), *X* is not monotonically *D*.

Recall that a mapping $f : X \to Y$ is called finite-to-one if, for each $y \in Y$, $f^{-1}(y)$ is finite.

THEOREM 4. Let a closed mapping $f : X \to Y$ be finite-to-one and surjective. If Y is a monotone D-space, then so is X.

PROOF. Let φ be a neighborhood assignment for X. For each $y \in Y$, put $U_y = \bigcup \{\varphi(x) \mid x \in f^{-1}(y)\}$ and $\varphi'(y) = Y \setminus f(X \setminus U_y)$. Then φ' is a neighborhood assignment for Y. Since Y is a monotone D-space, there exists a closed discrete subset $D_{\varphi'}$ of Y such that $Y = \bigcup \{\varphi'(t) \mid t \in D_{\varphi'}\}$. Then $D_{\varphi} = \bigcup \{f^{-1}(t) \mid t \in D_{\varphi'}\}$ is a closed discrete subset of X and $X = \bigcup \{\varphi(x) \mid x \in D_{\varphi}\}$. Hence X is a monotone D-space.

Acknowledgement

We wish to express our thanks to the referee for helpful suggestions.

References

- [1] C. R. Borges and A. C. Wehrly, 'A study of D-spaces', Topology Proc. 16 (1991), 7–15.
- [2] R. R. Engelking, *General Topology*, revised and completed edition (Heldermann Verlag, Berlin, 1989).
- [3] D. J. Lutzer, 'On generalized ordered spaces', Dissertationes Math. 89 (1971).
- [4] T. Miwa and N. Kemoto, 'Linearly ordered extensions of GO-spaces', *Top. Appl.* 54 (1993), 133–140.
- [5] S. G. Popvassilev and J. E. Porter, 'Monotonically D-spaces', Topology Proc. 30 (2006), 355–365.
- [6] W.-X. Shi, 'Perfect GO-spaces which have a perfect linearly ordered extension', *Top. Appl.* 81 (1997), 23–33.
- [7] E. K. van Douwen and W. F. Pfeffer, 'Some properties of the Sorgenfrey line and related spaces', *Pacific J. Math.* 81 (1979), 371–377.

YIN-ZHU GAO, Department of Mathematics, Nanjing University, Nanjing 210093, PR China

e-mail: yzgao@jsmail.com.cn

WEI-XUE SHI, Department of Mathematics, Nanjing University, Nanjing 210093, PR China e-mail: wxshi@nju.edu.cn

236