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Abstract

We show that for the Sorgenfrey line S, the minimal dense linearly ordered extension of S is a D-space,
but not a monotone D-space; the minimal closed linearly ordered extension of S is not a monotone
D-space; the monotone D-property is inversely preserved by finite-to-one closed mappings, but cannot
be inversely preserved by perfect mappings.
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1. Introduction

The notion of D-spaces was introduced by van Douwen and interesting results for the
D-property and the Sorgenfrey line were demonstrated in [7].

A neighborhood assignment for a space X is a function ϕ from X to the topology
of X such that x ∈ ϕ(x) for all x ∈ X . A space X is a D-space if, for each
neighborhood assignment ϕ for the space X , there exists a closed discrete subset F
of X satisfying X =

⋃
{ϕ(x) | x ∈ F}.

A space X is a monotone D-space ([5]) if, for each neighborhood assignment ϕ
for X , we can pick a closed discrete subset F(ϕ) of X with X =

⋃
{ϕ(x) | x ∈ F(ϕ)}

such that if ψ is a neighborhood assignment for X and ϕ(x)⊂ ψ(x) for all x ,
then F(ψ)⊂ F(ϕ). Monotone D-spaces are D-spaces, but the converse is not true
(see [5]).

The Sorgenfrey line S (that is, the set of all real numbers topologized by letting all
half-open intervals [a, b) be a base) is one of the most important elementary examples
in general topology. In [7], it is shown that the Sorgenfrey line S is a D-space.
However, the Sorgenfrey line S is not a monotone D-space [5].

The main result of this note is as follows:

(1) the minimal dense linearly ordered extension of the Sorgenfrey line is a D-space,
but not monotonically D;
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(2) the minimal closed linearly ordered extension of Sorgenfrey line is not a
monotone D-space;

(3) the monotone D-property is inversely preserved by finite-to-one closed
mappings, but cannot be inversely preserved by perfect mappings.

Throughout the note, spaces are topological spaces and are Hausdorff. Mappings
are continuous. We reserve the symbols R and Z for the sets of all real numbers and all
integers, respectively. For a neighborhood assignment ϕ for the space X and F ⊂ X ,
we denote

⋃
{ϕ(x) | x ∈ F} by ϕ(F). Undefined terminology and symbols will be

found in [2].

2. Main results

Let `(S)= R× {0,−1} be with the linearly ordered topology generated by the
lexicographical order � on `(S).

Note that the Sorgenfrey line S is homeomorphic to the dense subspace R× {0}
of the space `(S). By [4, Theorem 2.1], the space `(S) is the minimal dense linearly
ordered extension of S.

THEOREM 1. The minimal dense linearly ordered extension `(S) of the Sorgenfrey
line S is a D-space.

PROOF. Note that the subset R× {0} of `(S) with the restricted order � |R×{0} is a
linearly ordered set. By the linearly ordered topological space R× {0} we mean the
subset R× {0} of `(S) with the open interval topology generated by the linear order
� |R×{0}. Obviously the linearly ordered topological space R× {0} is homeomorphic
to the real line R (the set R with the Euclidean topology).

Let ϕ′ be a neighborhood assignment for `(S). We now define a neighborhood
assignment ϕ for the linearly ordered topological space R× {0} as follows. For
any x ∈ R, take an sx ∈ R such that x < sx and the open interval (〈x, 0〉, 〈sx , 0〉)⊂
ϕ′(〈x, 0〉). We can also take an ax ∈ R such that ax < x and (〈ax , 0〉, 〈x, 0〉)⊂
ϕ′(〈x,−1〉). Define ϕ(〈x, 0〉)= (ax , sx )× {0}.

Since metrizablity implies the D-property, the real line R is a D-space. So for
ϕ there exists a closed discrete subset F of the real line R such that ϕ(F × {0})=
R× {0}.

Put F ′ = F × {0,−1}. Then F ′ is closed in `(S).
In fact, for any x ′ = 〈x, i〉 ∈ `(S) \ F ′, since x /∈ F and F is closed in the real line R

there exist real numbers ax and sx with ax < x < sx such that (ax , sx ) ∩ F = ∅. Then
the open neighborhood Ix ′ = (〈ax , 0〉, 〈sx ,−1〉) of x ′ satisfies Ix ′ ∩ F ′ = ∅.

To show that F ′ is discrete, let x ′ = 〈x, i〉 ∈ F ′. Then x ∈ F and thus there exists
an open interval (cx , dx ) containing x such that (cx , dx ) ∩ F = {x} since F is discrete
in the real line R. If i = 0, put Ux ′ = (〈x,−1〉, 〈dx ,−1〉). If i =−1, put Ux ′ =

(〈cx , 0〉, 〈x, 0〉). Then the open neighborhood Ux ′ of x ′ satisfies Ux ′ ∩ F ′ = {x ′}.
Finally, we will show that {ϕ′(x ′) | x ′ ∈ F ′} covers `(S). For any y′ = 〈y, i〉 ∈

`(S) \ F ′, since ϕ(F × {0})= R× {0} there exists an x ∈ F such that
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〈y, 0〉 ∈ ϕ(〈x, 0〉). Since y 6= x , by the definition of ϕ we have the following: if x < y,
then y′ ∈ ϕ′(〈x, 0〉); if y < x , then y′ ∈ ϕ′(〈x,−1〉) . So ϕ′(F ′)= `(S) and thus `(S)
is a D-space. 2

The minimal closed linearly ordered extension S∗ of S is defined as follows. Put

S∗ = R× {k ∈ Z | k ≤ 0}.

Let the linear order � be the lexicographic order on S∗. Equip S∗ with the linearly
ordered topology generated by the order � on S∗ (that is, the topology on S∗ is
generated by {(a,→) | a ∈ S∗} ∪ {(←, a) | a ∈ S∗} as a subbase), where (a,→)=
{x ∈ S∗ | a ≺ x} and (←, a)= {x ∈ S∗ | x ≺ a}.

The Sorgenfrey line S is homeomorphic to the closed subspace R× {0} of the
linearly ordered topological space S∗. The space S∗ is called a closed linearly ordered
extension of S (see [3]). By [6, Theorem 9], the space S∗ is the minimal closed linearly
ordered extension of S.

THEOREM 2. The following are true:
(1) the space S∗ is not a monotone D-space;
(2) the space `(S) is not a monotone D-space.

PROOF. (1) Assume that S∗ is a monotone D-space. Since the monotone
D-property is hereditary with respect to closed subspaces (see [5, Theorem 1.7]) and
S is homeomorphic to the closed subspace R× {0} of S∗, S is a monotone D-space.
By [5, Theorem 2.4] S is not a monotone D-space, which is a contradiction.

(2) Assume that the space `(S) is a monotone D-space. Define a mapping f :
`(S)→ R, where R is the real line, as follows. For each x ′ = 〈x, i〉 ∈ `(S), f (x ′)= x .
Then f is continuous and closed surjective mapping. In fact, for an open interval
(a, b) of the real line R, f −1((a, b)) is obviously open in `(S), so f is continuous.
Let F ′ be a closed subset of `(S) and x /∈ f (F ′). Then f −1(x)= {〈x, 0〉, 〈x,−1〉}
and f −1(x) ∩ F ′ = ∅. Thus there exist open intervals U = (〈ax , 0〉, 〈x, 0〉) and V =
(〈x,−1〉, 〈bx , 0〉) of `(S) with 〈x,−1〉 ∈U , U ∩ F ′ = ∅ and 〈x, 0〉 ∈ V , V ∩ F ′ = ∅,
where ax , bx ∈ R. Thus x ∈ (ax , bx ) and (ax , bx ) ∩ f (F ′)= ∅. Hence f (F ′) is
closed.

Since the image of a monotone D-space under a continuous closed mapping is
monotonically D ([5, Theorem 1.7]), the real line R is a monotone D-space. Thus the
closed subspace [0, 1] of R is monotonically D, which contradicts the fact that closed
unit interval [0, 1] is not monotonically D (see [5, Theorem 2.3]). 2

It is shown that the closed image of a D-space is a D-space, and the perfect inverse
image of a D-space is a D-space (see [1]), For the monotone D-property, although
it is also preserved by closed mappings (see [5]), it cannot be inversely preserved by
perfect mappings.

EXAMPLE 3. There exists a perfect mapping f from X onto Y with Y a monotone
D-space, but where X not a monotone D-space.
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PROOF. Let S0 be a countable subspace of the Sorgenfrey line S. Put X = S0 × [0, 1]
and Y = S0, where [0, 1] is the usual unit closed interval. Define f : X→ Y such
that, for each x = 〈s, t〉 ∈ X , f (x)= s. Clearly f is perfect. By [5, Theorem 2.4], the
countable subspace Y of the Sorgenfrey line S is a monotone D-space. Take an s ∈ S0.
Since the closed subspace {s} × [0, 1] of X is homeomorphic to [0, 1] and [0, 1] is not
a monotone D-space (see [5, Theorem 2.3]), X is not monotonically D. 2

Recall that a mapping f : X→ Y is called finite-to-one if, for each y ∈ Y , f −1(y)
is finite.

THEOREM 4. Let a closed mapping f : X→ Y be finite-to-one and surjective. If Y is
a monotone D-space, then so is X.

PROOF. Let ϕ be a neighborhood assignment for X . For each y ∈ Y , put Uy =⋃
{ϕ(x) | x ∈ f −1(y)} and ϕ′(y)= Y \ f (X \Uy). Then ϕ′ is a neighborhood

assignment for Y . Since Y is a monotone D-space, there exists a closed discrete
subset Dϕ′ of Y such that Y =

⋃
{ϕ′(t) | t ∈ Dϕ′}. Then Dϕ =

⋃
{ f −1(t) | t ∈ Dϕ′}

is a closed discrete subset of X and X =
⋃
{ϕ(x) | x ∈ Dϕ}. Hence X is a monotone

D-space. 2
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