THE COMMUTATION RELATION $i[Y, Z] = 2Y$
AND THE ABSOLUTELY CONTINUOUS SPECTRUM OF Y

J. V. CORBETT

(Received 13 February 1981)
(Revised 25 June 1981)

Abstract

A relation between positive commutators and absolutely continuous spectrum is obtained. If $i[Y, Z] = 2Y$ holds on a core for Z and if Y is positive then we have a system of imprimitivity for the group \mathbb{R}^+_* on \mathbb{R}^+_*, from which it follows that Y has no singular continuous spectrum.

Assume that Y and Z are self-adjoint operators on a separable Hilbert space \mathcal{H} and that

$$i[Y, Z]f = 2Yf$$

(1)

for all f belonging to a dense subset D of \mathcal{H}. We obtain conditions under which the relation (1) implies that the singular continuous spectrum of Y is empty.

The argument is simple. We first show that if Y is positive and if

$$e^{-iZs}Ye^{iZs}u = e^{2s}Yu$$

(2)

for all $u \in D(Y)$ and all $s \in \mathbb{R}$, then the singular continuous spectrum of Y is empty. We then obtain conditions on the subset D that ensure that whenever (1) holds then (2) holds. We also obtain a converse to this, namely, if Y is a positive self-adjoint operator with absolutely continuous spectrum on $[0, \infty)$ and uniform spectral multiplicity then there exists a self-adjoint operator Z such that (1) holds.

Theorem 1. Let Y be a positive self-adjoint operator and U_s a unitary representation of the real line, such that for all $u \in D(Y)$ and all $s \in \mathbb{R}$

$$U_s^{-1}YU_su = e^{-2s}Yu,$$

then if the spectrum of Y is continuous it is absolutely continuous.
PROOF. For any complex number \(\omega \),

\[
U_s^{-1}(Y - \omega I)U_s u = e^{-2s}(Y - e^{2s}\omega I)u
\]

for all \(u \in D(Y) \) and all real \(s \). Therefore, if the imaginary part of \(\omega \) is non-zero, \((Y - \omega I) \) is invertible, and

\[
U_s^{-1}(Y - \omega I)^{-1}U_s = e^{2s}(Y - e^{2s}\omega I)^{-1}.
\]

This last equation holds as an operator identity in \(B(\mathcal{H}) \) for all \(s \in \mathbb{R} \).

Assume that the continuous spectrum of \(Y \) is non-empty and contains the interval \(\Delta \). The spectral projection \(E_\Delta(Y) \) is given by Stone’s formula

\[
E_\Delta(Y) = \lim_{\epsilon \to 0^+} (2\pi i)^{-1} \int_{\Delta} \left[(Y - \omega I)^{-1} - (Y - e^{2\pi i \epsilon})^{-1} \right] d\mu
\]

where we have written \(\omega = \mu + i\epsilon \) and \(\omega = \mu - i\epsilon \).

Therefore

\[
U_s^{-1}E_\Delta(Y)U_s = \lim_{\epsilon \to 0^+} e^{2s}(2\pi i)^{-1} \int_{\Delta} \left[(Y - e^{2\pi i \epsilon})^{-1} - (Y - e^{2\pi i \epsilon})^{-1} \right] d\mu
\]

\[
= \lim_{\epsilon_0 \to 0^+} (2\pi i)^{-1} \int_{\epsilon_0}^{2\pi} \left[(Y - \eta - i\epsilon_0)^{-1} - (Y - \eta + i\epsilon_0)^{-1} \right] d\eta
\]

\[
= E_{e^{2\pi}Y}(Y)
\]

where we have put \(\eta + i\epsilon_0 = e^{2\pi} \).

Let \(\beta \) be any Borel subset in the continuous spectrum of \(Y \), then by the usual construction of Borel subsets from intervals we obtain

\[
U_s^{-1}E_\beta(Y)U_s = E_{e^{2\pi}Y}(Y).
\]

Let \(\mathbb{R}_+^* = (0, \infty) \) denote the multiplicative group of positive real numbers. We obtain a representation \(V_a \) of \(\mathbb{R}_+^* \) from the representation \(U_s \) of \(\mathbb{R} \) by putting \(a = e^{2s} \) for all \(s \in \mathbb{R} \), and observing that

\[
V_a = U_{\frac{1}{\ln a}} \text{ for all } a \in \mathbb{R}_+^*.
\]

By hypothesis \(Y \) is positive definite and so its spectrum is contained in \([0, \infty)\). By spectral multiplicity theory, the set of all spectral projections \(\{ E_\beta(Y); \beta \text{ a Borel subset of } [0, \infty) \} \) has a separating vector \(\Phi \). In fact, \(\Phi \) is a cyclic vector for the commutant of this family of projections.

The measure \(\nu(\Delta) = \langle \Phi, E_\Delta(Y)\Phi \rangle \), defined on the Borel subsets of \(\mathbb{R}_+^* \), is equivalent to the Haar measure of \(\mathbb{R}_+^* \). To see this, first observe that because \(\Phi \) is separating if \(\Delta_0 \) is a Borel subset of \(\mathbb{R}_+^* \) such that \(\nu(\Delta_0) = 0 \) then \(E_{\Delta_0}(Y) = 0 \), and therefore

\[
\langle \Phi, V_a^{-1}E_{\Delta_0}(Y)V_a\Phi \rangle = 0
\]

for all \(a \in \mathbb{R}_+^* \).
for all \(a \in \mathbb{R}^*_+ \). On the other hand when equation (4) is written in terms of the representation \(V_a \) of the multiplicative group \(\mathbb{R}^*_+ \) we obtain \(V_a^{-1}E_{a\Delta_0}(Y)V_a = E_{a\Delta_0}(Y) \). Therefore

\[
\nu(a\Delta_0) = \langle \Phi, E_{a\Delta_0}(Y)\Phi \rangle = 0
\]

for all \(a \in \mathbb{R}^*_+ \). This means that \(\nu \) is a Borel measure on \(\mathbb{R}^*_+ \) that is quasi-invariant with respect to the action of \(\mathbb{R}^*_+ \) on itself, and therefore \(\nu \) is equivalent to Haar measure of \(\mathbb{R}^*_+ \) on \(\mathbb{R}^*_+ \).

The absolute continuity of the spectrum of \(Y \) follows because the Haar measure of \(\mathbb{R}^*_+ \) on \(\mathbb{R}^*_+ \) is absolutely continuous with respect to Lebesgue measure. Let the Borel subset \(S \) of \(\mathbb{R} \) have Lebesgue measure zero, that is, \(|S| = 0 \). If \(S \) is a subset of \(\mathbb{R}^*_+ \), \(\nu(S) = 0 \) and therefore \(E_S(Y)\phi = 0 \) and \(E_S(Y) = 0 \) because \(\Phi \) is separating. If \(S \) is not a subset of \(\mathbb{R}^*_+ \) then \(S = S_1 \cup S_2 \) where \(S_2 \) is a subset of \(\mathbb{R}^*_+ \) and \(S_1 \) lies in the complement of \(\mathbb{R}^*_+ \). Now \(E_S(Y) = E_{S_1}(Y) + E_{S_2}(Y) \) where \(E_{S_2}(Y) = 0 \) by the argument given above and \(E_S(Y) = 0 \) by the positivity of \(Y \) and the continuity of spectrum of \(Y \).

This theorem shows that the spectral measure class of the positive operator \(Y \) is equivalent to the Haar measure of the multiplicative group of the positive reals, \(\mathbb{R}^*_+ \), on itself. The equation (1) defines a system of imprimitivity of the group \(\mathbb{R}^*_+ \). The proof is modelled on Mackey’s approach to the representations of the canonical commutation relations [4].

Definition. Let \(Y \) be a positive self-adjoint operator in a Hilbert space \(\mathcal{H} \). A subset \(D \) of \(\mathcal{H} \) is said to be a domain of integration for the self-adjoint operator \(Z \) with respect to the relation

\[
i[Y, Z] = 2Y
\]

if

\[
(YZ - ZY)f = -2iYf
\]

for all \(f \in D \) implies that

\[
e^{iZs}Ye^{-iZs}u = e^{-2s}Yu
\]

for all \(u \in D(Y) \) and all \(s \in \mathbb{R} \).

The terminology reflects the fact that equation (8) can be obtained from equation (9) by differentiating with respect to \(s \) at \(s = 0 \). An immediate consequence of this definition and Theorem 1 is the following result:

Theorem 2. Let \(D \) be a domain of integration for \(Z \) and the relation (7) and suppose that \(Y \) is positive definite, then whenever \(i[Y, Z]f = 2Yf \) for all \(f \in D \) the singular continuous spectrum of \(Y \) is empty.
The problem of finding a domain of integration for the operator \(Z \) and relation (7) is related to the problem of lifting a representation of a Lie algebra as skew-adjoint operators on a Hilbert space to a unitary representation of the corresponding Lie group. Nelson's theorem [5] gives necessary and sufficient conditions for the solution of the general problem, and can be used for our problem. Nevertheless, we present a criterion for \(D \) modelled on a result of Kato [2] for the problem of obtaining the Weyl commutation relations from those of Heisenberg (see also Cartier [1]).

Theorem 3. Let \(D \) be a subset of \(D(YZ) \cap D(ZY) \) on which equation (8) holds with \(Y \) positive. \(D \) is a domain of integration for \(Z \) and relation (7) if \(D \) is a core for \(Z \).

Proof. Since \(D \) is a core for \(Z \) there is an \(\alpha \neq 0 \) such that \((Z - i\alpha)D \) is dense in \(\mathcal{H} \). If \(\epsilon > 0 \), \((Y + \epsilon I) \) is strictly positive and symmetric and hence \((Y + \epsilon)^{-1}(Z - (\alpha + 2))^{-1}u = \epsilon(Y + \epsilon)^{-1}(Z - i(\alpha + 2))^{-1}(u - 2i\epsilon f) = (Y + \epsilon)^{-1}(Z - (\alpha + 2))^{-1}u + \epsilon(Y + \epsilon)^{-1}[(Z - i\alpha)^{-1} - (Z - i(\alpha + 2))^{-1}](Y + \epsilon)^{-1}u \). But \(u \in (Y + \epsilon)(Z - i\alpha)D \) and thus we have the operator equation

\[
(Z - i\alpha)^{-1}(Y + \epsilon)^{-1} - (Y + \epsilon)^{-1}(Z - i(\alpha + 2))^{-1} = \epsilon(Y + \epsilon)^{-1}((Z - i\alpha)^{-1} - (Z - i(\alpha + 2))^{-1})(Y + \epsilon)^{-1}. \tag{10}
\]

We now prove by induction that

\[
(Z - i\alpha)^{-n}(Y + \epsilon)^{-1} - (Y + \epsilon)^{-1}(Z - i(\alpha + 2))^{-n} = \epsilon(Y + \epsilon)^{-1}(Z - i\alpha)^{-n} - (Z - i(\alpha + 2))^{-n}(Y + \epsilon)^{-1}. \tag{11}
\]

for all positive integers \(n \). It is true for \(n = 1 \); assume it is true for \(n \) and write \(P_0 = (Z - i\alpha)^{-1}, P_2 = (Z - i(\alpha + 2))^{-1}, \) and \(Q = (Y + \epsilon)^{-1} \). Then

\[
P_0^{n+1}Q - QP_2^{n+1} = P_0^n(P_0Q - QP_2) + (P_0^nQ - QP_2^n)P_2
= \epsilon\{P_0^nQ(P_0Q - QP_2) + (QP_0^n - QP_2^n)QP_2\}
= \epsilon\{QP_0^{n+1}Q - QP_2^{n+1}Q\},
\]
on substituting for \(P_0^nQ \) and \(QP_2 \) in the penultimate line. The argument now goes exactly as in [2]. Use the Neumann series for \((Z - i\beta)^{-1}\) and the fact that \((Z - \omega)^{-1}\) is analytic for \(\text{Im} \omega \neq 0 \) to extend the validity of (11) from \(\omega = i\alpha \) to \(\omega = i\beta \) for all real \(\beta, \beta \neq 0, \beta \neq -2 \).
Multiply equation (11) by \((-i\alpha)^n\) and set \(\alpha = n/s\) with \(s \neq 0\). \((Z - i\alpha)^n\) becomes \((1 + in^{-1}sZ)^{-n}\) and \((Z - i(\alpha + 2))^{-n}\) becomes \((1 + n^{-1}s(2 + iZ))^{-n}\).

Both these expressions have strong limits as \(n\) tends to infinity:

\[
(1 + in^{-1}sZ)^{-n} \to e^{isZ} \quad \text{and} \quad (1 + n^{-1}s(2 + iZ))^{-n} \to e^{-2s}e^{-iZs}.
\]

Therefore

\[
e^{-iZs}(Y + \varepsilon)^{-1} - (Y + \varepsilon)^{-1}e^{iZs}e^{-2s} = \varepsilon(Y + \varepsilon)^{-1}(e^{-iZs} - e^{iZs}e^{-2s})(Y + \varepsilon)^{-1},
\]

and, for all \(g \in D(Y)\),

\[
(Y + \varepsilon)e^{-iZs}g - e^{-iZs}e^{-2s}(Y + \varepsilon)g = \varepsilon(e^{-iZs} - e^{-iZs}e^{-2s})g,
\]

or

\[
e^{iZs}Ye^{-iZs}g = e^{-2s}Yg.
\]

Putting these results together we have the useful corollary of Theorem 3.

Corollary. Let \(Y\) and \(Z\) be self-adjoint operators on a separable Hilbert space \(\mathcal{H}\) and suppose that \(Y\) is positive. Let \(D\) be a subset of \(D(YZ) \cap D(ZY)\) such that for all \(f \in D\)

\[i[Y, Z]f = 2Yf\]

and suppose that \(D\) is a core for \(Z\). Then the singular continuous spectrum of \(Y\) is empty.

We will now use this corollary in a number of examples.

Examples. 1.

\[\mathcal{H} = L^2([a, b]), \quad 0 < a < b < \infty,\]

\[Y = -\frac{d^2}{dx^2} \quad \text{on} \quad D(Y), \quad Z = \frac{1}{2i}\left(x\frac{d}{dx} + \frac{d}{dx}x\right) \quad \text{on} \quad D(Z),\]

where

\[D(Y) = \{f \in \mathcal{H} | f \in AC^2[a, b], f(a) = 0 = f(b)\},\]

\[D(Z) = \{f \in \mathcal{H} | f \in AC[a, b], xf \in AC[a, b] \text{ and } af(a) = \sqrt{b}f(b)\},\]

\[AC[a, b] = \{f \in \mathcal{H} | f(x) \text{ is absolutely continuous on } [a, b] \text{ and } f'(x) \in \mathcal{H}\},\]

\[AC^2[a, b] = \{f \in \mathcal{H} | f \text{ is differentiable}, \quad f' \text{ is absolutely continuous and } f'' \in \mathcal{H}\}.\]
With these domains, Y and Z are self-adjoint and Y is positive. We take $D \subset D(YZ) \cap D(XY)$ to be $C^\infty_0[a, b]$, the set of C^∞ functions with compact support in $[a, b]$ whose support stays away from the end points. Then for all $f \in D$,

$$i[Y, Z]f = 2Yf.$$

We know that the spectrum of Y is not absolutely continuous, but this does not contradict Theorem 3 as D is not a core for Z. For any real number $\alpha \neq 0$, $(Z - i\alpha)D$ is not dense in $L^2[a, b]$, because the function $u(x) = Ax^{\alpha - 1/2}$ is orthogonal to $(Z - i\alpha)D$. In fact this function is orthogonal to $(Z - i\alpha)(D(YZ) \cap D(ZY))$.

2.

$$\mathcal{H} = L^2([a, b]), \quad 0 < a < b < \infty,$$

Y is the multiplicative operator, $(Yf)(x) = x^2f(x)$, with $D(Y) = \mathcal{H}$. $Z = -(1/2i)(xd/dx + (d/dx)x)$ on $D(Z)$ as in example (1).

Both Y and Z are self-adjoint, Y is positive, and if we take $D \subset D(YX) \cap D(ZY)$ to be $C^\infty_0[a, b]$ as in example (1), then for all $f \in D$,

$$i[Y, Z]f = 2Yf.$$

The argument of example (1) yields the result that D is not a core for Z, even though we know that the spectrum of Y is absolutely continuous. This shows that the conditions of Theorem 4 are not necessary. What goes wrong in this example is that it is not true that $e^{-izs}Ye^{izs}f = e^{-2zs}Yf$ for all $f \in D(Y)$. This example should be compared with the usual particle in a box counterexample to the uniqueness of the representation for the Heisenberg commutation relations.

3.

$$\mathcal{H} = L^2(0, \infty),$$

Y is the operator of multiplication, $(Yf)(\lambda) = \lambda f(\lambda)$ and

$$D(Y) = \left\{ f \in \mathcal{H} | \int_0^\infty \lambda^2 |f(\lambda)|^2 \, d\lambda < \infty \right\},$$

$$Z = -\frac{1}{i} \left(\lambda \frac{d}{d\lambda} + \frac{d}{d\lambda} \lambda \right) \quad \text{with domain}$$

$$D(Z) = \left\{ f \in L^2(0, \infty) \mid f \in AC[0, \infty), \lambda f \in AC[0, \infty) \right\},$$

and

$$\lim_{a \to 0^+} \sqrt{a} f(a) = \lim_{b \to -\infty} \sqrt{b} f(b).$$

The last condition in the description of the domain of Z should be taken to mean that both limits exist and are equal.
With these domains, Y and Z are self-adjoint and Y is positive. Furthermore we know that the spectrum of λ is absolutely continuous. This does follow from Theorem 4 because if D is taken to be $C_0^\infty[0, \infty]$ with the support of the functions staying away from zero and infinity, then D is a core for Z; in fact $(Z - i\alpha)D$ is dense in $L^2([0, \infty))$ for any real $\alpha \neq 0$. This is so because if $(Z - i\alpha)D$ were not dense there must be an element $\omega \neq 0$ that is perpendicular to $(Z - i\alpha)D$, but the only possible ω are of the form $Ax^{\alpha - 1/2}$ which are not in $L^2([0, \infty))$.

4. In non-relativistic quantum theory, the commutation relation (7) arises with $Y = H_0$, the kinetic energy or free Hamiltonian operator, and $Z = A$, the generator of the one parameter group of dilations. In the usual Schrödinger representation for a single particle, $H_0 = p^2$, $A = \frac{1}{i}(x \cdot p + p \cdot x)$ with p representing the canonical momentum operator and x the canonical position operator. Further, H_0 and A are self-adjoint operators on their natural domains. It is well known that the spectrum of H_0 is $[0, \infty)$ and is purely absolutely continuous. The connection with this paper can be made directly but it is more interesting to notice that in the usual spectral representation of H_0, [3], we have a unitary map U from $L^2(\mathbb{R}^3)$ to $L^2(\mathbb{R}^+, d\lambda; \mathcal{H}'')$, where $\mathcal{H}'' = L^2(S^2, d\Omega)$, and S^2 is the unit sphere in \mathbb{R}^3, and $d\Omega$ its usual surface measure, that sends H_0 to multiplication by λ and A to the operator $Z = -(1/i)(\lambda d/d\lambda + (d/d\lambda)\lambda)$ that is discussed in example (3). Explicitly if \hat{f} denotes the Fourier transform of an element of f of $L^2(\mathbb{R}^3)$ then $(Uf)(\lambda; \omega) = (\sqrt{2})^{-1}\lambda^{1/4}\hat{f}(\lambda^{1/2}\omega)$.

As a result of these last two examples we are led to the following proposition.

Proposition. Let \mathcal{H} be a separable Hilbert space. If Y is a positive self-adjoint unbounded operator with absolutely continuous spectrum on $[0, \infty)$ and uniform spectral multiplicity then there exists a self-adjoint operator Z such that

$$i[Y, Z]f = 2Yf$$

for all f belonging to a domain of integration Z.

Proof. By hypothesis, Y has a spectral representation as multiplication by λ a Hilbert space $\mathcal{H} = L^2(\mathbb{R}^+, d\lambda; \mathcal{H}'')$ for some constant fibre \mathcal{H}'. But by Example 3 the operator $Z_0 = -(1/i)(\lambda d/d\lambda + (d/d\lambda)\lambda)$, with domain $D(Z_0)$ given in that example, is self-adjoint and for all $f \in C_0^\infty(\mathbb{R}^+; \mathcal{H}'')$

$$i[\lambda, Z_0]f = 2\lambda f.$$

Now the pre-image of Z_0 under the unitary map U of Example 4 gives a self-adjoint operator Z on $D(Z) \subset \mathcal{H}$ such that $i[Y, Z]f = 2Yf$ on a domain of integration for Z.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 07 May 2019 at 08:02:20, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0334270000000369
This proposition gives a partial converse to Theorem 2 and appears to be useful in non-relativistic scattering theory. We hope to discuss this connection in a subsequent paper.

References

School of Mathematics and Physics
Macquarie University
North Ryde
N. S. W. 2113