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ON THE EXISTENCE OF POSITIVE DECAYING 
ENTIRE SOLUTIONS FOR A CLASS OF SUBLINEAR 

ELLIPTIC EQUATIONS 

YASUHIRO FURUSHO AND TAKASI KUSANO 

1. Introduction. In recent years there has been a growing interest in the 
existence and asymptotic behavior of entire solutions for second order 
nonlinear elliptic equations. By an entire solution we mean a solution of 
the elliptic equation under consideration which is guaranteed to exist 
in the whole Euclidean TV-space R^, N = 2. For standard results on the 
subject the reader is referred to the papers [2-7, 9-21]. 

The study of entire solutions, which at an early stage was restricted to 
simple equations of the form Aw + f(x, u) = 0, x e R^, A being the 
iV-dimensional Laplacian, has now been extended and generalized to ellip
tic equations of the type 

(A) Lu + / (x , u, Du) = 0, x G R* 

where 

N N 

L = 2 ayWDy + 2 Z>z(;t)£>, 
ij =\ i'=l 

D, = d/dx,, Dtj = tf-/dxfixp 1 S i, j S N, and 

D = (DX,...,DN). 

Thus various existence theorems have been obtained which are applicable 
to (A) in which /may depend genuinely on Du; see e.g. [3, 6, 7, 12, 13, 14, 
17, 20]. Needless to say, however, not all such equations can be covered 
by the existing theories of entire solutions. For example, it is not known if 
the equation 

(B) Aw + c(x)\Duf = 0, x G R*, 

8 > 0 being a constant, possesses an entire solution other than constant 
functions which are obviously solutions of (B). 

The objective of this paper is to develop existence theorems of noncon-
stant positive entire solutions for equation (A) subject to the condition 

f(x, w, 0) = 0 for (x, u) G R^ X R+ . 
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SUBLINEAR ELLIPTIC EQUATIONS 1157 

We start with equation (B) (Section 2) and show that (B) has a positive 
decaying entire solution, that is, a positive entire solution tending uni
formly to zero as \x\ —> oo, if 0 < 8 < 1 and if c(x) is a positive locally 
Holder continuous function in R^ which is "small" in some sense. Then, 
in Section 3 we consider more general equations of the form 

(C) Lu -f f(x, Du) = 0, x G R^, 

with the same L as in (A) and /(JC, 0) = 0 for x G R^, and derive criteria 
for (C) to have a positive decaying entire solution under the hypothesis 
that f(x9 Du) is "sublinear" with respect to Du. Finally, in Section 4 we 
attempt to generalize the results of Section 3 to equation (A) in which / 
depends on u as well and is sublinear with respect to u and Du. The main 
theorems are proved by means of the supersolution-subsolution method, 
or the method of barriers. The sublinearity and the smallness of the 
functions in the structure hypotheses for (A) (or (B) or (C) ) are needed in 
constructing suitable supersolutions and subsolutions which guarantee the 
existence of the desired entire solution of the respective equation. 

2. The equation (B). We begin by considering the simplest equation 

(B) Aw + c(x)\Duf = 0, x G R* 

where N = 3, 0 < 8 < 1, and c(x) is positive and locally Holder con
tinuous in R^ (with exponent 0 G (0, 1) ). Put 

c*(r) = max c(x), c*(r) = min c(x), r ^ 0. 
\x\=r \x\=r 

Suppose that 

/

oo / fr R \ 1/(1-5) 

R r~(N~yRs(N~W~S)c*(s)ds) dr < oo 
for some (and hence any) R > 0, and define the functions y, z:[0, oo) —» 
(0, oo) by 

y(r) = (1 - « ) i ' 0 - 0 I t 
1/(1-5) / , - ( # - ! ) 

(2.2) 

(2.3) 

• / ft „ \ 1/(1 — Ô) 
for r S R, 

>y(r) = y(R) for 0 ^ r < R, 

'z(r) = o - ôy/d-») y°°r-(^-,) 

/ P « \ 1/(1 — Ô) 
for r ^ R, 

<z(r) = z(R) for 0 S r < R. 
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Then, it is easy to verify that 

y e q £ ' [ 0 , oo) and z e c j £ ' [ 0 , oo) 

for some 0' G (0, 1) and that y(r) and z(r) satisfy the following differ
ential equations for r > 0: 

(rN~ly'(r))' + r " " 1 ^ ) ! / ^ ) |* = 0, 

(r*~~V(r))' + rJV"1c*(r)|z'(r)|* - 0. 

Therefore, the functions v(x) = y( \x\ ) and W(JC) = z(\x\) are of class 
Clo^ (R^) and satisfy the differential inequalities 

0 = AV(JC) + c*( |JC| )|J5V(JC) | a ^ AV(JC) + C(JC)|DV(JC) |Ô, 

0 = AW(JC) + c*( |JC| )\Dw(x) f â Aw(x) + C(JC)|Z)W(JC) |ô 

in R^. Since v(x) ^ VV(JC) in R^, from a theorem of Akô and Kusano [1] it 
follows that (B) has a positive entire solution u(x) such that v(x) ^ 
u(x) ^ W(JC) in R^. Since 

lim w(x) = lim y(r) = 0 
|x|—>oo r—>oo 

by (2.1), W(JC) is a decaying entire solution of (B). Thus, (2.1) ensures the 
existence of a positive decaying entire solution of (B). 

If (2.1) is replaced by a stronger condition 

/
°° 

,.("-00-«)<.*(/->//• < oo, 

then (2.2) and (2.3) imply that 

N - 2 \J R 
r"-lvfr\ = i i ^ c(JV-l)(l-«), lim i-""^) = ^ ^ I D s("~ ^~0)c*(s)ds 

lim r " " ^ ( r ) = ^ ^ / „ / " ~ " ^ V ( s ) * ( / : 
J V - 2 , , ^ _ 0 ~ S)1 / ( 1~S )^ ^°° - — - ^1 / 0~Ô ) 

N - 2 
v{N-\){\-b)r 

so that the solution u(x) of (B) obtained above satisfies 

(2.5) A:,!*!2"" ^ u(x) ^ k2\x\2~N, \x\ ^ 1, 

for some positive constants kx and k2. 
An entire solution of (B) satisfying (2.5) is called a minimal positive 

entire solution, because any positive function satisfying Aw ^ 0 in some 
exterior domain in R^, N i^ 3, cannot decay faster than a constant 
multiple of |x| as |x| —» oo. 

Suppose in particular that c(x) in (B) satisfies 

Cl\x\a ë c(x) =S c2\x\a, 1*1 §= 1, 

for some constants a, cx > 0 and c2 > 0. Then, (2.1) holds if and only if 
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a < 8 - 2, while (2.4) holds if and only if a < (N - 1)8 - N. Noting that 
(TV — 1)8 — TV < 8 — 2, we conclude that: (i) (B) has a positive decaying 
entire solution if a < 8 — 2; (ii) (B) has a minimal positive entire solution 
ifa<(N- 1)8 - TV; and (iii) if (TV - 1)8 - TV ̂  a < 8 - 2, then the 
decaying entire solution obtained is not minimal, that is, the order of 
its decay at infinity is lower than any constant multiple of \x\2~N. 

3. The equation (C). Let us now turn to the consideration of more 
general elliptic equations of the form 

(C) Lu 4- f(x, Du) = 0, x e RN, TV ̂  2, 

where L is given by 

N N 

(3.1) L = 2 atJ{x)DtJ + 2 bt(x)D, 
i,j =1 i=\ 

We use the notation: 

N 

(3.2) A(x) = 2 ^ ( x ^ x / l - x l 2 , 

r N 

(3.3) 2?(x) /|JC|, x ^ 0. 

The conditions we assume for L and / are as follows: 

(Lj) atj(x) = aj;(x) for all x G R^, 1 ^ /', j = TV, and there is a constant 
<z0 > 0 such that 

N 

2 atJ{x)^ è tf0|£|2 for all (*, © e R* X R* 

(L2) fl|.. e C j + V ) , *f. G C?oc(R*), 1 ^ z, 7 ^ TV, for some 0 e (0, 1), 
and there is a constant K > 0 such that 

Ha.ylltf,^) ^ * , \\bi\\mx) ^ K for all x e R*, 1 ê j , ; ë JV, 

where IHI^Q^) denotes the norm in the space 

8(*) = { j G R N : b - *l ^ 1}. 

(L3) there exists a function B* e C1OC(0, OO) such that 

B*(r) ^ min £(JC)A4(JC), r > 0, 

exp( —/# B*(s)ds) is bounded on [/?, oo) and 

/ n e xP ~ f R B*(s)ds\dr < oo for any R > 0. 
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(Fj) f(x, p) (p = (/?!, . . . ,pN) ) is locally Holder continuous (with ex
ponent 6) in R^ X R^. 

(F2) (Nagumo's condition) For any bounded domain fi c RN there is a 
constant p(fi) > 0 such that 

|/(JC, /i) | ^ p(Q)(l + |p|2), (JC, p) e ft X R^ 

(F3) There exist a positive function c G C ^ R ^ ) and a nonnegative 
function <p e C1OC[0, OO) such that 

(3.4) 0 ^ / ( * , />) ^ c ( x M |/>| ), (JC, p) e R* X R*. 

Moreover, v(0) = 0, <p(0 > 0 for f > 0, 

(3.5) 0(£) = J Q dt/<p(t) exists for any £ > 0, 

and 

(3.6) cp(A0 ^ Av(\)v(0 for A > 0 and / â 0, 

for some A^ e C?oc(0, oo). 

(F4) There exist a constant S G (0, 1) and an open set S20 c R^ contain
ing the origin such that 

inf lim inf / (* , p)/\p\ > 0. 

To state our main results we need the following functions defined for 
r > 0: 

B*(r) as in (L3), B*(r) = max B(x)/A(x), 

(3.7) p*(r) = expf / j B*(s)ds}9 p*(r) = exp( /^ B*(s)ds}, 

/

oo /\x> 

ds/p*(s)9 77*(r) - J ^ ds/p*(s). 
THEOREM 3.1. Suppose that (Lj)-(L3) and (F1)-(F4) are satisfied. 
(i) Suppose that 

O(oo) = lim $(£) = oo, 
£^oo 

where $(£) w defined by (3.5), a«<i 

(3-8) / T ~~b) $~ ' ( / * Z'*(J)A,(1//'*(J) )c*(^)*)^ < oo 
/or some 7? > 0, where 

c*(r) = max c(x)/M(x) 
U\=r 
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and 0 is the inverse function of 0 . Then, equation (C) has a positive decay
ing entire solution. 

(ii) Suppose that 

/bo 
(3.9) J R p*(r)A9(l/pm(r) )c*(r)dr < oo 

for some R > 0, then, regardless of the value of O(oo), equation (C) has a 
positive decaying entire solution u(x) such that 

(3.10) k^i \x\ ) ^ u(x) ^ k2v*( \x\ ), |JC| ̂  1, 

for some positive constants kl and k2. 

Proof We adopt the supersolution-subsolution method due to Akô and 
Kusano [1] (see also [16] ): If there exist bounded functions v, 
w G Cfëe(RN)9 0 G (0, 1), such that V(JC) â w(x), x G R* 

(3.11) Lv(x) + . / (* , Dv(x)) ^ 0, x G R^, 

and 

(3.12) Lw(x) 4- /(JC, Z)w(x)) ^ 0, JC G R^, 

then (C) has an entire solution u(x) satisfying v(x) ^ u(x) ^ w(x), 
x G R^. (Such functions v(x) and w(x) are called a subsolution and a 
supersolution of (C), respectively.) 

We begin with the construction of a subsolution v(x) of (C). In view 
of (F4) there exist positive constants P0, R0 and a nonnegative function 
c0 G C™(RN) such that 

supp c0 = {x:\x\ ^ 27£0} c fi0 and 

(3.12) f(x, p) 2= c0(x)\pf for x e R" , \p\ ?k P0. 

Define 

• / y(r) = (1 - 8f^ f" -± -
J r p*(t) 

(3.13) 1 
x [JR0

 lp*(s) ] '<>.(*)*) * for r = * o > 
I >>(/•) = j>(#0) for 0 ^ r < «0, 

where 

c0*(r) = min c0(x)M(x). 

Then, we see that y G C ^ ^ O , OO) for some 0' G (0, 1), / ( r ) < 0 for 
r G (R§, oo), j;(r) —» 0 as r —» oo, and 

(3.14) (/>*(r)/(r) )' + />*(r)c0#(r)|/(r) |ô = 0, r > 0. 

https://doi.org/10.4153/CJM-1988-048-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-048-1


1162 Y. FURUSHO AND T. KUSANO 

Note that (3.14) is equivalent to 

(3.15) y»(r) + B*(r)y'(r) + c 0 # ( r ) | / ( r ) |ô = 0. 

Furthermore, since l/p*(r) is bounded on [R0, oo) by (L3) and c0*(r) = 0 
for r ^ 2R0, (3.13) implies that y'(r) is bounded on [0, oo), and so there is 
a constant /x such that 

(3.16) 0 < ju < 1 and \i\y\r) | ^ P0 for r G [R0, OO). 

If we define v(x) = iuy( |JC| ), x G R^, then using (3.12), (3.15), (3.16) and 
noting that y\r) < 0 for r > R0, we obtain 

Lv(x) + / ( X , Z ) V ( J C ) ) 

^ LV(JC) + C0(JC)|Z)V(JC) |ô 

= rf.4 (*)/*(/•) + B{x)y\r) + / i * - 1 ^ * ) ! / ^ ) |ô] 

^ lx[A(x)(y"(r) + B*(r) /(r) ) 

+ (2?(x) - B*(r) ) / ( r ) + c0(x) | / (r) |5 ] 

â K - ^ ( ^ K * ( 0 + c0(x))\y'(r) f ^ 0 for r = |*| i= *0> 

and Lv(x) + / ( * , Z)v(x) ) = 0 for |JC| < R0. This shows that V(JC) = 
[iy{ \x\ ) is a subsolution of (C) if (3.16) is satisfied. (Condition (3.8) or 
(3.9) is not needed here.) 

To construct a supersolution w(x) of (C) assume that <ï>(oo) = oo and 
(3.8) holds. We put 

(3.17) z0(r) = *~l(fRx p*{s)\(l/p*(s))c*(s)ds}9 r ^ Rl9 

where R{ > 0 is a fixed constant, and define z(r) by 

(3.18) - / z(r) = J r z0(t)/p*(t)dt forr ^ * b 

z(r) = z(Rx) for 0 ^ r < Rx. 

It is easy to see that z G CJ^'lO, oo) for some 0' G (0, 1). Using (3.17), 
(3.18), (3.5) and (3.6), we obtain 

(/>*(r)z'(r))' = -^(r)c*(r)A< p(l/ /7*(r)Mz0(r)) 

= -/?*(^)^*(^M^o('")//7*(r) ) 

= ^ ( r ) c * ( r M - z ' ( r ) ) , r ^ Rx, 

which, in view of (3.7) and z'(r) < 0, r ^ Rx, reduces to 

(3.19) z"(r) + B*(r)z'{r) + c*(r)cp( |z'(r) 1 ) ^ 0 , r ^ Rv 

From (3.4) and (3.19) it follows that the function w(x) = z(\x\ ), je G R^, 
satisfies 
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Lw(x) 4 f(x, Dw(x)) 

^ Lw(x) 4 c(x)<p( \Dw(x) I ) 

= A(x)z»(r) 4 B(x)z\r) 4 c(x)v( |z'(r) | ) 

= .4 (*)(*"(/•) 4- B*(r)z'(r)) 

4 (£(*) - A(x)B*(r) )z\r) 4 c ( x M |z'(r) | ) 

^ ( -^ (x)c*( r ) + c(x) M |z'(r) | ) ^ 0 for r = |JC| ̂  i ^ . 

Since LW(JC) 4 f(x, Dw(x)) = 0 for |JC| < Ru w(x) = z(\x\) is a 
supersolution of (C). 

From (3.13), (3.18) and (3.7) we see that 

(3.20) Um y(r)/«*(r) = (1 - S ) 1 7 * 1 " ^ ] Rg [p*(s) ]'"Sc0*(s)dsj 

(3.21) Urn z(r)/7r*(r) = * - t ( / ^ />*(*)A„(1//>*(*) )c*(s)ds}. 

The limit (3.20) is finite, while the limit (3.21) is finite or infinite, and so 
noting that ^ ( r ) ^ 77*(r) for r ^ 1, we conclude that juy(r) ^ z(r) for 
r ^ 0 provided /A > 0 is chosen small enough. With this choice of ju, we 
have v(x) ^ w(x) for all JC e R^. Therefore, there exists a positive entire 
solution u(x) of equation (C) satisfying V(JC) ^ W(JC) ^ w(x) in R^. That 
u(x) is a decaying solution follows from the fact that 

lim w(x) = lim z(r) = 0 by (3.18). 
|JC|—»oo r—»oo 

If (3.9) holds, then the limit (3.21) is finite, and hence the solution u(x) 
satisfies (3.10). If (3.9) holds but O(oo) < oo, then it suffices to choose 
R{ > 0 so that 

/ Ri p*(s)Av(l/p*(s))c*(s)ds < *(oo) 

and repeat the same argument as above. This completes the proof of 
Theorem 3.1. 

Example. 3.1. Consider the equation 

(3.22) Au 4 C ( x ) | J " L [ l o g ( l 4 \Du\ ) ]y = 0, x e R^, N ^ 3, 
V J 1 4 \Du\al 

where a, /?, y are positive constants and c(x) is a nonnegative function of 
class c f ^ R * ) , 0 e (0, 1), such that c(0) > 0. 

The operator L = A satisfies (L1)-(L3), and the functions in (3.7) for this 
operator become 
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N-\ and B*(r) = B*(r) = (N - l)/r, p*(r) = p*(r) = r 

77*(r) = 77*(r) = r2~N/(N - 2 ) . 

Suppose that a < /? + y < 1. Then, the function 

f(x9p) = c(x)\pf[\og(l + \p\)]V(\ + \p\«) 

satisfies (F1)-(F4); in particular, (F3) holds with the choice <p(f ) = V 
for which 

A,(A) = \^y~a and *(© = € 1 + a " * - V ( l + a - jB - y), 

and (F4) holds with S = fi + y and fi0 = (JC:C(X) > c(0)/2}. From 
Theorem 3.1 it follows that if 

? + y — a 

r.'-»-ir. A/(\+a-p-y) 
*N-W+a-e-»c*(s)ds) dr < o o 

for some 7? > 0, then (3.22) has a positive decaying entire solution, and 
that a stronger condition 

/ ; 
JN-\)(\+a- -P-y)c*(r)dr < oo 

guarantees the existence of a decaying entire solution u(x) such that 

kx\x\l~N ^ u(x) ^ fc2|jc i2-tf 1, 

for some positive constants kx and k2. 

Example 3.2. There is a class of elliptic equations having positive entire 
solutions which decay exponentially as \x | —» oo. Consider the equation 

N 

(3.23) Aw + 2 6|(JC)/),-« + c(x)\Duf = 0, x e R* N ^ 2, 
/ = i 

where c(x) is as in Example 3.1 and bf(x), \ ^ i ^ N, satisfy 

for some constant K > 0 and 
r W lim inf 

|jt|—>oo 
2 &f-(x)Vl*l > 0. 

If 0 < S < 1 and 

e (1 -ô )y rc*(r)Jr < oo / : 
for some y < /? and R > 0, then (3.23) possesses an entire solution u(x) 
such that 

0 < u(x) S fa?' -yUl x e R*, 
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for some constant k > 0. This follows from (ii) of Theorem 3.1 combined 
with the observation that, since in this case 

TV 

B(x)/A(x) = 2 ^ - ( J O V M + (N - l)/\x\ > y for |JC| > R0 

provided R0 > 0 is large enough, a continuous function on (0, oo) which 
equals y on [2R0, oo) can be chosen as B*(r), so that (L3) holds for 

N 

L = A + 2 bi(x)Di 
i=\ 

and p*(r) and 7r*(r) can be taken to be 

p*(r) = mxe
y\ ir*{r) = m2e~yr, r ^ 2#0, 

for some positive constants mx and m2. 

4. The equation (A). We are now in a position to deal with general 
elliptic equations of the form 

(A) Lu + /(JC, II, D«) = 0, JC G R* TV g 2, 

where L is as in (C) and / depends on both u and Du. With regard to (A) 
we assume in addition to (L1)-(L3) that: 

(Ff) /(JC, u, p) is locally Holder continuous (with exponent 0) in 
R^ X R + X R^; 

(F|) (Nagumo's condition) For any bounded domain Œ c R^ and any 
constant J > 0 there is a constant p(S, / ) > 0 such that 

\f(x9u,p)\ â p(Û,/)( l 4- |/?|2) 

for x G fi, 0 < u ^ / and p e R^; 

(F3*) There exist nonnegative functions c e Cloc(R
Ar X R + ) and 

<P e Cloc[0, oo) such that 

(4.1) 0 ^ /(JC, W, p) ë C(JC, « M |/?| ), (JC, K, /?) e R^ X R + X RN, 

where <p is exactly as in (F3) and c satisfies 

(4.2) C(JC, Xu) ^ ^(A)C(JC, u) for X > 0, (JC, W) <E R^ X R + , 

for some positive function xp e Cloc(0, oo); 

(F|) There exist an open set fi0 c R^ containing the origin and 
constants y, 8 such that 0 < ô < 1, y + 8 < 1 and 

lim inf / (x , w, /?)/wY|/>| inf 
x 6 f i 0 L(M,/>)->(0,0) 

> 0. 
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The main results of this section are as follows. The functions defined by 
(3.5)-(3.7) are also used therein. 

THEOREM 4.1. In addition to (L1)-(L3) and (FfHF^) assume that c(x, u) 
is nondecreasing in u for each fixed x, y = 0 in (F|), and 

(4.3) lim A-V(A)A„(A) = 0. 
\—>oo 

(i) Suppose that O(oo) = oo and 

/or some R > 0, where 

c*(r, 1) = max c(x, l)A4(x). 

77ze«, equation (A) /zas a positive decaying entire solution. 

(ii) / / 
/*oo 

(4.5) J fi />*(r)A,( 1 //>,(/•) )c*(r, *„(/•) )dr < oo 

for some R > 0, where 
c*(r, 7r*(r) ) = max c(x, 77*( |x| ) )/A(x), 

\x\=r 

then, regardless of the value of <£(oo), equation (A) has a positive decaying 
entire solution u(x) such that 

(4.6) * , i r * ( |JC| ) ë n(jc) ^ £277*( |JC| ), |JC | ^ 1, 

/or some positive constants kx and k2. 

THEOREM 4.2. In addition to (L1)-(L3) and (¥*)-(¥£) assume that c(x, u) 
is nonincreasing in u for each fixed x, y = 0 in (F|) and (4.3) holds. If 

/*oo 

(4-7) J R p*(r)Av(\/p*(r) )c*(r, „*(r) )<fr < oo 

/or some .R > 0, where 
c*(r, 7r*(r) ) = max c(x, 7r*( |X| ) )A4(x), 

|x| —r 

then equation (A) has a positive decaying entire solution u(x) which satisfies 
(4.6) for some contants kx > 0 and k2 > 0. 

In the proofs of these theorems given below extensive use is made of a 
function h0 e cf0"£ (R^) with the properties: 

(i) L/Z0(JC) ^ 0 and h0(x) > 0 in RN; 

(ii) For any positive function h e C2(RN) satisfying Lh(x) ^ 0 
i nR" , 
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(4.8) h0(x) = 0(h(x) ) as |JC| -> 00. 

It can be shown that under hypotheses (Lj)-(L3) such a function h0(x) 
exists and enjoys the following properties: 

(I) lim h0(x) = 0; 
|JC|—>oo 

(II) 77*( \x\) = O(h0(x) ) as |JC| -> oo; 

(III) If g G Ce
loc(R

N) has compact support and g(x) ^ 0, ^0 in R^, 
then the equation 

(4.9) Lu = - g ( x ) , x G R^, 

has a unique solution u G C1O£ (R^) which tends uniformly to 0 as 
|x| —> oo. Furthermore, u(x) satisfies 

(4.10) k{h0(x) ^ u(x) ^ fc2A0(jc), x G R ^ 

for some positive constants kx and k2. 
The existence of h0(x) is proved in [8, Theorem 2.1]. For the proof of (I) 

and (III), see [6, Theorem 3.3] and [8, Theorem 2.2]. Property (II) follows 
from the maximum principle applied to Mh0(x) — 77*( |JC| ) for sufficiently 
large M > 0. 

Proof of Theorem 4.1. As in the proof of Theorem 3.1 it suffices to 
construct a function V(x) (a subsolution of (A) ) satisfying 

LV(x) + /(JC, V(x), DV(x)) ^ 0, x G R^, 

and a function W(x) (a super solution of (A) ) satisfying 

LW(x) + /(JC, W(JC), DW(X) ) ^ 0, JC G R^, 

so that the inequality V(x) ^ W(.x) holds throughout R^. 
Part (i). Let w(x) be a positive decaying entire solution of the 

equation 

(4.11) Lw + c(x, l)v( |Dw| ) = 0, x G R^, 

where c and <p are as in (F3*). The existence of w(x) follows from (4.4) and 
(i) of Theorem 3.1 applied to (4.11). Put 

Mx = sup w(x), 

and choose X > 0 so that 

(4.12) \-1^(X)Av(AW<M1) ^ 1, 

which is possible because of (4.3). Define W(x) = Xw(x), x G R^. Then, 
using (F3*), (4.11) and (4.12), we see that 

LW(x) + /(JC, W(x\ DW(x) ) 
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^ LW(X) + C(X, W(X) )<p( \DW(X) | ) 

= X[Lw(x) + X~lc(x, Xw(x) )<p(\\Dw(x) | ) ] 

^ X[Lw(x) + \-lK\MMx)AjL\)c(x9 1M \Dw(x) | ) ] 

^ A[LW(JC) + c(x9 1M |i)w(x) | ) ] = 0, x G R^, 

implying that W(x) is a supersolution of (A). Note that since 

LW(x) ^ - / ( J C , W(x)9 DW(x)) ^ 0, x G R^, 

from (4.8) with h(x) = W(x) there is a constant M2 > 0 such that 

(4.13) M2h0(x) ^ W(x)9 x G R^. 

To obtain a subsolution of (A), we first observe that hypothesis (F^) 
implies the existence of positive constants P0, R0, U0 and a nonnegative 
function c0 G C™(RN) such that 

supp c0 = {x:\x\ ^ R0} c fi0 and 

(4.14) f(x,u,p) ^ c0(x)uy\p\8 

for x G R^, 0 < u ^ f/0 and |/? | ^ P0. Consider the equation 

(4.15) Lv + c0(xP0(x)]y | i )v |ô = 0, x G R^. 

By Theorem 3.1 there exists a positive decaying entire solution v(x) of 
(4.15). From the property (III) of h0(x) (with 

g(x) = c0(x)[h0(x)Y\Dv(x)\8 

in (4.9) ) it follows that 

(4.16) M3h0(x) ^ v(x) ^ M4h0(x)9 x G R^, 

for some constants M3 > 0 and M4 > 0. Using (4.16) and the fact that 
Lv(x) = 0 for |JC| > R0 and applying a standard argument based on the 
W2,q estimates of solutions and the Sobolev imbedding theorem (see e.g. 
[16, Theorem 2] ), we conclude that |Dv(x) | is bounded in R^, We now 
define V(x) = /xv(x), x G R^, where fi > 0 is chosen small enough so that 
0 < ju < l9if+

8-lAtl â 1, and 

ILV(X) ^ W(x)9 iiv(x) ^ U09 ix\Dv(x) | â P09 x G R*; 

such a choice of /x is possible because of (4.13), (4.16) and the boundedness 
of \Dv(x) |. We then see that V(x) is a subsolution of (A), since in view of 
(4.14)-(4.16), 

LV(x) + / ( * , V(x)9DV(x)) 

= /ALV(X) + f(x, /xv(x), n\Dv{x) | ) 

è juLv(x) + c0(x)[ixv(x) ]y[ii\Dv(x) | f 
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è n{Lv(x) + ^+8-]M]c0(x)[h0(x)r\Dv(x)\8} 

è ji{Lv(x) + c0(x)[h0(x)]y\Dv(x) f} = 0, x G R^. 

Since K(x) ^ W(.x)> .x G R^, there exists a positive entire solution u(x) of 
(A) such that F(x) ^ w(.x) = JF(JC) in R^. It is obvious that 

lim u(x) = 0. 
|jt|—»oo 

Part (ii). Define 77*(r) by 

77*(r) = ^ ( r ) for r ^ 1, ^ ( r ) = TT*(1) for 0 ^ r < 1, 

and consider the equation 

(4.17) Lw + c(x, £*( |JC| ) M |Z)W(JC) I ) = 0, x G R*. 

Applying (ii) of Theorem 3.1 to (4.17) and arguing as in part (i), we obtain 
a positive decaying entire solution w(x) of (4.17) satisfying 

(4.18) M5h0(x) ^ w(x) ^ M6£*( |JC| ), x G R^, 

where M5 and M6 are positive constants, and we can show that the 
function W(x) = Àw(i), x G R^, is a super solution of (A) provided 
X > 0 is sufficiently large. Exactly as in part (i) we can find a subsolution 
V(x) of (A) satisfying V(x) ^ W(x), x G R^. Therefore, equation (A) has 
an entire solution u(x) such that V(x) ^ u(x) ^ W(.x) in R^. Combining 
(4.18) with inequalities of type (4.16) satisfied by V(x), we have 

(4.19) M7h0(x) ^ u(x) ^ M^{ \x\ ), x G R^, 

for some constants M7 > 0 and M8 > 0. 
On the other hand, from the property (II) of h0(x) there is a constant 

M9 > 0 such that M9TT*( \X\ ) ^ /*o(*) f° r 1*1 = 1» which together with 
(4.19) implies the desired asymptotic behavior (4.6) of the solution u(x). 
This completes the proof of Theorem 4.1. 

Proof of Theorem 4.2. Consider the equation 

(4.20) Lw + c(x, h0(x) )<p( \Dw\ ) = 0, x G R^. 

The nonincreasing nature of c(x, w) with respect to w implies that 

c(x, h0(x) ) ^ C(JC, M9TT*( |JC| ) ) for |JC| ^ 1, 

and so (ii) of Theorem 3.1 shows that (4.20) has a positive decaying entire 
solution w(x) such that 

Mwh0(x) ^ w(x) ^ MnK( \x\), x G R^, 

for some constants M10 > 0 and Mu > 0, where n*(r) is as above. 
Define the function W(x) = Àw(x), x G R^, where X > 0 is chosen so 
large that 
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\~V(A)A V (A)^(M 1 0 ) ^ 1. 

Then, noting that 

c(x, w(x) ) ^ c(x, Ml0h0(x) ), 

we see that W(x) is a supersolution of (A). A subsolution V(x) of (A) such 
that V(x) ^ W(x), x e R^, can be constructed in essentially the same 
manner as in the proof of the preceding theorem, and hence there exists 
an entire solution u(x) of (A) lying between V(x) and W(x) for every 
x G R^. The details are left to the reader. 

COROLLARY 4.1. In addition to (Lj), (L2) and (F1*)-(F^) assume that 
c(x, u) is nondecreasing in ufor each fixed x and (4.3) holds. Suppose more
over that there is a constant v > 1 such that B(x)/A(x) â v/\x\ for all 
sufficiently large \x\. 

(i) Suppose that O(oo) = oo and 

(4.21) / " f ^ - ' ( / ^ s\(ks-v)c*(s, l)dsy < oo 

for any k > 0 and some R > 0, where 

c*(r, 1) = max c(x, l)/A(x). 
\x\ = r 

Then, there exists a decaying positive entire solution of (A). 
(ii) / / 

Çoo 

(4.22) J R r\(kr~v)c*(r, rl~v)dr < oo 

for any k > 0 and some R > 0, then there exists a decaying positive entire 
solution u(x) of (A) such that 

(4.23) kxh0(x) ^ u(x) ^ k2(\ + U l ) 1 - " , JC e R^, 

/<9r some positive constants kx and k2. 

Proof. In view of the assumption B(x)/A(x) â U/|JC| with v > 1 we 
can take B*(r) = u/r for large r, so that (L3) holds for L and the corres
ponding functions p*(r) and ir^(r) can be taken to be p*(r) = mxr

v and 
tr*(r) = m2r ~v for some constants m, and ra2. The conclusions of 
Corollary 4.1 now follow from Theorem 4.1. 

Example 4.1. Consider the equation 

(4.24) Aw + c(x)uy\Du\8 = 0, x e R^, TV ̂  3, 

where y and 5 are constants such that 0 < ô < l , y + 8 < l , and c(x) is a 
nonnegative locally Holder continuous function in RN with c(O) > 0. 
Clearly, (LX)-(L3) and (Ff)-(F4*) hold for (4.24); in particular (F3*) holds 
with c(x, u) = c(x)uy and <p(t) = t , so that 
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<D(£) = ^ - 5 / ( i - S) and 

A,(A) = \ \ ftX) = X\ 

Noting that in this case p*(r) = p*(r) = rN~\ <n*(r) = <n*(r) = r2~N/ 
(N — 2), we conclude from (i) of Theorem 4.1 that if y ^ 0 and 

/

oo I fr R \ 1/(1-5) 

R r-(N-])()Rs(N-W-%*(s)ds} dr < oo 
for some R > 0, then (4.24) has a decaying positive entire solution, 
and from (ii) of Theorem 4.1 and Theorem 4.2 that if either y ^ 0 or 
y < 0 and 

j™ rlN-w-8)-(N-2yrc*(r)dr < ^ 

for some R > 0, then (4.24) has a positive entire solution which decays 
like a constant multiple of \x\2~N as |x| —> oo. 

Example 4.2. Our final example concerns the equation 

N 

(4.25) Aw + 2 jc^-w + c(x)uy\Du\8 = 0, x e R*, TV ̂  2, 
/ = i 

where c(x) is as in Example 4.1 and y, 8 are nonnegative constants with 
0 < y 4- 8 < 1. Hypotheses ( L j ) - ^ ) and (Ff)-(F4*) are satisfied by (4.25). 
In particular, since for 

N 

L = A + 2 *,£>, 
/ = i 

£(x)A4(.x) = |JC| + (N - 1)/|JC| -> oo as |JC| -» oo, 

(L3) holds with the choice 

^ ( r ) = B*(r) = r + (N - 1)//-, 

to which there correspond 

p*(r) = p*(r) = e-l/2rN-V2'2 

and 

„,( r) = w*(r) = e
1 / 2 f™ s'-Ne-s2/2ds. 

Noting that 

lim r V 2 / 2 ^ ( r ) = em 

r—>oo 

and applying (ii) of Theorem 4.1, we conclude that the condition 
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/

OO 2 

^ r(N-W-8)-yNe(\-8-y)r l\*^dr < œ f o f S Q m e R > Q 

guarantees the existence of a positive entire solution w(x) satisfying 

i t J j c r V 1 ' ^ 2 =§ u(x) ^ k2\xrNe~lxl2/\ \x\ ^ 1, 

for some positive constants kx and /c2- Condition (4.26) is satisfied 
if, for example, 

0 < c(x) ^ cxe~^ , x G R^, for some constant cx > 0. 
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