
Nagoya Math. J. 205 (2012), 119–148
DOI 10.1215/00277630-1543796

SCHATTEN p-CLASS PROPERTY OF
PSEUDODIFFERENTIAL OPERATORS WITH

SYMBOLS IN MODULATION SPACES

MASAHARU KOBAYASHI and AKIHIKO MIYACHI

Abstract. It is proved that the pseudodifferential operators σt(X,D) belong to
the Schatten p-class Cp, 0 < p ≤ 2, if the symbol σ(x,ω) is in certain modulation
spaces on Rd

x × Rd
ω.

§1. Introduction

The Schatten p-class Cp is the class of compact operators introduced by
von Neumann and Schatten, which is defined as follows (see [2], [20]). Let
0 < p < ∞, and let A be a compact operator on L2(Rd). If the singular
values sj(A) of A, that is, the eigenvalues of the positive compact operator
|A| = (A∗A)1/2, satisfy ‖A‖Cp =

(∑∞
j=1 sj(A)p

)1/p
< ∞, then A is said to be

in the Schatten p-class Cp, and we denote A ∈ Cp.
If σ(x,ω) is a function on Rd

x × Rd
ω and t ∈ R, then the pseudodifferential

operator σt(X,D) is defined by

σt(X,D)f(x) =
∫ ∫

R2d

σ
(
(1 − t)x + ty,ω

)
e2πi(x−y)ωf(y)dy dω

=
∫ ∫

R2d

σ̂(ξ, η)e2πi(x+tη)ξf(η + x)dξ dη.

The operator σt(X,D) is a generalization of the Kohn-Nirenberg correspon-
dence (t = 0)

σ(X,D)f(x) =
∫
Rd

σ(x,ω)f̂(ω)e2πixω dω,

and the Weyl correspondence (t = 1/2)

σW (X,D)f(x) =
∫ ∫

R2d

σ
(x + y

2
, ω

)
e2πi(x−y)ωf(y)dy dω.
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We will consider sufficient conditions on symbols σ(x,ω) to ensure that
the operator σt(X,D) belongs to the Schatten p-class Cp. These types of
issues have been studied by a number of authors using a large variety of
methods (see [19], [18], [1], and [9], [10], [12] cited below). In this article, we
consider the pseudodifferential operators with symbols in the modulation
spaces, which are defined as follows.

Definition 1.1 [3, Definition 6.1]. Fix a nonzero ϕ ∈ S(Rn), 0 < p, q ≤
∞, and a positive function m on Rn × Rn which satisfies

(1.1) m(z + z′, ζ + ζ ′) ≤ Cm(z, ζ)(1 + |z′ | + |ζ ′ |)s, z, ζ, z′, ζ ′ ∈ Rn,

for some constants C > 0 and s ≥ 0. Then the modulation space Mp,q
m (Rn)

consists of all tempered distributions f ∈ S ′(Rn) such that the quasi-norm

‖f ‖Mp,q
m

=
(∫

Rn

(∫
Rn

|f ∗ (Mζϕ)(z)|pm(z, ζ)p dz
)q/p

dζ

)1/q

is finite, with obvious modifications if p or q = ∞.

It is known that Mp,q
m (Rn) and the equivalence class of the quasi-norm

do not depend on the choice of the function ϕ (see [3], [5], [7]). We simply
write Mp,q(Rn) instead of Mp,q

m (Rn) when m ≡ 1.
In the present paper, we will use the modulation space on R2d. We will

frequently write the elements of R2d as

z = (z1, z2), z1, z2 ∈ Rd.

Concerning the modulation spaces and the Schatten class, the following
theorem is known.

Theorem A (see [9], [12]). Let 0 < p < 2. Then the pseudodifferential
operators σ0(X,D) = σ(X,D) and σ1/2(X,D) = σW (X,D) are in the class
Cp if σ ∈ M2,2

m (R2d) with

(1.2) m(z, ζ) = (1 + |z1| + |z2| + |ζ1| + |ζ2|)s

and s > (2d/p) − d.

As for the modulation space M2,2
m (R2d) of this theorem, the following

identification is known (see [7, Proposition 11.3.1]). If m is defined by (1.2),
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with s ≥ 0 in general, then

‖σ‖
M2,2

m
≈

∥∥(1 + |z1| + |z2|)sσ(z1, z2)
∥∥

L2
z1,z2(1.3)

+
∥∥(1 + |ζ1| + |ζ2|)sσ̂(ζ1, ζ2)

∥∥
L2

ζ1,ζ2

,

where σ̂ denotes the Fourier transform defined by

σ̂(ζ1, ζ2) =
∫
Rd ×Rd

σ(z1, z2)e−2πi(z1ζ1+z2ζ2) dz1 dz2.

One of the main purposes of the present paper is to give a refinement of
Theorem A, which reads as follows.

Theorem 1.2. Let 0 < p < 2, let s > (2d/p) − d, and let t ∈ R. If σ ∈
M2,2

m (R2d) with

(1.4) m(z, ζ) =
(
1 + |z1 + (1 − t)ζ2| + |z2 − tζ1|

)s

or with

(1.5) m(z, ζ) =
(
1 + |z1 − tζ2| + |z2 + (1 − t)ζ1|

)s
,

then σt(X,D) ∈ Cp.

We will also prove identifications similar to (1.3) for the modulation
spaces M2,2

m (R2d) of Theorem 1.2. In order to state the results, we use
the following notation. We write the partial Fourier transforms of functions
τ on R2d as

F1τ(ζ1, z2) =
∫
Rd

τ(z1, z2)e−2πiz1ζ1 dz1,

F2τ(z1, ζ2) =
∫
Rd

τ(z1, z2)e−2πiz2ζ2 dz2.

For functions σ on R2d and for t ∈ R, we define

τt(z1, z2) = e2πitz1z2σ(z1, z2).

Then we have the following theorem.

Theorem 1.3. Let σ ∈ L2(R2d), and let s be a nonnegative real number.
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(a) If m(z, ζ) = (1 + |z1 + tζ2|)s with t 
= 0, then

‖σ‖
M2,2

m
≈

∥∥(1 + |ζ2|)sF2τ1/t(z1, ζ2)
∥∥

L2
z1,ζ2

.

(b) If m(z, ζ) = (1 + |z1|)s, then

‖σ‖
M2,2

m
≈

∥∥(1 + |z1|)sσ(z1, z2)
∥∥

L2
z1,z2

.

(c) If m(z, ζ) = (1 + |z2 + tζ1|)s with t 
= 0, then

‖σ‖
M2,2

m
≈

∥∥(1 + |ζ1|)sF1τ1/t(ζ1, z2)
∥∥

L2
ζ1,z2

.

(d) If m(z, ζ) = (1 + |z2|)s, then

‖σ‖
M2,2

m
≈

∥∥(1 + |z2|)sσ(z1, z2)
∥∥

L2
z1,z2

.

If, for example, m is the weight of (1.4) and if we define

m1(z, ζ) =
(
1 + |z1 + (1 − t)ζ2|

)s
,

m2(z, ζ) =
(
1 + |z2 − tζ1|

)s
,

then obviously m(z, ζ) ≈ m1(z, ζ) + m2(z, ζ), and hence,

‖σ‖
M2,2

m
≈ ‖σ‖

M2,2
m1

+ ‖σ‖
M2,2

m2
.

This simple fact combined with Theorem 1.3 will give full identifications of
the modulation spaces of Theorem 1.2. For example, for the weight m(z, ζ) =
(1 + |z1 + ζ2| + |z2|)s, which is the m of (1.4) with t = 0, we have

‖σ‖
M2,2

m
≈

∥∥(1 + |ζ2|)sF2τ1(z1, ζ2)
∥∥

L2
z1,ζ2

+
∥∥(1 + |z2|)sσ(z1, z2)

∥∥
L2

z1,z2

.

Gröchenig and Heil [9] and Heil, Ramanathan, and Topiwala [12] proved
Theorem A by constructing finite-rank operators that approximate the pseu-
dodifferential operators. In fact, the argument of [9] and [12] can be modi-
fied to give a proof of Theorem 1.2 (see Section 5 below). In the present
paper, we will give a different method to prove Theorem 1.2, which is
another main purpose of this paper. Our method is based on a modified
form of McCarthy’s lemma, which characterizes the quasi-norm of Cp (see
Lemma 2.3), and our argument consists of a direct estimate of the L2-norms
of functions.

Using the same method, we also prove the following theorem.
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Theorem 1.4. Let 0 < p ≤ 2, and let t ∈ R. If σ ∈ Mp,p(R2d), then
σt(X,D) ∈ Cp.

The case 1 ≤ p ≤ 2 of this theorem has already been proved by Gröchenig
and Heil [10]. The case 0 < p < 1 does not seem to have appeared in the
literature.

Finally, we note that Theorems 1.2 and 1.4 are mutually independent;
that is, Theorem 1.2 does not cover Theorem 1.4, and Theorem 1.4 does
not cover Theorem 1.2. This can be seen from the following two facts. First,
if 0 < p < 2 and s > 0, then Mp,p(R2d) 
↪→ M2,2

m (R2d), where m is one of
the weights of Theorem 1.2. Second, if 0 < p ≤ 1, s < (4d/p) − 2d, and m

is one of the weights of Theorem 1.2, then M2,2
m (R2d) 
↪→ Mp,p(R2d). The

first fact is elementary, and the proof is left to reader. The second fact is
proved by Gröchenig [6, Proposition 3] for the case p = 1. That proof can
be generalized to the case 0 < p ≤ 1 without essential change.

Notation
We write S(Rn) to denote the Schwartz space of all complex-valued

rapidly decreasing infinitely differentiable functions on Rn, and we write
S ′(Rn) to denote the space of tempered distributions on Rn, that is, the
topological dual of S(Rn). We define

‖f ‖Lp =
(∫

Rn

|f(t)|p dt
)1/p

for 0 < p < ∞ and ‖f ‖L∞ = ess supt∈Rn |f(t)|. We use the pairing 〈f, g〉
between f ∈ S ′(Rn) and g ∈ S(Rn) in a manner consistent with the inner
product

〈f, g〉 =
∫
Rn

f(t)g(t)dt

on L2(Rn). For a function f on Rn, the translation and the modulation
operators are defined by

Txf(t) = f(t − x) and Mωf(t) = e2πiωtf(t), x,ω ∈ Rn,

respectively. We note the following:

(Txf)∧ = M−xf̂ , (Mωf)∧ = Tωf̂ , TxMω = e−2πixωMωTx.

We define f̃ by f̃(t) = f(−t). For x ∈ Rn, we write 〈x〉 = (1 + |x|2)1/2.
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For nonnegative functions F and G on a set X , we write F (x) � G(x)
(x ∈ X) if there exists a positive constant C independent of x ∈ X such that
F (x) ≤ CG(x) for all x ∈ X . We write F (x) ≈ G(x) (x ∈ X) if F (x) � G(x)
(x ∈ X) and G(x) � F (x) (x ∈ X). We omit to write (x ∈ X) if the variable
x and the domain X are obviously recognized from the context. We also use
the notation G(x) � F (x) in the same meaning as F (x) � G(x).

§2. A modification of McCarthy’s lemma

We first recall the definition of frames for L2(Rd).

Definition 2.1. A sequence {fν }∞
ν=1 in L2(Rn) is called a frame for

L2(Rn) if there exist constants A,B > 0 such that

(2.1) A‖f ‖2
L2 ≤

∞∑
ν=1

|〈f, fν 〉 |2 ≤ B‖f ‖2
L2 , f ∈ L2(Rn).

An orthonormal basis is a special case of the frame. In the proofs of
the main results, we will use the Gabor frame {gmn}m,n∈Zd given in the
following example.

Example 2.2. Let g be a function in C∞
0 (Rd) such that supg ⊂ [−1,1]d

and
∑

m∈Zd |g(x − m)|2 = 1 for all x ∈ Rd. If we define

gmn(x) = Mn
2
Tmg(x) = g(x − m)eπinx, m,n ∈ Zd,

then the family {gmn}m,n∈Zd is a frame for L2(Rd), which satisfies (2.1)
with A = B = 1 (see, e.g., [7, Theorem 6.4.1]).

To estimate the quasi-norm on Cp, we use the following lemma, which is
a modification of McCarthy’s lemma (see [15, Lemma 2.2]).

Lemma 2.3. Let T be a compact operator on L2(Rd).
(i) If 0 < p ≤ 2, then

‖T ‖Cp ≈ inf
( ∞∑

ν=1

‖Tfν ‖p
L2

)1/p
.

(ii) If 2 ≤ p < ∞, then

‖T ‖Cp ≈ sup
( ∞∑

ν=1

‖Tfν ‖p
L2

)1/p
.

In (i) and (ii), we take the infimum or supremum over all frames {fν }∞
ν=1

for L2(Rd) satisfying (2.1) for fixed A and B.
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McCarthy [15, Lemma 2.2] gave this lemma using orthonormal bases
instead of frames, in which case the relations hold with equality in place of
≈. The following proof is a modification of the argument given in the book
of Komatsu [14, Proposition 8.5].

Proof of Lemma 2.3.
(i) By the Schmidt representation, T can be written as

Tf =
∞∑

j=1

λj 〈f, ej 〉e′
j , f ∈ L2(Rd),

where {ej }∞
j=1 and {e′

j }∞
j=1 are orthonormal systems and λj = sj(T ) (see,

e.g., [16, Proposition 16.3]).
Let {fν } be an arbitrary frame for L2(Rd) satisfying (2.1). Since 0 < p ≤

2, the function tp/2 is concave. Therefore, for any sequence {αj }∞
j=1 with

αj ≥ 0 and
∑∞

j=1 αj ≤ B, we have

(2.2)
( ∞∑

j=1

αj

B
λ2

j

)p/2
≥

∞∑
j=1

αj

B
λp

j .

Taking αj = |〈fν , ej 〉 |2, we have
∑

j αj =
∑

j |〈fν , ej 〉 |2 ≤ ‖fν ‖2
L2 ≤ B and

∑
ν

‖Tfν ‖p
L2 =

∑
ν

( ∞∑
j=1

|〈fν , ej 〉 |2λ2
j

)p/2
≥ B(p/2)−1

∑
ν

∞∑
j=1

|〈fν , ej 〉 |2λp
j

≥ AB(p/2)−1
∞∑

j=1

λp
j .

Thus,

inf
(∑

ν

‖Tfν ‖p
L2

)1/p
≥ A1/pB(1/2)−(1/p)

( ∞∑
j=1

λp
j

)1/p

= A1/pB(1/2)−(1/p)‖T ‖Cp .

On the other hand, let {ẽν } be an orthonormal basis for L2(Rd) contain-
ing {ej }, and put fν = A1/2ẽν . Then {fν } is a frame for L2(Rd) satisfy-
ing (2.1). Since Tfν =

∑
j λj 〈A1/2ẽν , ej 〉e′

j = λj(ν)A
1/2e′

j(ν) if ẽν = ej(ν) is in
{ej }, and = 0 if ẽν /∈ {ej }, we have

∑
ν

‖Tfν ‖p
L2 = Ap/2

∞∑
j=1

λp
j .
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Therefore,

inf
(∑

ν

‖Tfν ‖p
L2

)1/p
≤ A1/2

( ∞∑
j=1

λp
j

)1/p
= A1/2‖T ‖Cp .

(ii) If 2 ≤ p < ∞, then we can actually prove the equality

sup
(∑

ν

‖Tfν ‖p
L2

)1/p
= B1/2‖T ‖Cp .

In fact, for 2 ≤ p < ∞, the function tp/2 is convex, and the inequality reverse
to (2.2) holds. Hence, we can prove the inequality

sup
(∑

ν

‖Tfν ‖p
L2

)1/p
≤ B1/2‖T ‖Cp

by the same argument as in the first half of (i). The converse inequality can
be seen by the use of the frame fν = B1/2ẽν with ẽν being the same as in (i).

§3. Proof of Theorems 1.2 and 1.4

Before we prove Theorems 1.2 and 1.4, we recall some basic properties
of modulation spaces Mp,q

m (Rn). (For the proofs, we refer to [3], [5], [7],
[13], or [17].) The space Mp,q

m (Rn) is a quasi-Banach space. If 0 < p, q < ∞,
then S(Rn) is dense in Mp,q

m (Rn). If 0 < p1 ≤ p2 ≤ ∞,0 < q1 ≤ q2 ≤ ∞,
and m2 � m1, then Mp1,q1

m1 (Rn) ↪→ Mp2,q2
m2 (Rn). The weight functions m of

Theorem A and Theorem 1.2 satisfy condition (1.1) with n = 2d.
The following lemma will be used to represent σ(x,D) as a superposition

of “elementary operators.”

Lemma 3.1 ([7, Corollary 11.2.7]). If ϕ,ψ, f ∈ S(Rn) and if 〈ϕ, ψ̃〉 
= 0,
then

f(t) =
1

〈ϕ, ψ̃〉

∫
R2n

f ∗ Mζϕ(z)TzMζψ(t)dz dζ, t ∈ Rn,

where the function

(z, ζ, t) �→ f ∗ Mζϕ(z)TzMζψ(t)

is in the class S on R3n = Rn
z × Rn

ζ × Rn
t .
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Proof of Theorem 1.2. Part I. We prove the result for the weight (1.4)
with t = 0. Notice that M2,2

m (R2d) ⊂ L2(R2d) and that the pseudodifferential
operators σ(X,D) with symbols in L2(R2d) are of Hilbert-Schmidt class.
Hence, σ(X,D) with σ ∈ M2,2

m (R2d) are in the Hilbert-Schmidt class and,
in particular, compact.

Let {gmn} be the frame given in Example 2.2. By virtue of Lemma 2.3(i),
the claim of Theorem 1.2 for σ(X,D) follows from the inequality

( ∑
m,n∈Zd

‖σ(X,D)gmn‖p
L2

)1/p
≤ C‖σ‖

M2,2
m

.

Since S(R2d) is dense in M2,2
m (R2d), it is sufficient to prove this estimate for

σ ∈ S(R2d). Thus, in the rest of the argument, we assume that σ ∈ S(R2d).
Take Φ,Ψ ∈ S(R2d) such that 〈Φ, Ψ̃〉 
= 0. By Lemma 3.1 with n = 2d, we

have

σ(x,ω) =
1

〈Φ, Ψ̃〉

∫
R4d

σ ∗ MζΦ(z)TzMζΨ(x,ω)dz dζ, x,ω ∈ Rd.

Let f ∈ S(Rd). The above formula yields

σ(X,D)f(x) =
1

〈Φ, Ψ̃〉

∫
R5d

σ ∗ MζΦ(z)TzMζΨ(x,ω)f̂(ω)e2πixω dz dζ dω,

x ∈ Rd.

Notice that the above integrand is a function in the class S on R6d = R2d
z ×

R2d
ζ × Rd

ω × Rd
x. Thus, we obtain

‖σ(X,D)f ‖2
L2

=
1

|〈Φ, Ψ̃〉 |2

∫
R11d

σ ∗ MζΦ(z)TzMζΨ(x,ω)f̂(ω)e2πixω(3.1)

× σ ∗ Mζ′ Φ(z′)Tz′ Mζ′ Ψ(x,ω′)f̂(ω′)e−2πixω′
dz dζ dω dz′ dζ ′ dω′ dx.

The integrand of (3.1) is a function in the class S on R11d = R2d
z × R2d

ζ ×
Rd

ω × R2d
z′ × R2d

ζ′ × Rd
ω′ × Rd

x, and hence we can freely change the order of
integration.

We simply write
α(z, ζ) = σ ∗ MζΦ(z)
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and apply (3.1) to f = gmn. We have

ĝmn(ω) = ĝ(ω − n/2)e−2πim(ω−n/2)

and

TzMζΨ(x,ω)e2πixω

= Θ(x − z1, ω − z2)e2πix(z2+ζ1)e2πiω(z1+ζ2)e2πi(−z1z2−z1ζ1−z2ζ2),

where Θ(x,ω) = Ψ(x,ω)e2πixω. With these expressions, (3.1) can be written
as

‖σ(X,D)gmn‖2
L2

=
1

|〈Φ, Ψ̃〉 |2

∫
R11d

e2πi(−z1z2−z1ζ1−z2ζ2)

× e2πi(z′
1z′

2+z′
1ζ′

1+z′
2ζ′

2)α(z, ζ)α(z′, ζ ′)e2πix(z2−z′
2+ζ1−ζ′

1)(3.2)

× e2πiω(z1+ζ2−m)e2πiω′(−z′
1−ζ′

2+m)Θ(x − z1, ω − z2)Θ(x − z′
1, ω

′ − z′
2)

× ĝ(ω − n/2)ĝ(ω′ − n/2)dz dζ dω dz′ dζ ′ dω′ dx.

In the integral of (3.2), we first take the integration with respect to
(x,ω,ω′). Consider the integral∫

R3d

e2πix(z2−z′
2+ζ1−ζ′

1)e2πiω(z1+ζ2−m)e2πiω′(−z′
1−ζ′

2+m)

× Θ(x − z1, ω − z2)Θ(x − z′
1, ω

′ − z′
2)(3.3)

× ĝ(ω − n/2)ĝ(ω′ − n/2)dxdω dω′.

This is the inverse Fourier transform of the function

(x,ω,ω′) �→ Θ(x − z1, ω − z2)Θ(x − z′
1, ω

′ − z′
2)

(3.4)
× ĝ(ω − n/2)ĝ(ω′ − n/2)

evaluated at (z2 − z′
2 + ζ1 − ζ ′

1, z1 + ζ2 − m, −z′
1 − ζ ′

2 + m). Since Θ and ĝ

are in the class S , we see that the absolute value of the function (3.4) is
majorized by a constant times

〈x − z1〉 −N 〈ω − z2〉 −N 〈ω′ − z′
2〉 −N 〈z1 − z′

1〉 −N 〈z2 − n/2〉 −N 〈z′
2 − n/2〉 −N
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where N can be taken as arbitrarily large. The same estimate also holds
for every derivative of (3.4). Hence, by integration by parts, we see that the
absolute value of integral (3.3) is majorized by a constant times

〈z1 − z′
1〉 −N 〈z2 − n/2〉 −N 〈z′

2 − n/2〉 −N

× 〈z2 − z′
2 + ζ1 − ζ ′

1〉 −N 〈z1 + ζ2 − m〉 −N 〈 −z′
1 − ζ ′

2 + m〉 −N .

Combining the last estimate with (3.2), we obtain

‖σ(X,D)gmn‖2
L2

≤ c

∫
R8d

|α(z, ζ)||α(z′, ζ ′)|〈z1 − z′
1〉 −N 〈z2 − n/2〉 −N

× 〈z′
2 − n/2〉 −N 〈z2 − z′

2 + ζ1 − ζ ′
1〉 −N 〈z1 + ζ2 − m〉 −N

× 〈 −z′
1 − ζ ′

2 + m〉 −N dz dζ dz′ dζ ′

= (∗).

We use the inequality |α(z, ζ)||α(z′, ζ ′)| ≤ 2−1(|α(z, ζ)|2 + |α(z′, ζ ′)|2) and
use the symmetry of the variables (z, ζ) and (z′, ζ ′) to see that

(∗) ≤ c

∫
R8d

|α(z, ζ)|2〈z1 − z′
1〉 −N 〈z2 − n/2〉 −N

× 〈z′
2 − n/2〉 −N 〈z2 − z′

2 + ζ1 − ζ ′
1〉 −N

× 〈z1 + ζ2 − m〉 −N 〈 −z′
1 − ζ ′

2 + m〉 −N dz dζ dz′ dζ ′

= c

∫
R6d

|α(z, ζ)|2〈z1 − z′
1〉 −N 〈z2 − n/2〉 −N

× 〈z′
2 − n/2〉 −N 〈z1 + ζ2 − m〉 −N dz dζ dz′

= c

∫
R4d

|α(z, ζ)|2〈z1 + ζ2 − m〉 −N 〈z2 − n/2〉 −N dz dζ.

Thus, we have proved the estimate

‖σ(X,D)gmn‖2
L2 ≤ c

∫
R4d

|α(z, ζ)|2〈z1 + ζ2 − m〉 −N

(3.5)
× 〈z2 − n/2〉 −N dz dζ.
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Let q be the real number defined by p/2+1/q = 1. Then (3.5) and Hölder’s
inequality give

∑
m,n∈Zd

‖σ(X,D)gmn‖p
L2

≤ c
∑

m,n∈Zd

(∫
R4d

|α(z, ζ)|2〈z1 + ζ2 − m〉 −N
〈
z2 − n

2

〉−N
dz dζ

)p/2

≤ c
( ∑

m,n∈Zd

(1 + |m| + |n|)2s

∫
R4d

|α(z, ζ)|2〈z1 + ζ2 − m〉 −N

×
〈
z2 − n

2

〉−N
dz dζ

)p/2

×
( ∑

m,n∈Zd

(1 + |m| + |n|)−spq
)1/q

= c
( ∑

m,n∈Zd

(1 + |m| + |n|)2s

∫
R4d

|α(z, ζ)|2〈z1 + ζ2 − m〉 −N

×
〈
z2 − n

2

〉−N
dz dζ

)p/2

= (∗∗),

where the first = holds because spq > 2d by our assumption that s > 2d/

p − d. Since, for sufficiently large N ,

∑
m,n∈Zd

(1 + |m| + |n|)2s〈z1 + ζ2 − m〉 −N
〈
z2 − n

2

〉−N

≈
∑

n∈Zd

(1 + |z1 + ζ2| + |n|)2s
〈
z2 − n

2

〉−N
≈ (1 + |z1 + ζ2| + |z2|)2s,

we obtain

(∗∗) ≈
(∫

R4d

|α(z, ζ)|2(1 + |z1 + ζ2| + |z2|)2s dz dζ
)p/2

≈ ‖σ‖p

M2,2
m

,

where m is the weight of (1.4) with t = 0. Thus, the claim for the weight
(1.4) with t = 0 is proved.
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Part II. We prove the result for the weight (1.5) with t = 0. To this end,
we consider the adjoint operator σ(X,D)∗ of σ(X,D). Take Φ,Ψ ∈ S(R2d)
such that 〈Φ, Ψ̃〉 
= 0, and represent σ(X,D) as

σ(X,D)f(x) =
1

〈Φ, Ψ̃〉

∫
R5d

α(z, ζ)TzMζΨ(x,ω)f̂(ω)e2πixω dz dζ dω,

where α(z, ζ) = σ ∗ MζΦ(z). Then we have

〈f,σ(X,D)∗ψ〉

= 〈σ(X,D)f,ψ〉 =
∫
Rd

σ(X,D)f(x)ψ(x)dx

=
1

〈Φ, Ψ̃〉

∫
R6d

α(z, ζ)TzMζΨ(x,ω)f̂(ω)e2πixωψ(x)dz dζ dω dx

=
1

〈Φ, Ψ̃〉

∫
Rd

f̂(ω)
∫
R5d

α(z, ζ)TzMζΨ(x,ω)e2πixωψ(x)dz dζ dxdω

=
〈
f, Fω

[ 1

〈Φ, Ψ̃〉

∫
R5d

α(z, ζ)TzMζΨ(x,ω)e2πixωψ(x)dz dζ dx
]〉

,

where Fω denotes the Fourier transform with respect to the variable ω.
Thus,

σ(X,D)∗ψ = Fω

[ 1

〈Φ, Ψ̃〉

∫
R5d

α(z, ζ)TzMζΨ(x,ω)e2πixωψ(x)dz dζ dx
]
.

(3.6)

Since ‖σ(X,D)‖Cp = ‖σ(X,D)∗ ‖Cp (see [2, p. 1092]), we have

‖σ(X,D)‖Cp �
( ∑

m,n∈Zd

‖σ(X,D)∗gmn‖p
L2

)1/p

by Lemma 2.3(i), where {gmn} is the frame of Example 2.2. So, we estimate
‖σ(X,D)∗gmn‖L2 . Using the Plancherel theorem and (3.6) with ψ = gmn,
we have

‖σ(X,D)∗gmn‖2
L2

≈
∥∥∥∫

R5d

α(z, ζ)TzMζΨ(x,ω)e2πixωgmn(x)dz dζ dx
∥∥∥2

L2
ω
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=
∫
R11d

α(z, ζ)α(z′, ζ ′)e2πi(−z1z2−z1ζ1−z2ζ2)e2πi(z′
1z′

2+z′
1ζ′

1+z′
2ζ′

2)

× Θ(x − z1, ω − z2)Θ(x′ − z′
1, ω − z′

2)g(x − m)

× g(x′ − m)e2πix(z2+ζ1−n/2)e2πix′(−z′
2−ζ′

1+n/2)

× e2πiω(z1+ζ2−z′
1−ζ′

2)dz dζ dxdz′ dζ ′ dx′ dω

= (∗),

where Θ(x,ω) = Ψ(x,ω)e2πixω. In the above integral, we first take the inte-
gration with respect to (x,x′, ω). As in the proof of Part I, we obtain

∣∣∣∫
R3d

e2πix(z2+ζ1−n/2)e2πix′(−z′
2−ζ′

1+n/2)e2πiω(z1+ζ2−z′
1−ζ′

2)

× Θ(x − z1, ω − z2)Θ(x′ − z′
1, ω − z′

2)g(x − m)g(x′ − m)dxdx′ dω
∣∣∣

� 〈z1 − m〉 −N 〈z′
1 − m〉 −N 〈z2 − z′

2〉 −N

× 〈z2 + ζ1 − n/2〉 −N 〈 −z′
2 − ζ ′

1 + n/2〉 −N 〈z1 + ζ2 − z′
1 − ζ ′

2〉 −N ,

where N can be taken arbitrarily large. Thus,

(∗) �
∫
R8d

|α(z, ζ)||α(z′, ζ ′)|〈z1 − m〉 −N 〈z′
1 − m〉 −N 〈z2 − z′

2〉 −N

× 〈z2 + ζ1 − n/2〉 −N 〈 −z′
2 − ζ ′

1 + n/2〉 −N

× 〈z1 + ζ2 − z′
1 − ζ ′

2〉 −N dz dζ dz′ dζ ′

�
∫
R8d

|α(z, ζ)|2〈z1 − m〉 −N 〈z′
1 − m〉 −N 〈z2 − z′

2〉 −N

× 〈z2 + ζ1 − n/2〉 −N 〈 −z′
2 − ζ ′

1 + n/2〉 −N

× 〈z1 + ζ2 − z′
1 − ζ ′

2〉 −N dz dζ dz′ dζ ′

≈
∫
R6d

|α(z, ζ)|2〈z1 − m〉 −N 〈z′
1 − m〉 −N 〈z2 − z′

2〉 −N

× 〈z2 + ζ1 − n/2〉 −N dz dζ dz′

≈
∫
R4d

|α(z, ζ)|2〈z1 − m〉 −N 〈z2 + ζ1 − n/2〉 −N dz dζ.
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Hence, in the same way as in Part I, we obtain

‖σ(X,D)‖p
Cp

�
∑

m,n∈Zd

‖σ(X,D)∗gmn‖p
L2

�
∑

m,n∈Zd

(∫
R4d

|α(z, ζ)|2〈z1 − m〉 −N
〈
z2 + ζ1 − n

2

〉−N
dz dζ

)p/2

�
( ∑

m,n∈Zd

(1 + |m| + |n|)2s

×
∫
R4d

|α(z, ζ)|2〈z1 − m〉 −N
〈
z2 + ζ1 − n

2

〉−N
dz dζ

)p/2

≈
(∫

R4d

|α(z, ζ)|2(1 + |z1| + |z2 + ζ1|)2s dz dζ
)p/2

≈ ‖σ‖p

M2,2
m

,

where s > 2d/p − d and where m is the weight of (1.5) with t = 0. This
proves the claim for the weight (1.5) with t = 0.

Part III. Finally, we prove the result for general t ∈ R. We use the
fact that σt(X,D) can be written as τ(X,D) by a simple transformation of
symbols σ �→ τ . In fact, if we define the symbol Utσ by

(Utσ)∧(ξ, η) = e2πitξησ̂(ξ, η),

then σt(X,D) = (Utσ)(X,D). We have

(3.7) (Utσ) ∗ MζΦ(z) = e−2πitζ1ζ2σ ∗ Mζ UtΦ(z1 + tζ2, z2 + tζ1)

(see [9, Lemma 2.1], [7, Corollary 14.5.5]). Hence, the estimate obtained in
Part I yields

‖σt(X,D)‖Cp = ‖(Utσ)(X,D)‖Cp

�
(∫

R4d

|(Utσ) ∗ MζΦ(z)|2(1 + |z1 + ζ2| + |z2|)2s dz dζ
)1/2

=
(∫

R4d

|σ ∗ Mζ UtΦ(z1 + tζ2, z2 + tζ1)|2

× (1 + |z1 + ζ2| + |z2|)2s dz dζ
)1/2
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=
(∫

R4d

|σ ∗ Mζ UtΦ(z1, z2)|2

×
(
1 + |z1 + (1 − t)ζ2| + |z2 − tζ1|

)2s
dz dζ

)1/2
.

This implies the desired result for the weight (1.4), since the last quantity is
equivalent to the norm of σ in M2,2

m (see Definition 1.1 and the paragraph
just below it).

In the same way as above, the estimate obtained in Part II yields the
result for the weight (1.5) for all t ∈ R.

To prove Theorem 1.4, we use the following lemma.

Lemma 3.2 ([5, Lemma 2.3]). Let ϕ0(z) = e−πz2
, z ∈ Rn. Then for all

p > 0, r > 0 and (z0, ζ0) ∈ Rn × Rn, we have

|f ∗ Mζ0ϕ0(z0)|p ≤ epπr2/2

|B(r)|

∫
(z−z0)2+(ζ−ζ0)2<r2

|f ∗ Mζϕ0(z)|p dz dζ,

where |B(r)| is the volume of the ball with radius r in R2n.

Proof of Theorem 1.4. We first prove the result for the case t = 0. Let
{gmn} be the Gabor frame as given in Example 2.2. By the same reason as
in the proof of Theorem 1.2, it is sufficient to prove the inequality( ∑

m,n∈Zd

‖σ(X,D)gmn‖p
L2

)1/p
≤ C‖σ‖Mp,p

for σ ∈ S(R2d).
Taking Φ,Ψ ∈ S(R2d) as in the proof of Theorem 1.2, we have the esti-

mate (3.5) and thus∑
m,n∈Zd

‖σ(X,D)gmn‖p
L2

�
∑

m,n∈Zd

(∫
R4d

|σ ∗ MζΦ(z)|2〈z1 + ζ2 − m〉 −N
〈
z2 − n

2

〉−N
dz dζ

)p/2

= (∗).

To proceed further, we take the special choice of Φ as

Φ(z) = Φ0(z) = e−πz2
, z ∈ R2d,
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and estimate (∗) with Φ = Φ0 as follows:

(∗) �
∑

m,n∈Zd

×
( ∑

k,l∈Z2d

sup
z∈k+[0,1]2d

ζ∈l+[0,1]2d

|σ ∗ MζΦ0(z)|2〈z1 + ζ2 − m〉 −N
〈
z2 − n

2

〉−N)p/2

≈
∑

m,n∈Zd

×
( ∑

k,l∈Z2d

sup
z∈k+[0,1]2d

ζ∈l+[0,1]2d

|σ ∗ (MζΦ0)(z)|2〈k1 + l2 − m〉 −N
〈
k2 − n

2

〉−N)p/2

≤
∑

m,n∈Zd

×
∑

k,l∈Z2d

sup
z∈k+[0,1]2d

ζ∈l+[0,1]2d

|σ ∗ MζΦ0(z)|p〈k1 + l2 − m〉 −Np/2
〈
k2 − n

2

〉−Np/2

≈
∑

k,l∈Z2d

sup
z∈k+[0,1]2d

ζ∈l+[0,1]2d

|σ ∗ MζΦ0(z)|p,

where we used the assumption that p ≤ 2 to obtain the ≤. By Lemma 3.2,
the last sum is majorized by a constant times

∑
k,l∈Z2d

∫
(z−k)2+(ζ−l)2≤16d

|σ ∗ MζΦ0(z)|p dz dζ

≈
∫
R4d

|σ ∗ MζΦ0(z)|p dz dζ ≈ ‖σ‖p
Mp,p .

This proves the result for σ(X,D).
Next we prove the result for general t ∈ R. We use the operator Ut used

in the proof of Theorem 1.2. Since σt(X,D) = (Utσ)(X,D), it is sufficient
to prove that the operator Ut is bounded in Mp,p(R2d).

Taking a Φ ∈ S(R2d), we have (3.7) and hence∫
R4d

|(Utσ) ∗ MζΦ(z)|p dz dζ =
∫
R4d

|σ ∗ Mζ UtΦ(z)|p dz dζ.
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Then we have ‖Utσ‖Mp,p ≈ ‖σ‖Mp,p , since UtΦ ∈ S(R2d) \ {0}. This com-
pletes the proof of Theorem 1.4.

§4. Proof of Theorem 1.3

Proof. We will prove only (a) and (b), because we can treat (c) and (d)
in the same way as (a) and (b). We take a Φ ∈ S(R2d) \ {0}.

(a) Let m(z, ζ) = (1 + |z1 + tζ2|)s, t 
= 0. What we have to prove is

‖〈z1 + tζ2〉sσ ∗ MζΦ(z)‖L2
z,ζ(R4d) ≈

∥∥(1 + |ζ2|)sF2τ1/t(y1, ζ2)
∥∥

L2
y1,ζ2

(R2d)
.

(4.1)

By complex interpolation with respect to the parameter s, it is sufficient to
prove (4.1) for all nonnegative integers s. If s is a nonnegative integer, then
the right-hand side of (4.1) is equivalent to∑

|α| ≤s

∥∥∂α
y2

(
τ1/t(y1, y2)

)∥∥
L2

y1,y2

.

Thus, we will prove that

(4.2) ‖〈z1 + tζ2〉sσ ∗ MζΦ(z)‖L2
z,ζ

≈
∑

|α| ≤s

∥∥∂α
y2

(
τ1/t(y1, y2)

)∥∥
L2

y1,y2

for all nonnegative integers s.
We first prove that

(4.3) ‖〈z1 + tζ2〉sσ ∗ MζΦ(z)‖L2
z,ζ

�
∑

|α| ≤s

∥∥∂α
y2

(
τ1/t(y1, y2)

)∥∥
L2

y1,y2

.

Set Θ(y) = e−2πi 1
t
y1y2Φ(y). Then,

|σ ∗ MζΦ(z)|

=
∣∣∣∫

R2d

σ(y)e2πiζ(z−y)Φ(z − y)dy
∣∣∣

=
∣∣∣∫

R2d

e−2πi 1
t
y1y2τ1/t(y)e2πi(ζ1(z1−y1)+ζ2(z2−y2))

× e2πi 1
t
(z1−y1)(z2−y2)Θ(z − y)dy

∣∣∣
=

∣∣∣∫
R2d

τ1/t(y)Θ(z − y)e−2πi(y1(
z2
t

+ζ1)+y2(
z1
t

+ζ2)) dy
∣∣∣,
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and thus, by integration by parts,∣∣∣(−2πi)|α|
(z1

t
+ ζ2

)α
σ ∗ MζΦ(z)

∣∣∣
=

∣∣∣∫
R2d

τ1/t(y)Θ(z − y)∂α
y2

[e−2πi(y1(
z2
t

+ζ1)+y2(
z1
t

+ζ2))]dy
∣∣∣

=
∣∣∣∫

R2d

∂α
y2

[τ1/t(y)Θ(z − y)]e−2πi(y1(
z2
t

+ζ1)+y2(
z1
t

+ζ2)) dy
∣∣∣

=
∣∣∣∫

R2d

∑
α′+α′′=α

(
α

α′

)
τ

(0,α′)
1/t (y)(−1)|α| ′′

Θ(0,α′′)(z − y)

× e−2πi(y1(
z2
t

+ζ1)+y2(
z1
t

+ζ2)) dy
∣∣∣,

(4.4)

where

τ
(0,α′)
1/t (y) = ∂α′

y2

(
τ1/t(y)

)
and Θ(0,α′′)(y) = ∂α′′

y2

(
Θ(y)

)
.

Taking the sum of (4.4) over |α| ≤ s, we obtain∫
R4d

|σ ∗ MζΦ(z)|2(1 + |z1 + tζ2|)2s dz dζ

≈
∑

|α| ≤s

∫
R4d

∣∣∣(z1

t
+ ζ2

)α
σ ∗ MζΦ(z)

∣∣∣2 dz dζ

�
∑

|α′+α′′ | ≤s

∫
R4d

∣∣∣∫
R2d

τ
(0,α′)
1/t (y)Θ(0,α′′)(z − y)

× e−2πi(y1(
z2
t

+ζ1)+y2(
z1
t

+ζ2)) dy
∣∣∣2 dz dζ

=
∑

|α′+α′′ | ≤s

∫
R4d

|τ (0,α′)
1/t ∗ M(

z2
t

+ζ1,
z1
t

+ζ2)
Θ(0,α′′)(z)|2 dz dζ

=
∑

|α′+α′′ | ≤s

∫
R4d

|τ (0,α′)
1/t ∗ MζΘ(0,α′′)(z)|2 dz dζ

≈
∑

|α| ≤s

‖τ
(0,α)
1/t ‖2

M2,2 ≈
∑

|α| ≤s

∥∥∂α
y2

(
τ1/t(y1, y2)

)∥∥2

L2
y1,y2

,

where the last ≈ follows from the fact that M2,2 = L2. This proves (4.3).
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Next, we prove the converse inequality

(4.5)
∑

|α| ≤s

∥∥∂α
y2

(τ1/t(y1, y2))
∥∥

L2
y1,y2

� ‖〈z1 + tζ2〉sσ ∗ MζΦ(z)‖L2
z,ζ

.

We prove this by induction on s.
When s = 0, (4.5) is obvious since

‖τ1/t‖L2 = ‖σ‖L2 ≈ ‖σ ∗ MζΦ(z)‖L2
z,ζ

.

Assume that (4.5) holds for a nonnegative integer s. Let α be a multi-
index with |α| = s + 1. From (4.4), we have∣∣∣(−2πi)|α|

(z1

t
+ ζ2

)α
σ ∗ MζΦ(z)

∣∣∣
≥

∣∣∣∫
R2d

τ
(0,α)
1/t (y)Θ(z − y)e−2πi(y1(

z2
t

+ζ1)+y2(
z1
t

+ζ2)) dy
∣∣∣

−
∑

α′+α′′=α
α′′ �=0

(
α

α′

)

×
∣∣∣∫

R2d

τ
(0,α′)
1/t (y)Θ(0,α′′)(z − y)e−2πi(y1(

z2
t

+ζ1)+y2(
z1
t

+ζ2)) dy
∣∣∣

= |τ (0,α)
1/t ∗ M(

z2
t

+ζ1,
z1
t

+ζ2)
Θ(z)|

−
∑

α′+α′′=α
α′′ �=0

(
α

α′

)
|τ (0,α′)

1/t ∗ M(
z2
t

+ζ1,
z1
t

+ζ2)
Θ(0,α′′)(z)|.

Thus, taking the L2
z,ζ -norm and using the fact that M2,2 = L2, we obtain∥∥∥(−2πi)|α|

(z1

t
+ ζ2

)α
σ ∗ MζΦ(z)

∥∥∥
L2

z,ζ

+
∑

|α′ |<|α|
‖τ

(0,α′)
1/t ‖L2 � ‖τ

(0,α)
1/t ‖L2 .

Since, obviously,∥∥∥〈z1

t
+ ζ2

〉s+1
σ ∗ MζΦ(z)

∥∥∥
L2

z,ζ

�
∥∥∥(−2πi)|α|

(z1

t
+ ζ2

)α
σ ∗ MζΦ(z)

∥∥∥
L2

z,ζ

,

and since the induction hypothesis implies that∥∥∥〈z1

t
+ ζ2

〉s
σ ∗ MζΦ(z)

∥∥∥
L2

z,ζ

�
∑

|α′ |<|α|
‖τ

(0,α′)
1/t ‖L2 ,
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we obtain ∥∥∥〈z1

t
+ ζ2

〉s+1
σ ∗ MζΦ(z)

∥∥∥
L2

z,ζ

� ‖τ
(0,α)
1/t ‖L2 .

Thus, we proved (4.5).
(b) Let m(z, ζ) = (1 + |z1|)s, s ≥ 0. We have

|σ ∗ MζΦ(z)| =
∣∣∣∫

R2d

σ(y)e2πiζ(z−y)Φ(z − y)dy
∣∣∣ =

∣∣(σ(·)Φ(z − ·)
)∧(ζ)

∣∣.
Hence, by Plancherel’s theorem,∫

R2d

|σ ∗ MζΦ(z)|2 dζ =
∫
R2d

|σ(y)Φ(z − y)|2 dy,

and consequently,

‖σ‖2
M2,2

m
=

∫
R4d

|σ ∗ MζΦ(z)|2(1 + |z1|)2s dζ dz

=
∫
R4d

|σ(y)Φ(z − y)|2(1 + |z1|)2s dy dz = (I).

By the inequality

(1 + |z1 − y1|)−2s ≤ (1 + |z1|)2s

(1 + |y1|)2s
≤ (1 + |z1 − y1|)2s,

we obtain

(I) ≤
∫
R4d

|σ(y)Φ(z − y)|2(1 + |z1 − y1|)2s(1 + |y1|)2s dy dz

≈
∫
R2d

|σ(y)|2(1 + |y1|)2s dy

and

(I) ≥
∫
R4d

|σ(y)Φ(z − y)|2(1 + |z1 − y1|)−2s(1 + |y1|)2s dy dz

≈
∫
R2d

|σ(y)|2(1 + |y1|)2s dy.

Combining the above inequalities, we obtain

‖σ‖2
M2,2

s
≈

∫
R2d

|σ(y)|2(1 + |y1|)2s dy.
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§5. Alternate proofs of Theorems 1.2 and 1.4

An alternate proof of Theorem 1.2. We will see that Theorem 1.2 can be
proved by a modification of the argument of Heil, Ramanathan, and Top-
iwala [12] or Gröchenig and Heil [9]. We follow [12] and give the proof of
Theorem 1.2 for the case t = 1/2; the case of general t ∈ R can be reduced
to the case t = 1/2 with the aid of the operator Ut as in Part III of the proof
of Theorem 1.2 (Section 3). Since the essential argument is the same as [12,
Sections 2–5], we omit some details. We use the notation

σW (X,D) = σ1/2(X,D).

The argument of [12] (and [9] as well) is based on the fact that the
inequality

(5.1)
∑

j>rank(T )

sj(A)2 ≤ ‖A − T ‖2
C2

holds for all compact operators A and for all finite-rank operators T . Thus,
given a compact operator A, if we find a finite-rank operator T which
approximates A well, then we can obtain an estimate of the singular values
of A. To find a finite-rank approximation of A = σW (X,D), we use a Gabor
frame expansion of the symbol σ.

To begin with, we recall some basic facts on the Weyl correspondence (for
details, see, e.g., [4]). For α = (α1, α2) ∈ R2d, we define the unitary operator
ρ(α) in L2(Rd) by

ρ(α)f(x) = eπiα1α2e2πiα2xf(x + α1).

For ϕ,ψ ∈ L2(Rd), the function W (ϕ,ψ) on R2d is defined by

W (ϕ,ψ)(x,ω) =
∫
Rd

e−2πipωϕ(x + p/2)ψ(x − p/2)dp.

This function is called the Wigner distribution. (Notice that we are writing
the variables x and ω in this order; in [4] and [12], the Wigner distribution
is written as W (ϕ,ψ)(ω,x).) We have the formula

W
(
ρ(α)ϕ,ρ(β)ψ

)
(x,ω)

= eπi(−α2β1+α1β2)e2πi{ζ1(x+z1)+ζ2(ω+z2)}W (ϕ,ψ)(x + z1, ω + z2),
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where

(5.2) z1 =
α1 + β1

2
, z2 = − α2 + β2

2
, ζ1 = α2 − β2, ζ2 = α1 − β1.

Using the notation of translation and modulation on R2d, the above formula
can be written as

(5.3) W
(
ρ(α)ϕ,ρ(β)ψ

)
= eπi(−α2β1+α1β2)T−zMζW (ϕ,ψ).

We write A to denote the linear mapping R4d → R4d defined by

A : (α1, α2, β1, β2) �→ (z1, z2, ζ1, ζ2) with (5.2).

For our purpose, the Wigner distribution is useful since the pseudodiffer-
ential operator corresponding to W (ϕ,ψ) is given by the following simple
formula:

(5.4) W (ϕ,ψ)W (X,D)f = 〈f,ψ〉ϕ.

We also need the formula

(5.5) ‖σW (X,D)‖C2 = ‖σ‖L2 .

Next, we recall some facts from the frame theory (for details, see [7], [11]).
We take a function φ ∈ S(Rd) and a discrete subgroup Λ of R2d such that
the functions

φα = ρ(α)φ, α ∈ Λ,

form a frame for L2(Rd). We set

Φα,β = W (φα, φβ), (α,β) ∈ Γ = Λ × Λ,

Φ = W (φ,φ).

By (5.3), we have

(5.6) Φα,β = eπi(−α2β1+α1β2)T−zMζΦ, (z, ζ) = A(α,β).

The following are known in the theory of frames. The set {Φα,β }(α,β)∈Γ

is a frame for L2(R2d). The dual frame of {φα}α∈Λ is also of the form
{ρ(α)φ̃}α∈Λ with a φ̃ ∈ S(Rd); we write φ̃α = ρ(α)φ̃. The dual frame of
{Φα,β }(α,β)∈Γ is given by

(5.7) Φ̃α,β = W (φ̃α, φ̃β), (α,β) ∈ Γ.

https://doi.org/10.1215/00277630-1543796 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1543796


142 M. KOBAYASHI AND A. MIYACHI

Every σ ∈ L2(R2d) can be decomposed as

(5.8) σ =
∑

(α,β)∈Γ

〈σ,Φα,β 〉Φ̃α,β

with the series converging unconditionally in L2(R2d).
Now, in order to get a finite-rank approximation of σW (X,D), we take a

subset ΓN ⊂ Γ, N ∈ N, and define

(5.9) σN =
∑

(α,β)∈ΓN

〈σ,Φα,β 〉Φ̃α,β.

By (5.4) and (5.7), the operator σW
N (X,D) is given by

σW
N (X,D) : f �→

∑
(α,β)∈ΓN

〈σ,Φα,β 〉 〈f, φ̃β 〉φ̃α.

Thus, if {α | (α,β) ∈ ΓN } or {β | (α,β) ∈ ΓN } is a finite set, then σW
N (X,D)

is a finite-rank operator, and we have

(5.10) rank
(
σW

N (X,D)
)

≤ min
{
�{α | (α,β) ∈ ΓN }, �{β | (α,β) ∈ ΓN }

}
,

where �E denotes the cardinality of a set E. By (5.5) and by the expansions
(5.8) and (5.9), we have

‖σW (X,D) − σW
N (X,D)‖2

C2
= ‖σ − σN ‖2

L2(R2d)

=
∥∥∥ ∑

(α,β)∈Γ\ΓN

〈σ,Φα,β 〉Φ̃α,β

∥∥∥2

L2(R2d)

≤ c
∑

(α,β)∈Γ\ΓN

|〈σ,Φα,β 〉 |2,

where the last inequality follows from the fact that {Φ̃α,β } is a frame for
L2(R2d). We simply write

γ(z, ζ) = 〈σ,TzMζΦ〉.

By (5.6),

|〈σ,Φα,β 〉 | = |〈σ,T−zMζΦ〉 | = |γ(−z, ζ)|, (z, ζ) = A(α,β),
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and the above inequality can be written as

‖σW (X,D) − σW
N (X,D)‖2

C2
≤ c

∑
(z,ζ)∈A(Γ)\A(ΓN )

|γ(−z, ζ)|2.

Applying the general principle (5.1), we obtain∑
j>kN

sj

(
σW (X,D)

)2 ≤ c
∑

(z,ζ)∈A(Γ)\A(ΓN )

|γ(−z, ζ)|2,

where kN = rank(σW
N (X,D)).

To get an estimate of kN , we take

ΓN =
{
(α,β) ∈ Γ

∣∣ |α1| + |α2| ≤ N
}
.

Then, by (5.10),
kN ≤ �

{
α

∣∣ (α,β) ∈ ΓN

}
≤ c0N

2d,

where c0 is a constant depending only on d. From (5.2), we have

A(ΓN ) =
{
(z, ζ) ∈ A(Γ)

∣∣ |z1 + ζ2/2| + |−z2 + ζ1/2| ≤ N
}
.

Thus, ∑
(z,ζ)∈A(Γ)\A(ΓN )

|γ(−z, ζ)|2

≤ N −2s
∑

(z,ζ)∈A(Γ)\A(ΓN )

|γ(−z, ζ)|2(1 + |z1 + ζ2/2| + |−z2 + ζ1/2|)2s

= N −2s
∑

(z,ζ)∈A(Γ)\A(ΓN )

|γ(−z, ζ)|2m(−z, ζ)2,

where m is the weight function of (1.5) with t = 1/2. Combining the above
inequalities, we obtain∑

j>c0N2d

sj

(
σW (X,D)

)2 ≤ cN −2s
∑

(z,ζ)∈A(Γ)\A(ΓN )

|γ(−z, ζ)|2m(−z, ζ)2.

From this inequality and from the fact that {sj(A)} is a nonincreasing
sequence, we obtain the estimate

sk

(
σW (X,D)

)
≤ ck−(s+d)/2d

( ∑
(z,ζ)∈A(Γ)

|γ(−z, ζ)|2m(−z, ζ)2
)1/2

.
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Thus, if we have the inequality

(5.11)
( ∑

(z,ζ)∈A(Γ)

|γ(−z, ζ)|2m(−z, ζ)2
)1/2

≤ c‖σ‖
M2,2

m
,

then we have
sk

(
σW (X,D)

)
≤ ck−(s+d)/2d‖σ‖

M2,2
m

.

If in addition (s + d)/2d > p, then we have

‖σW (X,D)‖Cp ≤ c‖{k−(s+d)/2d}‖lp ‖σ‖
M2,2

m
= c‖σ‖

M2,2
m

,

which implies the claim of Theorem 1.2 for t = 1/2 with the weight (1.5).
If we take

ΓN =
{
(α,β) ∈ Γ

∣∣ |β1| + |β2| ≤ N
}
,

then we also have kN = rank(σW
N (X,D)) ≤ c0N

2d and

A(ΓN ) =
{
(z, ζ) ∈ A(Γ)

∣∣ |z1 − ζ2/2| + |−z2 − ζ1/2| ≤ N
}
.

Hence, by the same argument as above, we obtain

sk

(
σW (X,D)

)
≤ ck−(s+d)/2d

×
( ∑

(z,ζ)∈A(Γ)

|γ(−z, ζ)|2(1 + |z1 − ζ2/2| + |−z2 − ζ1/2|)2s
)1/2

= ck−(s+d)/2d
( ∑

(z,ζ)∈A(Γ)

|γ(−z, ζ)|2m(−z, ζ)2
)1/2

,

where m is the weight function of (1.4) with t = 1/2. Hence, if inequality
(5.11) holds, then the claim of Theorem 1.2 for t = 1/2 with weight (1.4)
follows.

Thus, the rest of the proof is to show the inequality (5.11) for the weight
functions of (1.4) and (1.5). This can be done at least for the following
special choice of φ and Λ:

φ(x) = 2d/4e−πx2
(x ∈ Rd),

Λ = aZd × bZd, a, b > 0, ab < 1.
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In fact, for the above φ and Λ, it is known that {ρ(α)φ}α∈Λ is a frame for
L2(Rd); this fact is due to Seip and Wallstén ([21], [22]). We have

Φ(x,ω) = W (φ,φ)(x,ω) = 2de−2π(x2+ω2),

and for this Φ, using the inequality of Lemma 3.2 and arguing in a similar
way as in the proof of Theorem 1.4, we can prove inequality (5.11). This
completes the proof.

Finally, we give a sketch of an alternate proof of Theorem 1.4 for the case
0 < p ≤ 1.

An alternate proof of Theorem 1.4 for 0 < p ≤ 1. With an appropriate
pair Φ,Ψ ∈ S(R2d) and with appropriate α,β ∈ (0, ∞), we have the rep-
resentation

σ =
∑

k,l∈Z2d

〈σ,TkαMlβΦ〉TkαMlβΨ

with

‖σ‖Mp,p ≈
( ∑

k,l∈Z2d

|〈σ,TkαMlβΦ〉 |p
)1/p

(see [5, Theorem 3.7]). We take ϕ1,ϕ2 ∈ S(Rd) and take Ψ to be the
Rihaczek distribution

Ψ(x,ω) = R(ϕ1,ϕ2)(x,ω) = ϕ1(x)ϕ̂2(ω)e−2πixω, x,ω ∈ Rd.

Then TzMζΨ(X,D) has the following simple form:

TzMζΨ(X,D)f(x) = e−2πiζ1z1 〈f,Mz2Tz1+ζ2ϕ2〉Mz2+ζ1Tz1ϕ1(x)

(see [8, Lemma 8.35]). In particular, TzMζΨ(X,D) is an operator of rank 1,
and

(5.12) ‖TzMζΨ(X,D)‖Cp ≤ c

with c independent of z and ζ. We use the fact that ‖ · ‖p
Cp

is subadditive
for 0 < p ≤ 1:

(5.13) ‖T + S‖p
Cp

≤ ‖T ‖p
Cp

+ ‖S‖p
Cp

, 0 < p ≤ 1
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(this fact is due to McCarthy [15, Theorem 2.8]). Now combining the above
results, we obtain, for 0 < p ≤ 1,

‖σ(X,D)‖p
Cp

=
∥∥∥ ∑

k,l∈Z2d

〈σ,TkαMlβΦ〉TkαMlβΨ(X,D)
∥∥∥p

Cp

≤
∑

k,l∈Z2d

|〈σ,TkαMlβΦ〉 |p‖TkαMlβΨ(X,D)‖p
Cp

�
∑

k,l∈Z2d

|〈σ,TkαMlβΦ〉 |p ≈ ‖σ‖p
Mp,p .

In the above proof, the use of the Rihaczek distribution makes the argu-
ment simple but is not essential since, as the argument in the proof of
Theorem 1.2 shows, the estimate (5.12) holds for arbitrary Ψ ∈ S(R2d).

If we use Lemma 2.3, we can also avoid using the subadditivity (5.13). In
fact, the argument in the proof of Theorem 1.2 shows that, for the frame
{gmn} of Example 2.2,

‖TzMζΨ(X,D)gmn‖2
L2 ≤ c〈z1 + ζ2 − m〉 −N 〈z2 − n/2〉 −N

(see (3.5)), which implies that

∑
m,n∈Zd

‖TzMζΨ(X,D)gmn‖p
L2 ≤ c.

Hence, if 0 < p ≤ 1, we have

‖σ(X,D)‖p
Cp �

∑
m,n∈Zd

‖σ(X,D)gmn‖p
L2

≤
∑

m,n∈Zd

( ∑
k,l∈Zd

|〈σ,TkαMlβΦ〉 | ‖TkαMlβΨ(X,D)gmn‖L2

)p

≤
∑

m,n∈Zd

∑
k,l∈Zd

|〈σ,TkαMlβΦ〉 |p‖TkαMlβΨ(X,D)gmn‖p
L2

�
∑

k,l∈Zd

|〈σ,TkαMlβΦ〉 |p ≈ ‖σ‖p
Mp,p ,

where the assumption that p ≤ 1 is used to obtain the last ≤.
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