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SCHATTEN p-CLASS PROPERTY OF
PSEUDODIFFERENTIAL OPERATORS WITH
SYMBOLS IN MODULATION SPACES

MASAHARU KOBAYASHI anpD AKIHIKO MIYACHI

Abstract. It is proved that the pseudodifferential operators o¢ (X, D) belong to
the Schatten p-class Cp, 0 < p < 2, if the symbol o(z,w) is in certain modulation
spaces on R¢ x RY.

81. Introduction

The Schatten p-class C), is the class of compact operators introduced by
von Neumann and Schatten, which is defined as follows (see [2], [20]). Let
0 <p<oo, and let A be a compact operator on L?(R%). If the singular

values sj(A) of A, that is, the eigenvalues of the positive compact operator
A = (A% A) 12, satisty || Allc, = (252, 55(A)) "7 < 00, then A is said to be
in the Schatten p-class Cp, and we denote A € C),.

If o(x,w) is a function on R% x RY and ¢ € R, then the pseudodifferential

operator o(X, D) is defined by

o(X,D)f //de (1—t)z +ty,w)e 2@y £ (y) dy dw

= / / G (& m)e*™ TS £ (n + ) dE dn.
R2d

The operator o.(X, D) is a generalization of the Kohn-Nirenberg correspon-
dence (t=0)

~

U(X,D)f(x):/Rd o(z,w) (w)e%imdw,

and the Weyl correspondence (t =1/2)
O'W // (L‘ + y 27ri(x—y)wf(y) dy dw.
R2d
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120 M. KOBAYASHI AND A. MIYACHI

We will consider sufficient conditions on symbols o(z,w) to ensure that
the operator o4(X, D) belongs to the Schatten p-class Cp. These types of
issues have been studied by a number of authors using a large variety of
methods (see [19], [18], [1], and [9], [10], [12] cited below). In this article, we
consider the pseudodifferential operators with symbols in the modulation
spaces, which are defined as follows.

DEFINITION 1.1 [3, Definition 6.1]. Fix a nonzero ¢ € S(R"), 0 < p,q <
0o, and a positive function m on R™ x R™ which satisfies

(1.1)  mz+2,¢+) <Cm(z, Q)1+ 2+, 2,(7 ¢ €eR,

for some constants C >0 and s > 0. Then the modulation space M%7 (R™)
consists of all tempered distributions f € S'(R™) such that the quasi-norm

1l = (/Rn (/Rn |f* (Mcp)(2)[Pm(z, Q)P dz)Q/p dg) H

is finite, with obvious modifications if p or ¢ = cc.

It is known that MEY(R") and the equivalence class of the quasi-norm
do not depend on the choice of the function ¢ (see [3], [5], [7]). We simply
write MP4(R") instead of ME?(R™) when m = 1.

In the present paper, we will use the modulation space on R?¢. We will
frequently write the elements of R?¢ as

z=1(z1,22), 21,%2€ R

Concerning the modulation spaces and the Schatten class, the following
theorem is known.

THEOREM A (see [9], [12]). Let 0 < p < 2. Then the pseudodifferential
operators og(X, D) = o(X,D) and 01,5(X,D) =0"(X,D) are in the class
C, if 0 € Mi*(R*) with

(1.2) m(z,¢) = (14 [21] + [22] + G| + [C2])®

and s > (2d/p) —d.

As for the modulation space Mz5>(R2%) of this theorem, the following
identification is known (see [7, Proposition 11.3.1]). If m is defined by (1.2),
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with s > 0 in general, then

ol 22 = || (1 + 21| + 122\)50(21722)“@1 .
(1.3) ’
+ H(l + ’C1| + ’C2|)88(C17<2)HL?1’C27

where ¢ denotes the Fourier transform defined by
8((1, CQ) :/ 0(21, Z2)ef27ri(z141+z2C2) dz1 dzo.
RxR4

One of the main purposes of the present paper is to give a refinement of
Theorem A, which reads as follows.

THEOREM 1.2. Let 0 <p <2, let s> (2d/p) —d, and let t e R. If 0 €
MZE*(R2) with

(1.4) m(z,¢) = (1+|z1 + (1 = )Co| + |22 — t&1])°
or with
(1.5) m(z,¢) = (1+ |21 — tl| + |22+ (1 = )G1|)°,

then o(X,D) € Cp.

We will also prove identifications similar to (1.3) for the modulation
spaces M%’Q(R%) of Theorem 1.2. In order to state the results, we use
the following notation. We write the partial Fourier transforms of functions
7 on R?*? as

Fi7(¢1,22) Z/dT(thz)e%iZlCl dz1,
R

FQT(Zl,C2)=/dT(21,Z2)62”2242 dz.
R

For functions ¢ on R?? and for ¢t € R, we define

627rzt21 ) O'(

(21, 22) = 21,22).

Then we have the following theorem.

THEOREM 1.3. Let o € L2(R2?), and let s be a nonnegative real number.
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(a) If m(z,() = (14 |z1 +t(2|)® with t #0, then

o]l 22 = (| (L+ [Cal)* Fory je(21,C2) | 12

21,2

(b) If m(Z7C) = (]‘ + |Zl|)57 then
oz = 0+ 21012 s
(c¢) If m(z,¢) = (14 |22+ tC1])® with t #0, then

ol gz =[] (1+ Kl‘)sFlTl/t(ClaZQ)HLEL

22

(d) If m(z,¢) = (1 + [22])*, then
||U“M7%12 ~ H(l + |ZQ’)SO'(Z1,ZQ)HL§1’ZQ.
If, for example, m is the weight of (1.4) and if we define

mi(z,¢) = (1+ |21+ (1 = 1)¢2l)°,
ma(z,¢) = (14|22 —t¢])°,

then obviously m(z,() = mi(z,{) + ma(z,(), and hence,

loll 22 = Nlollpgz2 + llollpgzz-

This simple fact combined with Theorem 1.3 will give full identifications of
the modulation spaces of Theorem 1.2. For example, for the weight m(z, () =
(14 |21 + C2| + |22|)®, which is the m of (1.4) with ¢t =0, we have

ol 10+ 1D Fori(en @)z + [+ 120022 -

Grochenig and Heil [9] and Heil, Ramanathan, and Topiwala [12] proved
Theorem A by constructing finite-rank operators that approximate the pseu-
dodifferential operators. In fact, the argument of [9] and [12] can be modi-
fied to give a proof of Theorem 1.2 (see Section 5 below). In the present
paper, we will give a different method to prove Theorem 1.2, which is
another main purpose of this paper. Our method is based on a modified
form of McCarthy’s lemma, which characterizes the quasi-norm of C, (see
Lemma 2.3), and our argument consists of a direct estimate of the L2-norms
of functions.

Using the same method, we also prove the following theorem.
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THEOREM 1.4. Let 0 < p <2, and let t € R. If 0 € MPP(R??), then
O't(X,D) S Cp.

The case 1 < p < 2 of this theorem has already been proved by Gréchenig
and Heil [10]. The case 0 < p <1 does not seem to have appeared in the
literature.

Finally, we note that Theorems 1.2 and 1.4 are mutually independent;
that is, Theorem 1.2 does not cover Theorem 1.4, and Theorem 1.4 does
not cover Theorem 1.2. This can be seen from the following two facts. First,
if 0<p<2and s>0, then MPP(R2) & MA*(R24), where m is one of
the weights of Theorem 1.2. Second, if 0 <p <1, s< (4d/p) — 2d, and m
is one of the weights of Theorem 1.2, then M5*(R24) o4 MPP(R24). The
first fact is elementary, and the proof is left to reader. The second fact is
proved by Grochenig [6, Proposition 3] for the case p = 1. That proof can
be generalized to the case 0 < p <1 without essential change.

Notation

We write S(R™) to denote the Schwartz space of all complex-valued
rapidly decreasing infinitely differentiable functions on R", and we write
S'(R™) to denote the space of tempered distributions on R™, that is, the
topological dual of S(R"). We define

= ([ 18P ae)”

for 0 <p < oo and || f||fe = ess sup;crn |f(t)|. We use the pairing (f,g)
between f € S'(R™) and g € S(R™) in a manner consistent with the inner
product

(frg)= [ [f(t)gt)dt

R”

on L?(R"). For a function f on R™, the translation and the modulation
operators are defined by

Tf(t)=f(t—z) and  M,f(t) ="' f(t), z,weR",
respectively. We note the following;:
(T:ch)/\ = M,mf, (wa)/\ = waa ToM, = 6_2mszwa-

We define f by f(t) = f(—t). For € R", we write (z) = (1 + |z[2)!/2.
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For nonnegative functions F’ and G on a set X, we write F(z) S G(z)
(x € X) if there exists a positive constant C' independent of x € X such that
F(x) <CG(z) for all z € X. We write F(z)~G(x) (r € X) if F(z) < G(x)
(re X) and G(x) S F(x) (z € X). We omit to write (z € X) if the variable
x and the domain X are obviously recognized from the context. We also use
the notation G(x) 2 F(z) in the same meaning as F(z) < G(x).

82. A modification of McCarthy’s lemma

We first recall the definition of frames for L?(R%).

DEFINITION 2.1. A sequence {f,}5%; in L?(R") is called a frame for
L?(R") if there exist constants A, B > 0 such that

(2.1) Alfl72 <UL < BIflTs  feLPRY).
v=1

An orthonormal basis is a special case of the frame. In the proofs of
the main results, we will use the Gabor frame {gmn }y neza given in the
following example.

EXAMPLE 2.2. Let g be a function in C$°(R?) such that supg C [-1, 1]¢
and Y, za|g(x —m)[> =1 for all z € R If we define
gmn (@) = M2 Tng(z) = g(z — m)e™™*  m,ncZ,
then the family {gimn}, neza is a frame for L?*(RY), which satisfies (2.1)
with A= B =1 (see, e.g., [7, Theorem 6.4.1]).

To estimate the quasi-norm on C),, we use the following lemma, which is
a modification of McCarthy’s lemma (see [15, Lemma 2.2]).

LEMMA 2.3. Let T be a compact operator on L?>(R?).
(i) If 0<p<2, then

. > 1/p
17N, ~inf (S IT L)
v=1

(ii) If2<p< o0, then
> 1/p
ITlle, ~sup (3 ITAG.)
v=1

In (i) and (ii), we take the infimum or supremum over all frames {f,}52,
for L>(R%) satisfying (2.1) for fized A and B.
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McCarthy [15, Lemma 2.2] gave this lemma using orthonormal bases
instead of frames, in which case the relations hold with equality in place of
~. The following proof is a modification of the argument given in the book
of Komatsu [14, Proposition 8.5].

Proof of Lemma 2.3.

(i) By the Schmidt representation, 7' can be written as

o0
Tf:ZAj<f76j>6;'7 f€L2(Rd)v
j=1
where {e;}22; and {e}}32; are orthonormal systems and \; = s;(T") (see,
, [16, Proposition 16. 3])
Let {f,} be an arbitrary frame for L?(R?) satisfying (2.1). Since 0 < p <
2, the function #7/2 is concave. Therefore, for any sequence {aj}52, with
j=>0and 7%, a; < B, we have

(2.2) <§: %y 2.> > Z T,

j=1
Taking a; =[(fy, €;)|?, we have 37, a; = Zj {fvrej)? < full72 < B and

oo / o0
ST RN = S0 (S 1) 223) 2 B ST S () P

v oj=l1 v =1

(p/2)—1 P
> ABP/7IN )P,

j=1
Thus,

1 i 1
inf(Z HTquiz) 7 At g2~/ (Z AJ;) v
v j=1
= APBUATUI T c,.

On the other hand, let {€,} be an orthonormal basis for L?(R?) contain-
ing {e;}, and put f, = A/?€,. Then {f,} is a frame for L?(R?) satisfy-
ing (2.1). Since T'f, =3, Aj (A%, ej)e; = )\j(y)Al/Qe;(y) if e, = ¢j(,) is in
{e;}, and =0 if €, ¢ {e;}, we have

DTG =472 N
v j=1
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Therefore,
] 1/p > 1/p
inf (S ITA L) " < a2 (3oX) " = A7,
v j=1
(ii) If 2 < p < 0o, then we can actually prove the equality

sup (S ITLIG) " = B2 oo

In fact, for 2 < p < oo, the function t?/2 is convex, and the inequality reverse
to (2.2) holds. Hence, we can prove the inequality

1/p
sw (Y ITLIE.) " < BT cr

by the same argument as in the first half of (i). The converse inequality can
be seen by the use of the frame f, = BY/2¢, with €, being the same as in (i).

0
83. Proof of Theorems 1.2 and 1.4

Before we prove Theorems 1.2 and 1.4, we recall some basic properties
of modulation spaces MEY(R™). (For the proofs, we refer to [3], [5], [7],
[13], or [17].) The space M};*(R™) is a quasi-Banach space. If 0 < p,q < oo,
then S(R™) is dense in MEY(R™). If 0 <p; < p2 < 00,0 < q1 < g2 < 00,
and mg < my, then MPL? (R™) — MEPZ?(R™). The weight functions m of
Theorem A and Theorem 1.2 satisfy condition (1.1) with n = 2d.

The following lemma will be used to represent o(z, D) as a superposition
of “elementary operators.”

LEMMA 3.1 ([7, Corollary 11.2.7]). If ¢,v, f € S(R™) and if {(p,9) #0,
then
F0=—— [ e Mep()Mep(t) dzdg. tER,
(p,1) JR2n

where the function

(2,Ct) = [ Mep(2) T Mcy(2)

is in the class S on R3" =R x Ry xRy
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Proof of Theorem 1.2. PART 1. We prove the result for the weight (1.4)
with t = 0. Notice that M4 (R2?) ¢ L2(R2%) and that the pseudodifferential
operators (X, D) with symbols in L*(R2?) are of Hilbert-Schmidt class.
Hence, o(X, D) with o € Mz?(R2?) are in the Hilbert-Schmidt class and,
in particular, compact.

Let {gmn} be the frame given in Example 2.2. By virtue of Lemma 2.3(i),
the claim of Theorem 1.2 for o(X, D) follows from the inequality

/
(> \\U(X,D>gmn|!§2)1pgcuaumz

m,ncZd

Since S(R2) is dense in Mp;?(R2%), it is sufficient to prove this estimate for
o € S(R??). Thus, in the rest of the argument, we assume that o € S(R??).

Take ®, ¥ € S(R??) such that (®, V) # 0. By Lemma 3.1 with n = 2d, we
have

1
a(a:,w):@/RMU*MCQ(z)TZMC\I/(x,w)dde, z,w e RY.

Let f € S(R?). The above formula yields

~

o(X,D)f(z)= ﬁ /R5d o % Me®(2) T, M0 (2,w) f (w)e*™™ dz d¢ dw,
r R

Notice that the above integrand is a function in the class S on R% = R2? x
R x RY x R{. Thus, we obtain

lo(X, D) fl[7

(3.1) = m/RHdJ*MC(I)(Z)TZMC‘IJ(x’W)J?(W)e%mw

X ox Ma®(2") T MV (x, w’)f(w’)e_%iwl dzd¢dwdz' d¢' do' dx.

The integrand of (3.1) is a function in the class S on R4 = R2? x Rgd X
Ri X szl X Rgij X RZ, X Rg, and hence we can freely change the order of
integration.
We simply write
a(z,0) =0 x Mc®(2)
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and apply (3.1) to f = gmn. We have

— 6727rim(wfn/2)

gmn(w) =g(w —n/2)
and
T, MV (z,w)e?™ o
e2mi(z (1) 2mito(214C2)  2mi(—21 22— 21C1 —22Ca)

=0O(x — 2z1,w — 29)

where O(z,w) = ¥ (x,w)e*™ @, With these expressions, (3.1) can be written
as

lo(X, D)gmnl72

— ; e2mi(—z122—21C1 = 22(2)
(@, )2 Jrue

(3_2) % eQTri(zizé-i—z{Ci-i—zéCé)a(z’ ()a(z/’ (/)627rix(zg—zé+g“1—§{)

. _ Y
x €2mw(z1+C2 m)62mw (—2 C2+m)@(:C — 2w — 22)@(1, _ zi,w’ _ Zé)

X §(w—n/2)g(w' —n/2)dzd( dwdz d¢' dw' da.

In the integral of (3.2), we first take the integration with respect to
(z,w,w’). Consider the integral

/ e?wix(zg—zé—&-Cl—Ci)eZwiw(zl—i—Cg—m) e27riw’(—z£ —Ch4m)
R3d

(3.3) X O(z — z1,w — 22)O(x — 2],w — 2))

X glw—n/2)g(w —n/2)dxdwdy .

This is the inverse Fourier transform of the function

(z,w,w’) = O(x — 21,w — 20)O(x — 21,0 — 2})
X g(w—n/2)g(w —n/2)

evaluated at (22 — 25 + G — (},21 + (2 —m,—2z] — 5 +m). Since © and g
are in the class S, we see that the absolute value of the function (3.4) is
majorized by a constant times

(3.4)

(@ —21)™Mw = 22) "MW = 25) TV (a1 = 2) TV (22 —/2) TV (2 — /)7
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where N can be taken as arbitrarily large. The same estimate also holds
for every derivative of (3.4). Hence, by integration by parts, we see that the
absolute value of integral (3.3) is majorized by a constant times

(z1 = 21) " V{z2 = 1/2) "V (2 —n/2)~"

X (zg— 2+ G — () Mz +G—m) V(=2 -G +m)~V.
Combining the last estimate with (3.2), we obtain
‘|U(X7D)gmnH%2
< [l Ollat )l ) (22 = /2y
RB8d

X (2 =n/2) Mz — 25+ G — () Mz + G —m) ™V
x (=2} — ¢ +m)y N dzd¢dZ d¢’

= (%).

We use the inequality |a(z,¢)||a(2',¢")] < 27 (Ja(z,O)|? + |a(2',¢)|?) and
use the symmetry of the variables (z,¢) and (2/,{’) to see that

() <e [ laleOPe= ) =/~

x (2 —n/2) V(= + G- )N
X {21+ G —m) M=z — GG+ m) N dzd(dZ d¢

—c [l OP e - ) o —n/2)
R6d
X (2 —n)2) N (21 + G —m) N dzd¢dZ

= [ 10O+ G m) (e = n/2) Y dzdc
RA4d
Thus, we have proved the estimate

|0(X, D)gmnl %2 < ¢ / a2, )P (et + Go—m) N
R4d

(3.5) N
X (zg —n/2)"" dz d(.
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Let g be the real number defined by p/2+1/q = 1. Then (3.5) and Holder’s
inequality give

Z ||O-(X>D)gmn“1£2

m,neZd

<c > </R4d|04(2’70’2<21+ﬁ2—m>N<22—g>_Ndde)p/2

m,ncZd

<o X atlmlr il [ jaGOR e+ G -m) Y
m,ncZd
X <z2 — 2>_Nal,zd§>p/2

(Xt ml )

m,ncZd

—o( X (tlml+ ) [l OF e+ G —m)

m,ncZd
X <z2 — g>7Ndzd(>p/2
= (%),

where the first = holds because spg > 2d by our assumption that s > 2d/
p — d. Since, for sufficiently large IV,

n\ —N
> (lml+ ) e+ G —m) N (- )
m,ncZ9

n
~ Y Atlat Gl i) (2 —5)  ~ 1+ a4+ Gl + =)™,

nezd

we obtain

p/2
()% ([ 10 OP+ a1+ ol + fal P dd6)” = ol

where m is the weight of (1.4) with ¢ =0. Thus, the claim for the weight
(1.4) with ¢t =0 is proved.
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PART II. We prove the result for the weight (1.5) with ¢ = 0. To this end,
we consider the adjoint operator o(X, D)* of (X, D). Take ®, ¥ € S(R>?)
such that (®,¥) # 0, and represent o(X, D) as

~

1 .
( ) 2miTW dz dC dw,

D))= s [ e OT M)

where o(z,() =0 * M:®(z). Then we have
(f,0(X,D)*¢)
~(o(X.D)f.0) = | o(X.D)()ila) da

Rd

-~

- <c1>1\i> /de (2, )T MY (2, w) f (w)e*™ () dz d€ dw dx

a(z, Q)T MV (z,w)e*™ ™ y(2) dz d¢ da dw

Rd R5d

:<f,}"w[ﬁ /RSda(z,g)TZMC\I/(x,w)e%iww(x)dzdcdx}>,

where F, denotes the Fourier transform with respect to the variable w.
Thus,

O'(X,D)*’(Z):]:w[ 1~ /R5da(z,C)TZMC\IJ(JC,w)e%m‘JMddedx].

(@, V)
(3.6)

Since ||o(X, D)|c, = |lo(X,D)*|lc, (see [2, p. 1092]), we have
< . p \ /P
lo(X. D)lle, S (Y2 lo(X, DY gl )
m,neZd

by Lemma 2.3(i), where {gms} is the frame of Example 2.2. So, we estimate
llo(X,D)*gmn|lr2. Using the Plancherel theorem and (3.6) with ¥ = g,
we have

HU(X D)*gmnH%2

~ H/ OT. MY (z,w)e*™ ™ g, (z )dzdgdx‘
R5d

w

https://doi.org/10.1215/00277630-1543796 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-1543796

132 M. KOBAYASHI AND A. MIYACHI

— / a(z,Oal(?, C/)e27ri(—z1z2—21C1—Z2C2)e2ﬂi(z’12§+z’1§{+zé§é)

X Oz — 2z1,w — 22)O(2' — 2}, w — 25) g(x —m)

% g(x’ _ m)€27rix(zz+(1fn/2)627rix’(fzéfq+n/2)
x MW@t -6G) 4z d¢ da d2' d¢' da’ dw

= (%),

where O(z,w) = ¥(z,w)e? @ In the above integral, we first take the inte-
gration with respect to (x,2’,w). As in the proof of Part I, we obtain

‘ / p2miz(za+Ci—n/2) 2mia! (—zh—CiAn/2) 2mis(z1+Ca—7h —Ch)
RBd

X Oz — 21,w — 22)0(2 — 2, w — 25) g(x —m)g(x’ —m) dzx dz’ dw
1 2

S e —m) N (zg —m) TV (zg — 25) N

X (z2+C—n/2) M=z = +n/2) NV + -2 -GN,

where N can be taken arbitrarily large. Thus,

()5 [l Olla ¢z = m) ™ (o = m) ™ e = )™
X (z2+ G —n/2) "N (=25 = (L +n/2) N

X (214 G — 2y — )N dzd¢dZ d¢’
s/ a5 OP (a1 —m) N (2 —m)~ (25 — )N
R8d

x (22 +C —n/2) N (=2 — ({ +n/2)~N
X (214 Co— 2] — Q) Ndzd¢de d¢’

w/ (. O (1 —my ™ (2 —m) N (g — )N
R6d

X (20 + ¢ —n/2) N dzd¢de

< [ 0P =) e o2
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Hence, in the same way as in Part I, we obtain
P
lo(X, D)2,

< D (X, D) gmall7

m,ncZd

S Y ([ aGore—m™ (- 2y asag)”

m,neZd

SO e lml+ il

m,ncZd

_N /2
< [ ez P —m N (i -2 dsac)’
/2
< ([ GO+ [l o+l o) ~ ol

where s > 2d/p — d and where m is the weight of (1.5) with ¢t = 0. This
proves the claim for the weight (1.5) with ¢t = 0.

ParT III. Finally, we prove the result for general ¢ € R. We use the
fact that o¢(X, D) can be written as 7(X, D) by a simple transformation of
symbols ¢ +— 7. In fact, if we define the symbol U0 by

(Uo)" (&, m) = 2785 (¢,m),
then o4(X, D) = (U:o)(X, D). We have
(3.7) (Upo) * Mc®(2) = e 225 5 MUy ® (21 + tlo, 22 + (1)

(see [9, Lemma 2.1], [7, Corollary 14.5.5]). Hence, the estimate obtained in
Part I yields

lou(X, D)llc, = tho)(X, D)c,
1/2
S ([ 10h0) s M) P(1+ 21 + G + |za > )
R4d
- ( /R o x MUz + 1G22 + 1)

9 1/2
X (14|21 + Gol + | 22)* d2 dC)
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— </R4d |U*M<L{t<1>(zl,zQ)|2

2s 1/2
X (14 |21+ (1= £)Ca| + |22 — t€1]) dde) .

This implies the desired result for the weight (1.4), since the last quantity is
equivalent to the norm of ¢ in MZ2? (see Definition 1.1 and the paragraph
just below it).

In the same way as above, the estimate obtained in Part II yields the
result for the weight (1.5) for all ¢ € R. 0

To prove Theorem 1.4, we use the following lemma.

LEMMA 3.2 ([5, Lemma 2.3]). Let @o(z) =e ™, z € R™. Then for all
p>0,7r>0 and (20,(0) € R" x R", we have

2
epTT /2

|f*MC0300(20)’p < |f*M<(p0(Z)’pdde,

1B(r)| J(z-20)2+(¢~co)2<r?
where |B(r)| is the volume of the ball with radius r in R?".

Proof of Theorem 1.4. We first prove the result for the case t = 0. Let
{gmn} be the Gabor frame as given in Example 2.2. By the same reason as
in the proof of Theorem 1.2, it is sufficient to prove the inequality

(> IIU(X,D)gmnllig)l/p§C||a||Mp,p

m,neZd

for o € S(R*).
Taking ®, ¥ € S(R??) as in the proof of Theorem 1.2, we have the esti-
mate (3.5) and thus

Z o (X, D)gmnHzL)Q

m,neZd

S Y ([ oM P+ o= m (2 )

m,ncZ?
= ().

To proceed further, we take the special choice of ® as

dz dg) o

D(2) =Pp(2) = e ™’ zeRY,
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and estimate (x) with ® = ®( as follows:

_ n\ —N\p/2
x (D sup fox Mc®o(2)*(z1 + (o — m) N<Zz—§> )
k1 z2d #€k+[0,1]2¢

Cel+[0,1]>¢

m,neZd

%

_ n\ —N\p/2
< (3 sup o (Mc®o)(2)[Pky + Lo —m) N<k2——> )
klez2d #€k+[0,1]2¢

¢el+[0,1)2¢
< 2
m,neZd
_ n\ —Np/2
X Z sup ‘O’*MC(I)O(Z)‘p<k1+l2—m> Np/2<k2—§>

ke lez2d #€k+[0,1]2
¢el+[0,1]24

Q

sup  |ox McPo(2)[?,
k lesz Z€k+[0,1]2d
’ ¢el+[0,1)2¢

where we used the assumption that p <2 to obtain the <. By Lemma 3.2,
the last sum is majorized by a constant times

/ lo* M ®o(2)|P dzd¢
(2—k)2+((—1)2<16d

k,lcZ2d
< [l M ddd ~ ol

This proves the result for o(X, D).

Next we prove the result for general t € R. We use the operator U4; used
in the proof of Theorem 1.2. Since o+(X, D) = (Uo)(X, D), it is sufficient
to prove that the operator U; is bounded in MPP(R>2%).

Taking a ® € S(R??), we have (3.7) and hence

/ |(Upo) * M P(2) [P dzd¢ = / lo s MU (2)|P dz dC.
R4d R4d
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Then we have |[Uso||pre ~ ||0|aree, since Upy® € S(R??) \ {0}. This com-
pletes the proof of Theorem 1.4. U

84. Proof of Theorem 1.3

Proof. We will prove only (a) and (b), because we can treat (c¢) and (d)
in the same way as (a) and (b). We take a ® € S(R?9)\ {0}.

(a) Let m(z,¢) = (1+ |21 +t(2|)®,t #0. What we have to prove is
[z +1C2)°0 % Mc®(2) |12 (raa) ~ || (L 1Gl)* Farr (v, &) || 2 (Ra
L2 . (R
(4.1)

By complex interpolation with respect to the parameter s, it is sufficient to
prove (4.1) for all nonnegative integers s. If s is a nonnegative integer, then
the right-hand side of (4.1) is equivalent to

Z H Tl/t Y1,Y2 )HL2

laf<s

Thus, we will prove that

(4.2) [{z1 +1(2)°0 « M P(2 ||L2 Z Hayg Tl/t Y1,Y2 )HL2

la|<s

for all nonnegative integers s.
We first prove that

(43) e +1G)°0* Mc®()llz S Y 19, (myelwn o)) s
la|<s

Set ©(y) = 6_2”%3/192@(3/). Then,

| Mc®(2)]

= ’ / o(y)e* VP (z — y) dy‘
R2d

e27ri%(21—y1)(22—y2)@(z _ y) dy‘

‘ / ()8 — y)e 2w R+ s +Cz)dy‘7
R2d
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and thus, by integration by parts,
’( omi)led ( + Cg) o*x McP(2)

= /R L, )0z —y)oy, [e—zm(yl(%+<1)+y2(%+<2)>]dy’

(4.4) =| [ o5 [np)O(z — y)le 2 (F e gy
R2d

[, T (&) A mener et -y

o' +a''=«

o= 2mi1 (F 401 +92(3+02)) dy‘,

where
W) =0 (ruly)  and 00 (y) = a5 (O(y)).

Taking the sum of (4.4) over |a| < s, we obtain
[ o MOEP+ |21+ 1G] dedg
R4d

o 2
ﬂ—&—@) ox Mc®(2)| dzd(

|a|<s/R4d ( t

S

|o/+a”|§s

0,&’ a//
/de Tl(/t ()0 (z - y)
x e~ 2mi (FH)+(F+62) gy ? dzd(

= T M 20y Pz G

o/ +a'|<s

= 2 / iy« M@ () dz
la/+a|<s R

SO vl PR I A GRS A
la|<s lo|<s

137

where the last ~ follows from the fact that M??2 = L2. This proves (4.3).
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Next, we prove the converse inequality

(4.5) Z H Tl/t yl,yQ HL2 iy H<Z1 +t§2>80'* MC(I)(Z)HL?C'

|af<s

We prove this by induction on s.
When s =0, (4.5) is obvious since

722l e = lloll e = llo M@ (o)l 2

Assume that (4.5) holds for a nonnegative integer s. Let « be a multi-
index with |a| =s+ 1. From (4.4), we have

‘( 2m)‘a|< —|—<2) J*ng)(z)‘

’/ 1?ta) (z— y)e_zm'(yl(%2+<1)+y2(%1+<2)) dy
R2d

(a>
- E /
(6%
a'+a'=a

a0

‘/de l(?ta o, a”)(z — y)e—%i(m(272+C1)+y2(271+42)) dy

= Iy * Mz g, 211 O2)]

o (0,a/) 0,a
- Z (O/) |Tl/t *M(ZTZJrCLZTlJrCz)@( “ )(Z)’

a'+a'=a

a’#£0
Thus, taking the L2 >, c-horm and using the fact that M?? = L?, we obtain

|2miel(Z 4 o) oxmca)| |, + D0 I e 2 R

2 o|<]al

Since, obviously,

vt

>H 2m)|°‘|< +§2) U*Mcfb(z)’

9
L2,
and since the induction hypothesis implies that

[ +a) reaac, 2 5 1yl

2 a'|<[af
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we obtain

07
L 210 e

H<%+C2>S+IU*MC(I'(Z)‘ 2, n

Thus, we proved (4.5).
(b) Let m(z,{) = (14 |z1])®, s > 0. We have

o M) = | [ o)~y dy] = | ()0 =) (O
Hence, by Plancherel’s theorem,
[ JoMea@Pac= [ lot)et:— )P
R2d R2d
and consequently,
ol 22 = / o % Mc®(2)[*(1 4 |21) d¢ dz
m RA4d
= [ o~ )P+l P dydz = (1),
R4d
By the inequality

(L + |z

T < (=),

(I+ |z —p|) 7> <
we obtain

(= [ o)== )P0+ =)0+ i) dy:

~ / ()21 + [ya ) dy
de

and

(1) > /R o)z — )P+ 21— )1+ [y dy d

~ / o () 21+ [1])?* dy.
R2d

Combining the above inequalities, we obtain

2 ~ 2 2s
oz [ I+ dy ;
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85. Alternate proofs of Theorems 1.2 and 1.4

An alternate proof of Theorem 1.2. We will see that Theorem 1.2 can be
proved by a modification of the argument of Heil, Ramanathan, and Top-
iwala [12] or Grochenig and Heil [9]. We follow [12] and give the proof of
Theorem 1.2 for the case t = 1/2; the case of general ¢t € R can be reduced
to the case t = 1/2 with the aid of the operator U; as in Part III of the proof
of Theorem 1.2 (Section 3). Since the essential argument is the same as [12,
Sections 2-5], we omit some details. We use the notation

o"(X, D) = 01/5(X, D).

The argument of [12] (and [9] as well) is based on the fact that the
inequality

(5.1) Y. s(AP<A-TIZ,
j>rank(T)

holds for all compact operators A and for all finite-rank operators T'. Thus,
given a compact operator A, if we find a finite-rank operator 7' which
approximates A well, then we can obtain an estimate of the singular values
of A. To find a finite-rank approximation of A =o" (X, D), we use a Gabor
frame expansion of the symbol o.

To begin with, we recall some basic facts on the Weyl correspondence (for
details, see, e.g., [4]). For a = (a1, a0) € R?*?, we define the unitary operator
pla) in L2(RY) by

pl0) () = T2 2T £ (1 )

For ¢, € L?(R%), the function W (i, %) on R?? is defined by
Wie)aw) = [ e pla-+p/2)0a=p/2) dp.

This function is called the Wigner distribution. (Notice that we are writing
the variables x and w in this order; in [4] and [12], the Wigner distribution
is written as W (p,v)(w,z).) We have the formula

W (p(e)e, p(B)Y) (z,w)
— emi(—aafitanfa) 2mi{ Gy (27+Z1)+Cz(w+22)}W(<p’ V) (@ + 21,0+ 22),
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where

_a+h a2+

(52) z1 9 ; 29 = 2 )

1 =g — [, G =a1—pi.

Using the notation of translation and modulation on R??, the above formula,
can be written as

(5.3) W (p(a)p, p(B)) = emi(mo2hiteal)r MW (p,1h).

We write A to denote the linear mapping R*® — R*¢ defined by

A: (a1, az,61,02) — (21,22,C1,¢2)  with (5.2).

For our purpose, the Wigner distribution is useful since the pseudodiffer-
ential operator corresponding to W (p,) is given by the following simple
formula:

(5.4) W (e, )"V (X,D)f = (f, )¢
We also need the formula
(5.5) le™ (X, D)llc, = ol 2.

Next, we recall some facts from the frame theory (for details, see [7], [11]).
We take a function ¢ € S(R?) and a discrete subgroup A of R?? such that
the functions

¢a = pla)p, a€A,
form a frame for L?(RY). We set
Do g =W(hasdp), (o,0) €l =AxA,
®=W(¢,9).
By (5.3), we have
(5.6) D, g =cm (2Bt MB, (2,) = Ala, B).

The following are known in the theory of frames. The set {®4 g} (a,g)er
is a frame for L*(R??). The dual frame of {¢q}aca is also of the form
{p(0)d}aca with a ¢ € S(RY); we write ¢ = p(a)p. The dual frame of
{®0,5}(a,p)er 1 given by

(5.7) ®o5=W(Par$p), (. B) €T,
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Every o € L?>(R??) can be decomposed as

(5.8) o= (0,050
(a,B)€T

with the series converging unconditionally in L?(R?9).
Now, in order to get a finite-rank approximation of o' (X, D), we take a
subset I'y CI', N € N, and define

(5.9) ON = Z <Ua(1)a,ﬂ>:1;aﬂ'
(O"B)EFN

By (5.4) and (5.7), the operator ok (X, D) is given by

U]V\IT/(X7D) : fH Z <Ua (I)a,ﬁ><fa 5,8)%&-

(azﬂ)GFN

Thus, if {a | (o, 8) €Tn} or {B] (o, B) € T} is a finite set, then o ¥ (X, D)

is a finite-rank operator, and we have

(5.10)  rank(o¥ (X. D)) < min{¢{a | (. 5) €T}, 4{5| (a. ) € Tn}},

where #F denotes the cardinality of a set E. By (5.5) and by the expansions
(5.8) and (5.9), we have

lo™ (X, D) — oy (X, D)|[&, = llo — oI maa)

~ 2
- <U7 q)a7ﬂ>¢)a“3
H(CM,,@)EZF\FN ‘LZ(RQd)
<e ), lo@ap)l,
(o,8)ET\T'y

where the last inequality follows from the fact that {5%3} is a frame for
L?*(R2%). We simply write

7(27 C) = <07 TZMC¢>
By (5.6),

(o, @a,p)| = [{0, T--Mc®)| = [7(=2,0),  (2,0) = A, ),
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and the above inequality can be written as
lo™ (X, D) = o (X, D)|I2, < ¢ > (=2 Q)
(2,0)€AMN\A(TN)
Applying the general principle (5.1), we obtain
2
2o D) e B =50,
J>kn (2,0)€A(MN\A(T'N)

where ky = rank(ok (X, D)).
To get an estimate of ky, we take

Ly ={(a,B) €T |||+ |ag| < N}.

Then, by (5.10),
kv <t{a|(a,B) TN} <N,

where ¢ is a constant depending only on d. From (5.2), we have
ATN) ={(2,0) € A(T) | |21+ /2| + | =22 + 1 /2| < N }.
Thus,
S s QP

(2:0)€AMNA(TN)

SNTE N B QP+ G2l |+ G2
(z,)€AMNA(TN)

=N Y hnOPm(-20)

(z:0eAMNA(TN)

where m is the weight function of (1.5) with ¢t = 1/2. Combining the above
inequalities, we obtain

S si(0V(x,D))? <eNTE 3 (=2, O)Pm(—z,¢)2.

J>coN2d (2:0)€AMNA(T'N)

From this inequality and from the fact that {s;(4)} is a nonincreasing
sequence, we obtain the estimate

1/2
s1(" (X, D)) < ck= 2 ST () Pm(—2,0)7)
(2,0)€A(T)

https://doi.org/10.1215/00277630-1543796 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-1543796

144 M. KOBAYASHI AND A. MIYACHI

Thus, if we have the inequality

61 (Y h=0Pm=0?) " <dlolye.

(z:0)eA(T)

then we have
sk("(X,D)) < ek D2 g s,

If in addition (s + d)/2d > p, then we have
lo” (X, D)llc, < ell{k=CF D2 | lo]] 2.2 = cllol] 22,

which implies the claim of Theorem 1.2 for t =1/2 with the weight (1.5).
If we take
Iy ={(@B) €T | 81| +[B] < N},

then we also have ky = rank(o (X, D)) < cgN?¢ and
ATN) ={(2,0) € A(T) | |21 = G2/2| + | =22 = (1 /2| < N }.
Hence, by the same argument as above, we obtain

sk(cV (X, D))

< k= (s+d)/2d

(X lv(—za<>l2<1+1zl—<2/2r+\—22—<1/z\>25)1/2

(=)A()

1/2

= ek 0P ST (e OPm(-20?)
(=) €A()

where m is the weight function of (1.4) with ¢t =1/2. Hence, if inequality
(5.11) holds, then the claim of Theorem 1.2 for ¢ = 1/2 with weight (1.4)
follows.

Thus, the rest of the proof is to show the inequality (5.11) for the weight
functions of (1.4) and (1.5). This can be done at least for the following
special choice of ¢ and A:

o(z) = 9d/4 ¢~ (x €RY),
A=aZ? x bZ? a,b>0, ab< 1.
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In fact, for the above ¢ and A, it is known that {p(a)p}aecna is a frame for
L?*(R%); this fact is due to Seip and Wallstén ([21], [22]). We have

O (z,w) = W(e, ) (z,w) = 20e~2m(#"+%)

and for this ®, using the inequality of Lemma 3.2 and arguing in a similar
way as in the proof of Theorem 1.4, we can prove inequality (5.11). This
completes the proof. 0

Finally, we give a sketch of an alternate proof of Theorem 1.4 for the case
O<p<l.

An alternate proof of Theorem 1.4 for 0 <p<1. With an appropriate
pair ®, ¥ € S(R??) and with appropriate a, 3 € (0,00), we have the rep-
resentation

o= (0, TeaMip®)Tha Mi¥
k,lcZ2d

with

1/p
ol = (D2 I Tha Mip@)?)
k,leZ2d

(see [5, Theorem 3.7]). We take ¢, € S(R?) and take ¥ to be the
Rihaczek distribution

U(z,w) = R(p1, p2)(2,0) = p1(2)pa(w)e ™, 2,0 e R™
Then T, MW (X, D) has the following simple form:
TZMC\IJ(Xa D)f(ﬂ?) = 6_27ri<121 <f7 MZQTZ1+C2§02>M22+(1TZ1 ¥1 (17)

see (8, Lemma 8.35]). In particular, T, MV (X, D) is an operator of rank 1,
¢

and
(5.12) |T-Mc¥ (X, D)llc, < c
with ¢ independent of z and (. We use the fact that || - H%p is subadditive
for 0<p<1:
P P P
(5.13) IT+ S8, < T, +[SIE,, 0<p<1
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(this fact is due to McCarthy [15, Theorem 2.8]). Now combining the above
results, we obtain, for 0 <p <1,

p
lo(X. D), H S TkaMw@TkaMw\Il(X,D)‘ |
k,leZ2d P

< D (0, TraMig®) || Tha Mig¥ (X, D)7,
k,lezZ2d

S DY o ThaMip®@) P ~ [lo|f .-
k,leZ2d

In the above proof, the use of the Rihaczek distribution makes the argu-
ment simple but is not essential since, as the argument in the proof of
Theorem 1.2 shows, the estimate (5.12) holds for arbitrary ¥ € S(R??).

If we use Lemma 2.3, we can also avoid using the subadditivity (5.13). In
fact, the argument in the proof of Theorem 1.2 shows that, for the frame
{gmn} of Example 2.2,

|7 MW (X, D) g3z < ez + G — m) ™ (0 —nj2) N

(see (3.5)), which implies that

Z HTZMQ\I’(XvD)gmnHiQ <ec.
m,ncZd
Hence, if 0 < p <1, we have

lo(X,D)lIgw S D Nlo(X, D)gmall?

m,neZd

p
> (X 10 TeaMig®)|Tia Mig® (X, D)gonn 12
mneZd k,lcZd

Z Z ‘(O‘, TkaMl,BcI)Hp”TkaMlﬂ\Il(XaD)an”iz
m,n€Zd k,l€Z?

< Y (o ThaMig®)” ~ |03,
klezd

where the assumption that p <1 is used to obtain the last <. 0
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