SEQUENCES OF INTEGERS SATISFYING CONGRUENCE RELATIONS AND PISOT-VIJAYARAGHAVAN NUMBERS

STEPHEN GERIG

(Received 26 October 1966)

1. Introduction

We consider infinite sequences $\left\{f_{n}\right\}_{1}^{\infty}$ of positive integers having exponential growth: $f_{n+1} / f_{n} \rightarrow a>1$, and becoming ultimately periodic modulo each member of a rather sparse infinite set of integers. If sufficient, natural conditions are placed on the growth and periodicities of $\left\{\psi_{n}\right\}_{1}^{\infty}$, we find that a is an algebraic integer having all its algebraic conjugates within or on the unit circle, and f_{n} has a special representation involving a^{n}. The result is a kind of dual to the theorem of Pisot (cf. Salem [2], p. 4, Theorem A).

2. Main result

Theorem. Let $\left\{f_{n}\right\}_{1}^{\infty}$ be a sequence of positive integers, and let $a>1$ be a real number. Suppose that $\left|f_{n+1}-a f_{n}\right| \leqq Q a^{d \log n}=Q n^{d \log a}$, where $Q, d>0$, and suppose also that $f_{1}>Q B$, where $B>0$ is a number, depending only on a and d, to be given explicitly in the proof.

Assume given an integer $q>0$, and a set M of p pair-wise relatively prime positive integers. Suppose that the sequence $\left\{f_{n}\right\}_{1}^{\infty}$ is ultimately periodic of period $h\left(m^{k}\right)$ modulo m^{k}, for each $m \in M$ and each positive integer k, periodicity modulo m^{k} beginning at $n=r\left(m^{k}\right)$.

Assume that p, and the $h\left(m^{k}\right)$ and $r\left(m^{k}\right)$ satisfy
(i) $q^{-1}\left(p-\sum m^{-q}(m \in M)\right)>\frac{1}{2}(2 d \log a+1)$,
(ii) $r\left(m^{k}\right) \leqq b m^{q k}$, and
(iii) $h\left(m^{k}\right) \leqq c m^{q k}$ for some fixed positive integers b and c.

Then a is an algebraic integer all of whose algebraic conjugates lie within or on the unit circle (i.e., a is a Pisot-Vijayaraghavan or a Salem number (cf. Salem [2])), and f_{n} is expressible in the form $a^{n}+$ terms consisting of $n^{\text {th }}$ powers of certain algebraic numbers (all having absolute value $\leqq 1$) with polynomials in n over the rational integers for coefficients.

Before presenting a proof of the theorem, we state three lemmas.
Lemma 1 (Hadamard). Let the $n \times n$ determinant $D=\left|a_{i j}\right|$ have real or complex entries. Then $|D|^{2} \leqq \prod_{j=1}^{n} \sum_{i=1}^{n}\left|a_{i j}\right|^{2}$.

For a proof see Cassels [1, p. 140].
Lemma 2 (Kronecker). The series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ represents a rational function if and only if the determinants

$$
D_{n}=\left|\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n} & a_{n+1} & \cdots & a_{2 n}
\end{array}\right|
$$

are zero for all sufficiently large n.
The D_{n} are called the Kronecker determinants of $f(z)$.
Lemma 3 (Fatou). If in the series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ the a_{n} are rational integers, and if $f(z)$ is a rational function, then $f(z)$ has the form $P(z) / Q(z)$, where $P(z)$ and $Q(z)$ are polynomials with rational integer coefficients, relatively prime, and $Q(0)=1$.

For proofs of Lemmas 2 and 3 see Salem [2, pp. 4-7].
Proof of theorem. Let $w=d \log a$. Then by the hypotheses of the theorem,
$f_{n+1} \geqq a f_{n}-Q n^{w} \geqq a\left(a f_{n-1}-Q(n-1)^{w}\right)-Q n^{w} \geqq \cdots \geqq a_{n} f_{1}-Q \sum_{k=0}^{n-1} a^{k}(n-k)^{w}$.
On the interval $0 \leqq x \leqq n$ define the function $T_{n}(x)=a^{x}(n-x)^{w}$. For $n>d$, consideration of the derivative $T_{n}^{\prime}(x)$ shows that $T_{n}(x)$ increases from n^{w} at $x=0$ to a maximum at $x=n-d$, and decreases from there to 0 at $x=n$. For $n>d$, the integral test shows that the series $\sum_{k=0}^{[n-d]-1} a^{k}(n-k)^{w}$ is bounded from above by $a^{n} \Gamma(w+1)(\log a)^{-w-1}$. Simple estimates show that $a^{n-1}(d+1)^{w+1}$ is an upper bound for $\sum_{k=[n-d]}^{n-1} a^{k}(n-k)^{w}$. If we set

$$
B=\Gamma(w+1)(\log a)^{-w-1}+a^{-1}(d+1)^{w+1}
$$

then we conclude that $\sum_{k=0}^{n-1} a^{k}(n-k)^{w} \leqq B a^{n}$ for $n>d$. Consequently $f_{n+1} \geqq\left(f_{1}-Q B\right) a^{n}$ for $n>d$. By assumption $f_{1}-Q B>0$, and therefore $\left\{f_{n}\right\}_{1}^{\infty}$ diverges and also

$$
\left|\frac{f_{n+1}}{f_{n}}-a\right| \leqq \frac{n^{20}}{f_{n}} \rightarrow 0
$$

It is also easily shown that $f_{n+1} \leqq a^{n} f_{1}+Q \sum_{k=0}^{n-1} a^{k}(n-k)^{w}$, which by the estimates made above is less than or equal to $2 f_{1} a^{n}$.

If D_{n} is the $n^{\text {th }}$ Kronecker determinant of $\sum_{n=0}^{\infty} t_{n} z^{n}$ (where we set $t_{0}=0$), and if $q_{j}=t_{j}-a f_{j-1}$, then

$$
D_{n}=\left|\begin{array}{ccccc}
f_{0} & f_{1} & q_{2} & \cdots & q_{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
f_{n} & f_{n+1} & q_{n+2} & \cdots & q_{2 n}
\end{array}\right|
$$

Lemma 1 applied to this determinant yields

$$
D_{n}^{2} \leqq\left(\sum_{j=0}^{n} f_{j}^{2}\right)\left(\sum_{j=1}^{n+1} f_{j}^{2}\right) \prod_{k=2}^{n}\left(\sum_{j=k}^{n+k} a_{j}^{2}\right)
$$

We found above that $f_{n} \leqq 2 f_{1} a^{n}$. Thus

$$
\left(\sum_{j=0}^{n} f_{j}^{2}\right)\left(\sum_{j=1}^{n+1} f_{j}^{2}\right) \leqq 4 f_{1}^{2}\left(\sum_{j=0}^{n} a^{2 j}\right) 4 f_{1}^{2}\left(\sum_{j=1}^{n+1} a^{2 j}\right) \leqq 16 f_{1}^{4}\left(a^{2}-1\right)^{-2} a^{4 n+6} .
$$

By assumption $\left|q_{j}\right| \leqq Q(j-1)^{w} \leqq Q j^{w}$ for $j \geqq 2$. Hence for $j \geqq 2$,

$$
\sum_{j=k}^{n+k} q_{j}^{2} \leqq Q^{2} \sum_{j=k}^{n+k} j^{2 w} \leqq Q^{2}(n+1)(n+k)^{2 w} \leqq Q^{2}(n+1)(2 n)^{2 v}
$$

Thus

$$
\begin{aligned}
\prod_{k=2}^{n}\left(\sum_{j=k}^{n+k} q_{j}^{2}\right) & \leqq Q^{2 n}\left((n+1)(2 n)^{2 w}\right)^{n} \\
& \leqq Q^{2 n} \exp (n(\log n+\log 2+w \log 2+2 w \log n)) .
\end{aligned}
$$

Therefore

$$
D_{n}^{2} \leqq H^{2} a^{4 n} Q^{2 n} \exp (((w+1) \log 2) n) \exp ((2 w+1) n \log n)
$$

where $H>0$ is a certain constant. On taking square roots, we make this inequality become

$$
\begin{equation*}
\left|D_{n}\right| \leqq H a^{2 n} Q^{n} \exp \left(\left(\frac{1}{2}(w+1) \log 2\right) n\right) \exp \left(\frac{1}{2}(2 w+1) n \log n\right) \tag{1}
\end{equation*}
$$

We now determine a lower bound for the largest integer dividing D_{n}.
Let $m \in M, M$ the set introduced in the statement of the theorem.
Let $s=s_{m}$ be the positive integer for which

$$
(b+c) m^{q 8} \leqq n<(b+c) m^{q(s+1)}
$$

(for the present discussion n is fixed and taken sufficiently large for s_{m} to exist. $s=s_{m}$ depends of course on n). Then

$$
q s \log m \leqq \log \left(\frac{n}{b+c}\right)<q(s+1) \log m
$$

If $(b+c) m^{q(s-1)} \leqq j \leqq n$, then

$$
j-h\left(m^{s-1}\right) \geqq j-c m^{(s-1) q} \geqq b m^{q(s-1)}
$$

so that the column

$$
\begin{gather*}
f(j)-f\left(j-h\left(m^{s-1}\right)\right) \\
\vdots \tag{2}\\
f(j+n)-f\left(j+n-h\left(m^{s-1}\right)\right)
\end{gather*}
$$

is divisible by m^{s-1} (here $f(i)=f_{i}$). Therefore if in the determinant D_{n} we replace each column

where $(b+c) m^{(s-1) g} \leqq j \leqq n$, by the column (2), we see that D_{n} is divisible by

$$
\begin{aligned}
& \exp \left((s-1)\left(n-(b+c) m^{(s-1) q}\right) \log m\right) \\
= & \exp \left(\left(s n-(b+c)(s-1) m^{-q} m^{s q}-n\right) \log m\right) \\
\geqq & \exp \left(\left(s n-(s-1) m^{-q} n-n\right) \log m\right) \\
= & \exp \left(\left(n s\left(1-m^{-q}\right)-n+m^{-q} n\right) \log m\right) \\
= & \exp \left(\left(n s\left(1-m^{-q}\right)\right) \log m\right) e^{A n} \\
\geqq & \exp \left[\left\{n\left(1-m^{-q}\right) \log \left(\frac{n}{b+c}\right) \frac{1}{q \log m}-1\right\} \log m\right] e^{A n} \\
= & \exp \left(q^{-1}\left(1-m^{-q}\right) n \log n\right) e^{A n},
\end{aligned}
$$

where A in each expression is a constant, which may however have different values in different occurrences.

Considering all the $m \in M$, which are all pair-wise relatively prime, we see that D_{n} is divisible by the integer

$$
\begin{equation*}
\prod_{m \in M} \exp \left(\left(s_{m}-1\right)\left(n-(b+c) m^{q\left(s_{m}-1\right)}\right)(\log m)\right. \tag{3}
\end{equation*}
$$

(s_{m} being the s corresponding to m). Our calculations show that this quantity is bounded from below by

$$
\begin{align*}
& \prod_{m \in M} \exp \left(q^{-1}\left(1-m^{-q}\right) n \log n\right) e^{A n} \tag{4}\\
& =\exp \left(q^{-1}\left(p-\sum m^{-q}(m \in M)\right) n \log n\right) e^{A n} .
\end{align*}
$$

Comparing this result with the upper bound result for $\left|D_{n}\right|$ given in (1), recalling the hypothesis $q^{-1}\left(p-\sum_{m \in M} m^{-q}\right)>\frac{1}{2}(2 w+1)$, and observing that $\exp (B n \log n)$ has a higher order of infinity than $\exp (A n)$, we see that there is an $N \geqq 0$ such that for $n \geqq N$, the lower bound (4) for the divisor (3) of D_{n} is larger than the upper bound given in (1) for $\left|D_{n}\right|$. This implies that $D_{n}=0$ for $n \geqq N$.

This result combined with Lemma 2 shows that $\sum_{n=0}^{\infty} t_{n} z^{n}$ represents a rational function $R(z)$, and by Lemma $3, R(z)$ may be written in the form $R(z)=P(z) / Q(z)$, where P / Q is irreducible, P and Q polynomials over the rational integers and $Q(0)=1$.

Now

$$
(1-a z) R(z)=\sum_{n=0}^{\infty} f_{n} z^{n}-a \sum_{n=0}^{\infty} f_{n} z^{n+1}=f_{0}+\sum_{n=1}^{\infty}\left(f_{n}-a f_{n-1}\right) z^{n}
$$

Recalling that $\left|f_{n}-a f_{n-1}\right| \leqq Q n^{w}$ for $n \geqq 2$, we see that the function $F(z)=(1-a z) R(z)$ has no poles in the open unit disc. Moreover, $P(z) / Q(z)=(1-a z)^{-1} F(z)$, so that a^{-1} is a root of $Q(z)$, and is the only root of $Q(z)$ lying in the open unit disc.

Therefore a is an algebraic number, and even an algebraic integer since $Q(0)=1$. All of the algebraic conjugates of a, being roots of the polynomial $z^{\operatorname{deg} Q} Q\left(z^{-1}\right)$ reciprocal to $Q(z)$, lie within or on the unit circle. This means in standard parlance that a is either a Pisot-Vijayaraghavan or a Salem number (cf. Salem [2]).

In addition, it follows from the representation $\sum_{n=0}^{\infty} f_{n} z^{n}=(1-a z)^{-1} F(z)$ $\left(F(z)\right.$ a rational function) that f_{n} is expressible in the form $a^{n}+$ terms consisting of the $n^{\text {th }}$ powers of the poles of $F(z)$, with polynomials in n (with rational integer coefficients) for coefficients. Q.E.D.

3. An example

To show that there are sequences $\left\{f_{n}\right\}_{1}^{\infty}$ and a number a satisfying the hypotheses of the theorem, let a be a Pisot-Vijayaraghavan number (i.e., a real algebraic integer greater than 1 all of whose algebraic conjugates lie in the open unit disc). If a_{0}, \cdots, a_{k} are the algebraic conjugates of $a=a_{0}$, then for all n sufficiently large, $v_{n}=\sum_{i=0}^{k} a_{i}^{n}$ is the rational integer nearest a^{n}. If we take $f_{n}=v_{n+N}$, where N is fixed and sufficiently large, then the inequalities for $\left|f_{n+1}-a t_{n}\right|$ and t_{1} in the hypotheses of the theorem will be satisfied for some $Q, d>0$.

Moreover, modulo all sufficiently large m^{k}, relatively prime to the a_{i}, the t_{n} will be ultimately periodic (being a sum of $n^{\text {th }}$ powers) of period $\leqq \Phi(L) \leqq$ norm $L \leqq m^{q k}$, where L is the ideal generated by m^{k} in the splitting field G of a, Φ is Euler's function for G, and q is a positive integer depending only on G. In addition, all the a_{i}^{n} begin being periodic modulo L in time $\Phi(L) \leqq m^{q k}$.

Hence by assigning q the above value, b and c can be found satisfying (ii) and (iii), and by including enough pair-wise relatively prime m, relatively prime to the a_{i}, in M, (i) can be fulfilled as well.

References

[1] J. W. S. Cassels, An introduction to Diophantine approximation (Cambridge Tracts in Mathematics and Mathematical Physics, 45, Cambridge University Press, Cambridge, 1957).
[2] Raphael Salem, Algebraic numbers and Fourier analysis (Heath, Boston, 1963).

The University of Western Australia

