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1. Introduction. The joint spectrum for a commuting n-tuple in functional analysis
has its origin in functional calculus which appeared in J. L. Taylor's epoch-making paper
[19] in 1970. Since then, many papers have been published on commuting n-tuples of
operators on Hilbert spaces (for example, [3], [4], [5], [8], [9], [10], [21], [22]).

For those on Banach spaces, however, only a few results have come out. Recently,
A. Mclntosh, A. Pryde and W. Ricker in [16] characterized the joint spectrum for a
strongly commuting n-tuple of operators on a Banach space. In this paper, we shall show
among others that the joint spectrum for a strongly commuting n-tuple of operators on a
Banach space is the joint approximate point spectrum for it.

Let A' be a complex Banach space. We denote by X* the dual space of X and by
B(X) the space of all bounded linear operators on X. Let T = (Tu . . . , Tn) be a
commuting n-tuple of operators on X. And let CT(T) be the Taylor joint spectrum of T.
We refer the reader to Taylor [19] for the definition of a(T).

A point z = (z,, . . . , zn) of C" is in the approximate point spectrum on(T) of T if
there exists a sequence {xk} of unit vectors in X such that

\\{T,-zfrck\\^>Q as fc^°o for i = 1, 2, . . . , / » .

A point 2 = (Z], . . . , zn) of C" is said to be a joint eigenvalue of T if there exists a
non-zero vector x such that

TjX = ZiX for i = 1, 2, . . . , n.

Let us set

x = {{x,f)eXxX*:\\f\\=f{x)=\\x\\ = l).

The spatial joint numerical range V(T) and joint numerical range V(B(X), T) of T are
defined by

V(T) = {(f(TlX), . . . ,f(Tnx)):(x,f)en}

and

V(B(X), T) = {(F(7i), . . . , F(Tn)):F is a state on B(X)}.

respectively. The joint spectral radius and joint numerical radius of T = (7i,. . . , Tn) are
defined by

r(T) = sup{|z|:26a(T)}
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and
v(T) = sup{|z|:reV(T)},

respectively.
For an operator 5 e B{X), the usual spectrum, approximate point spectrum, spatial

numerical range and numerical range of 5 are denoted by o(S), on{S), V(S) and
V{B{X), S), respectively.

If V(S)cR, then S is called hermitian. An operator S e B(X) is called normal if
there are hermitian operators H and K such that 5 = H + iK and HK = KH. We denote
then the operator H — iK by 5. Then the following are well-known:

(1) co V(S) = V(B(X), S), where co £ is the closed convex hull of E.
(2) co o(S) c V(S), where co E and E are the convex hull and closure of E,

respectively.
(3) If S is normal, then co o(S) = V(S) = V(B(X), 5). We refer the reader to

Bonsall and Duncan [1] and [2]. We denote the boundary of E by 6E.
An n-tuple T = (T\, . . . , Tn) of operators is called strongly commuting if, for each

l < / < n , there exist operators Uj and Vj with real spectra, such that Tj = U,- + iVj and
(Ui,. . . , Un> Vi, . . . , Vn) is a commuting 2n-tuple.

REMARK Since the Fuglde theorem holds for Banach space operators, T =
(7i, . . . , Tn) is strongly commuting if T is a commuting n-tuple of normal operators.

2. Joint spectra of strongly commuting n-tuples. Mclntosh, Pryde and Ricker in
[16] showed that following theorem:

THEOREM. Let T = (T1,. .., Tn) be a strongly commuting n-tuple of operators. Then
z = (z1, . . . , zn) is in CT(T) if and only if

n n

2 (Uj - ay)
2 + 2 (VjI - b,)2 is not invertible

where Tj = Uj + iV, and zt = a, + ibj (j = 1,2, . . . , n).

We shall prove the following theorem.

THEOREM 2.1. Let T = (Tx, . . ., Tn) be a strongly commuting n-tuple of operators.
Then CT(T) = cr^T).

We shall use the following two theorems.

THEOREM A (Choi and Davis [7], Slodkowski and Zelazko [18]. Let T = (Tlt... , Tn)
be a commuting n-tuple of operators and fan m-tuple of polynomials in n-variables. Then

THEOREM B (Taylor [20]). Let T = (Tu ..., Tn) be a commuting n-tuple of operators
and f an m-tuple of polynomials in n-variables. Then

o(f(T))=f(o(T)).
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Proof of Theorem 2 . 1 . L e t 7} = Uj + iVj a n d le t S = (UU..., Un, Vu . . . , Vn). T h e n ,

and

by the Spectral mapp ing t h e o r e m , w h e r e g(zu z2,.. . , z^) = {zx + izn+l,... ,zn + iz2n).
It suffices to check, therefore, that the result is true for a commuting n-tuple of

operators with real spectra.
Let H = {Hi, . . . , Hn) be a commuting n-tuple of operators with real spectra.

Let a = (a,, . . . , an) e CT(H) and let/(z) := E (*i - a,)2. Then a(/(H)) =/(a(H)) so
i

0 e da(/(H)) c ^ ( / ( H ) ) =/(a^(H)). It follows that there exists a e ^ ( H ) c 7?" such that
/(a) = 0. Clearly a must be equal to a, and so a e ^ ( H ) , concluding the proof.

If r u T2> . . • , Tn are commuting operators, we denote by A{TX, . . . ,Tn) the least
closed subalgebra of B{X) generated by l,Tx, . . . , Tn. And we denote by <&Aw,...,Tn) the
set of all non-zero multiplicative linear functionals on A{Tlt . . . , Tn).

THEOREM 2.2. Let T = {Tx, . . . , Tn) be a strongly commuting n-tuple of operators
such that Tj = Uj + iV, {j = l,2,..., n). Let A be A(UU . . . , Un, Vu . . . , Vn). Then

a(T) = {{<p{Hx) + i<p(^), • • • , <P(HH) + icp(Kn)): q> e *A}.

Proof. Let S = (t/l f . . . , Un, Vu . . . , Vn). Let a = {au . . ., a*) be in aA{S) if the
equation

fails to have a solution for Dly . . . , D2n e A. Since

a(S) c a^(S),

an application of the Spectral Mapping Theorem gives

o{T)czoA{T).

Moreover, Mclntosh, Pryde and Ricker's result says that

Therefore, a(T) = ^ ( T ) , as desired.

THEOREM 2.3. Let T = {Ty,. . . , Tn) be a strongly commuting n-tuple of operators. If
a = {alt . . . , an) is in cr(TT), then there exists z = {zx, . . . , zn) in a(T) such that |z,|2 = at

(i = 1, 2, . . . , n) where TT = (7i71, . . . , TnTn).

Proof. Let f:R2n-^Rn be the polynomial given by f{x)=f{xu...,x2n) =
{xl + xl+i,... ,xl + xl+2n), xeR2n. Then the the Spectral Mapping Theorem for the
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Taylor joint spectrum, it follows that

/ (a(S)) = a(TT),

where Tj = Uj + iVj (/ = 1 , . . . , « ) and S = ( ( / , , . . . , Vu . . ., Vn). Hence there exists
(flj, ... ,an,bu... ,bn)\n on{S) such that a) + bj = cxj (/ = 1, 2, . . . , n).

Let Zj = dj + ibj (j = 1,2,. . . , n). Then the scalar z = {zx, . . . , zn) is a desired
element.

So the proof is complete.

3. Joint numerical ranges of commuting normal operators. V. Wrobel proved the
following theorem.

THEOREM 3.1 (Wrobel [23]). Let T = (TU. . . ,Tn) be a commuting n-tuple of
operators. Then

co CT(T) C V(T).

THEOREM 3.2. Let T = (7i, . . . , ! „ ) be a commuting n-tuple of normal operators.
Then

= V{B{X), T).

Proof. We assume that a = (au . . ., an) is in V(B(X), T) - c o <x(T). By the
separation theorem for a convex set, there exists a linear functional # on C" and r e R

such that Re </>(A) < r < Re 0(a) (A e co CT(T)). We let 0(z) = £ a1;zy (2 = (zt, . . . , zn) e

C"), and choose a non-singular nXn matrix M with (an , . . . , aln) in its first row. Then

Re 2, < r < Re j8, (z = (z,, . . . , zB) e a(MT)),

where (j31;. . . , /3n) = Ma. It follows that

V=i ' v y=i /

n

Since E fliy^ is a normal operator, this is a contradiction. So the proof is complete.

COROLLARY 3.3. Let T = (71, . . . , Tn) be a commuting n-tuple of normal operators.
Then r(T) = v(T).

REMARK There is a normal operator Â  such that r{N) = 1 and ||A |̂| = 2 (see Theorem
25.6 in [2]).

PROBLEM. The joint operator norm ||T|| of T = (71, . . . , Tn) is defined by

I|T|| = sup{(i \\TiXtf} :x eX and ||x|| - 1 j .
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If H = (Hi, . . . , Hn) is a commuting n-tuple of hermitian operators, is it then true that
r(H) =

DEFINITION 1. Banach space X is called smooth if the set {/:||/|| =/(*) = 1} is a
singleton for each xeX with ||x|| = 1.

DEFINITION 2. The Banach space X is called strictly c-convex if y = 0 whenever
||JC|| = 1 and ||JC + ky\\^\ for all complex numbers A with ||A|| < 1.

Let X be either smooth and reflexive, or strictly c-convex. Then K. Mattila proved
the following:

THEOREM 3.4 (Mattila [14] and [15]). Let N be a normal operator. If A is an extreme
point of V(N) such that A e V(N), then A is a eigen value of N.

We extend this theorem to a commuting n-tuple of operators. In the following, we
assume that the space X is either smooth and reflexive, or strictly c-convex.

LEMMA 3.5. Let H = (Hi, . . . , Hn) be a commuting n-tuple of hermitian operators. If
a = (a1, . . . , an) is an extreme point of V(H) and a e V(H), then a is a joint eigenvalue of
H.

Proof. The proof is by induction on n. By the theorem above, the statement is true
for n = 1.

Given a positive integer n, suppose that the statement is true for n - 1 . We may
assume that a = (0, . . . , 0). Since 0 is an extreme point of V(H), we can choose a linear
map F on R", which has an orthogonal matrix, such that

F(V(H)) <z{z = (z1; . . . , zn) e R" : zn > 0}.

Let K = (Ku . . . , Kn) = F(HU . . . , Hn). Then K is a commuting n-tuple of hermitian
operators which has the property V(Kn) cR+. Since 0 is an extreme point of V(Kn), it
follows that 0 is the eigenvalue of Km. Let Y be the kernel space of Kn. Then Y is a closed
subspace of X and has the same property as X. Since all Kt commute with Kn, the
restrictions Kl of Kt to Y are commuting hermitian operators on Y (i = 1, 2, . . . , n). Thus

(0 , . . . . 0 ) e V ( K [ , . . . , K'n).

Clearly, V(K[, ..., *;_,) x {0} c V(K).
Therefore (0, . . . , 0 ) is an extreme point of V(K[, . . . , K'n_i). Hence, by the

hypothesis, there exists a non-zero vector x in Y such that

K\x = 0 (i = 1, 2, . . . , n),

that is, 0 is a joint eigenvalue of K. So 0 is a joint eigenvalue of H. Thus the proof is
complete.

THEOREM 3.6. Let T = (Tx, . . . , Tn) be a commuting n-tuple of normal operators.
If z = (zu . . . , zn) is an extreme point of V(T) and z eV(T), then z is a joint eigenvalue
ofT.
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Proof. Let 7} = //, + ikj and z, = a, + ibt (j = 1, 2 , . . . , n). Then
(#! , . . . , / /„, X\, . . . , Kn) is a commuting 2n-tuple of hermitian operators.
(au . .. ,an,bu .. . , bn) is an extreme point of V(HU . . . , Hn, Ku . . . , Kn) and an
element of V{HX,. . ., Hn, Klt.. . , Kn). So, by the lemma above, this point is a joint
eigenvalue of Hi, . . . , Hn, Klt.. . , Kn.

So the proof is complete.

REMARK From the proof of Theorem 3.2, the following holds:
Let T = (Tu . . ., Tn) be an n-tuple of operators (not necessarily commuting). Then

= V(B(X),T).
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