JOINT SPECTRA OF COMMUTING NORMAL OPERATORS ON BANACH SPACES
by MUNEO CHÔ

(Received 2 June, 1987; revised 26 October, 1987)

Dedicated to Professor Kisuke Tsuchida on his retirement on March 31 1989.

1. Introduction. The joint spectrum for a commuting n-tuple in functional analysis has its origin in functional calculus which appeared in J. L. Taylor’s epoch-making paper [19] in 1970. Since then, many papers have been published on commuting n-tuples of operators on Hilbert spaces (for example, [3], [4], [5], [8], [9], [10], [21], [22]).

For those on Banach spaces, however, only a few results have come out. Recently, A. McIntosh, A. Pryde and W. Ricker in [16] characterized the joint spectrum for a strongly commuting n-tuple of operators on a Banach space. In this paper, we shall show among others that the joint spectrum for a strongly commuting n-tuple of operators on a Banach space is the joint approximate point spectrum for it.

Let \(X \) be a complex Banach space. We denote by \(X^* \) the dual space of \(X \) and by \(B(X) \) the space of all bounded linear operators on \(X \). Let \(T = (T_1, \ldots, T_n) \) be a commuting n-tuple of operators on \(X \). And let \(\sigma(T) \) be the Taylor joint spectrum of \(T \). We refer the reader to Taylor [19] for the definition of \(\sigma(T) \).

A point \(z = (z_1, \ldots, z_n) \) of \(C^n \) is in the approximate point spectrum \(\sigma_n(T) \) of \(T \) if there exists a sequence \(\{x_k\} \) of unit vectors in \(X \) such that
\[
\|(T_i - z_i)x_k\| \to 0 \quad \text{as} \quad k \to \infty \quad \text{for} \quad i = 1, 2, \ldots, n.
\]

A point \(z = (z_1, \ldots, z_n) \) of \(C^n \) is said to be a joint eigenvalue of \(T \) if there exists a non-zero vector \(x \) such that
\[
T_ix = z_ix \quad \text{for} \quad i = 1, 2, \ldots, n.
\]

Let us set
\[
\pi = \{(x, f) \in X \times X^* : \|f\| = f(x) = \|x\| = 1\}.
\]
The spatial joint numerical range \(V(T) \) and joint numerical range \(V(B(X), T) \) of \(T \) are defined by
\[
V(T) = \{(f(T_1x), \ldots, f(T_nx)) : (x, f) \in \pi\}
\]
and
\[
V(B(X), T) = \{(F(T_1), \ldots, F(T_n)) : F \text{ is a state on } B(X)\}.
\]
respectively. The joint spectral radius and joint numerical radius of \(T = (T_1, \ldots, T_n) \) are defined by
\[
r(T) = \sup\{|z| : z \in \sigma(T)\}
\]
and
\[
\]
and
\[v(T) = \sup \{|z|: z \in V(T)\}, \]
respectively.

For an operator \(S \in B(X) \), the usual spectrum, approximate point spectrum, spatial numerical range and numerical range of \(S \) are denoted by \(\sigma(S) \), \(\sigma_n(S) \), \(V(S) \) and \(V(B(X), S) \), respectively.

If \(V(S) \subset R \), then \(S \) is called hermitian. An operator \(S \in B(X) \) is called normal if there are hermitian operators \(H \) and \(K \) such that \(S = H + iK \) and \(HK = KH \). We denote then the operator \(H - iK \) by \(\hat{S} \). Then the following are well-known:

(1) \(\overline{co} V(S) = V(B(X), S) \), where \(\overline{co} E \) is the closed convex hull of \(E \).

(2) \(\overline{co} \sigma(S) = \overline{V(S)} \), where \(\overline{co} \) and \(\overline{E} \) are the convex hull and closure of \(E \), respectively.

(3) If \(S \) is normal, then \(\overline{co} \sigma(S) = \overline{V(S)} = V(B(X), S) \).

We refer the reader to Bonsall and Duncan [1] and [2]. We denote the boundary of \(E \) by \(\delta E \).

An \(n \)-tuple \(T = (T_1, \ldots, T_n) \) of operators is called strongly commuting if, for each \(1 \leq j \leq n \), there exist operators \(U_j \) and \(V_j \) with real spectra, such that \(T_j = U_j + iV_j \) and \((U_1, \ldots, U_n, V_1, \ldots, V_n) \) is a commuting \(2n \)-tuple.

Remark Since the Fuglede theorem holds for Banach space operators, \(T = (T_1, \ldots, T_n) \) is strongly commuting if \(T \) is a commuting \(n \)-tuple of normal operators.

2. Joint spectra of strongly commuting \(n \)-tuples. McIntosh, Pryde and Ricker in [16] showed that following theorem:

Theorem. Let \(T = (T_1, \ldots, T_n) \) be a strongly commuting \(n \)-tuple of operators. Then \(z = (z_1, \ldots, z_n) \) is in \(\sigma(T) \) if and only if

\[\sum_{j=1}^{n} (U_j - a_j)^2 + \sum_{j=1}^{n} (V_j - b_j)^2 \text{ is not invertible} \]

where \(T_j = U_j + iV_j \) and \(z_j = a_j + ib_j \) (\(j = 1, 2, \ldots, n \)).

We shall prove the following theorem.

Theorem 2.1. Let \(T = (T_1, \ldots, T_n) \) be a strongly commuting \(n \)-tuple of operators. Then \(\sigma(T) = \sigma_n(T) \).

We shall use the following two theorems.

Theorem A (Choi and Davis [7], Slodkowski and Zelazko [18]. Let \(T = (T_1, \ldots, T_n) \) be a commuting \(n \)-tuple of operators and \(f \) an \(m \)-tuple of polynomials in \(n \)-variables. Then

\[\sigma_n(f(T)) = f(\sigma_n(T)). \]

Theorem B (Taylor [20]). Let \(T = (T_1, \ldots, T_n) \) be a commuting \(n \)-tuple of operators and \(f \) an \(m \)-tuple of polynomials in \(n \)-variables. Then

\[\sigma(f(T)) = f(\sigma(T)). \]
Proof of Theorem 2.1. Let \(T_j = U_j + iV_j \) and let \(S = (U_1, \ldots, U_n, V_1, \ldots, V_n) \). Then,
\[\sigma(T) = g(\sigma(S)) \]
and
\[\sigma_n(T) = g(\sigma_n(S)) \]
by the Spectral mapping theorem, where
\[g(z_1, z_2, \ldots, z_{2n}) = (z_1 + iz_{n+1}, \ldots, z_n + iz_{2n}). \]
It suffices to check, therefore, that the result is true for a commuting \(n \)-tuple of operators with real spectra.

Let \(H = (H_1, \ldots, H_n) \) be a commuting \(n \)-tuple of operators with real spectra.

Let \(a = (a_1, \ldots, a_n) \in \sigma(H) \) and let \(f(z) = \sum_{i=1}^{n} (z_i - a_i)^2 \). Then \(\sigma(f(H)) = f(\sigma(H)) \) so
\[0 \in \delta(\sigma(f(H))) \subset \sigma_n(f(H)) = f(\sigma_n(H)) \]. It follows that there exists \(\tilde{a} \in \sigma_n(H) \subset R^n \) such that
\[f(\tilde{a}) = 0. \]
Clearly \(\tilde{a} \) must be equal to \(a \), and so \(a \in \sigma_n(H) \), concluding the proof.

If \(T_1, T_2, \ldots, T_n \) are commuting operators, we denote by \(A(T_1, \ldots, T_n) \) the least closed subalgebra of \(B(X) \) generated by \(I, T_1, \ldots, T_n \). And we denote by \(\Phi_{A(T_1, \ldots, T_n)} \) the set of all non-zero multiplicative linear functionals on \(A(T_1, \ldots, T_n) \).

Theorem 2.2. Let \(T = (T_1, \ldots, T_n) \) be a strongly commuting \(n \)-tuple of operators such that \(T_j = U_j + iV_j \) \((j = 1, 2, \ldots, n) \). Let \(A \) be \(A(U_1, \ldots, U_n, V_1, \ldots, V_n) \). Then
\[\sigma(T) = \{ (\varphi(H_1) + i\varphi(K_1), \ldots, \varphi(H_n) + i\varphi(K_n)) : \varphi \in \Phi_A \} \]

Proof. Let \(S = (U_1, \ldots, U_n, V_1, \ldots, V_n) \). Let \(a = (a_1, \ldots, a_{2n}) \) be in \(\sigma_A(S) \) if the equation
\[\sum_{i=1}^{n} (U_i - a_i)D_i + \sum_{i=n+1}^{2n} (V_{i-n} - a_i)D_i = I \]
fails to have a solution for \(D_1, \ldots, D_{2n} \in A \). Since
\[\sigma(S) \subset \sigma_A(S), \]
an application of the Spectral Mapping Theorem gives
\[\sigma(T) \subset \sigma_A(T). \]

Moreover, McIntosh, Pryde and Ricker's result says that
\[\sigma_A(T) \subset \sigma(T). \]

Therefore, \(\sigma(T) = \sigma_A(T) \), as desired.

Theorem 2.3. Let \(T = (T_1, \ldots, T_n) \) be a strongly commuting \(n \)-tuple of operators. If
\(\alpha = (\alpha_1, \ldots, \alpha_n) \) is in \(\sigma(\hat{T}T) \), then there exists \(z = (z_1, \ldots, z_n) \) in \(\sigma(T) \) such that \(|z_i|^2 = \alpha_i \) \((i = 1, 2, \ldots, n) \) where \(\hat{T}T = (\hat{T}_1T_1, \ldots, \hat{T}_nT_n) \).

Proof. Let \(f : R^{2n} \to R^n \) be the polynomial given by \(f(x) = f(x_1, \ldots, x_{2n}) = (x_1^2 + x_{n+1}^2, \ldots, x_n^2 + x_{2n+2}^2) \), \(x \in R^{2n} \). Then the the Spectral Mapping Theorem for the
Taylor joint spectrum, it follows that
\[f(\sigma(S)) = \sigma(\bar{T}T), \]
where \(T_j = U_j + iV_j \) (\(j = 1, \ldots, n \)) and \(S = (U_1, \ldots, V_1, \ldots, V_n) \). Hence there exists \((a_1, \ldots, a_n, b_1, \ldots, b_n) \) in \(\alpha_n(S) \) such that \(a_j^2 + b_j^2 = \alpha_j \) (\(j = 1, 2, \ldots, n \)).

Let \(z_j = a_j + ib_j \) (\(j = 1, 2, \ldots, n \)). Then the scalar \(z = (z_1, \ldots, z_n) \) is a desired element.

So the proof is complete.

3. Joint numerical ranges of commuting normal operators.

V. Wrobel proved the following theorem.

Theorem 3.1 (Wrobel [23]). Let \(T = (T_1, \ldots, T_n) \) be a commuting \(n \)-tuple of operators. Then
\[\text{co} \sigma(T) \subset V(T). \]

Theorem 3.2. Let \(T = (T_1, \ldots, T_n) \) be a commuting \(n \)-tuple of normal operators. Then
\[\text{co} \sigma(T) = V(T) = V(B(X), T). \]

Proof. We assume that \(\alpha = (\alpha_1, \ldots, \alpha_n) \) is in \(V(B(X), T) - \text{co} \sigma(T) \). By the separation theorem for a convex set, there exists a linear functional \(\phi \) on \(C^n \) and \(r \in R \) such that \(\text{Re} \phi(\lambda) < r < \text{Re} \phi(\alpha) \) (\(\lambda \in \text{co} \sigma(T) \)). We let \(\phi(z) = \sum_{j=1}^n a_jz_j \) (\(z = (z_1, \ldots, z_n) \in C^n \)), and choose a non-singular \(n \times n \) matrix \(M \) with \((a_1, \ldots, a_n) \) in its first row. Then
\[\text{Re} z_1 < r < \text{Re} \beta_1 \]
where \((\beta_1, \ldots, \beta_n) = M\alpha \). It follows that
\[\text{co} \sigma\left(\sum_{j=1}^n a_jT_j\right) \subset V(B(X), \sum_{j=1}^n a_jT_j). \]

Since \(\sum_{j=1}^n a_jT_j \) is a normal operator, this is a contradiction. So the proof is complete.

Corollary 3.3. Let \(T = (T_1, \ldots, T_n) \) be a commuting \(n \)-tuple of normal operators. Then \(r(T) = v(T) \).

Remark. There is a normal operator \(N \) such that \(r(N) = 1 \) and \(\|N\| = 2 \) (see Theorem 25.6 in [2]).

Problem. The joint operator norm \(\|T\| \) of \(T = (T_1, \ldots, T_n) \) is defined by
\[\|T\| = \sup \left\{ \left(\sum_{j=1}^n \|T_jx\|^2 \right)^{1/2} : x \in X \text{ and } \|x\| = 1 \right\}. \]
If \(H = (H_1, \ldots, H_n) \) is a commuting \(n \)-tuple of hermitian operators, is it then true that \(r(H) = \|H\| \)?

Definition 1. Banach space \(X \) is called *smooth* if the set \(\{ f : \|f\| = f(x) = 1 \} \) is a singleton for each \(x \in X \) with \(\|x\| = 1 \).

Definition 2. The Banach space \(X \) is called *strictly c-convex* if \(y = 0 \) whenever \(\|x\| = 1 \) and \(\|x + \lambda y\| \leq 1 \) for all complex numbers \(\lambda \) with \(\|\lambda\| \leq 1 \).

Let \(X \) be either smooth and reflexive, or strictly c-convex. Then K. Mattila proved the following:

Theorem 3.4 (Mattila [14] and [15]). Let \(N \) be a normal operator. If \(\lambda \) is an extreme point of \(V(N) \) such that \(\lambda \in V(N) \), then \(\lambda \) is an eigenvalue of \(N \).

We extend this theorem to a commuting \(n \)-tuple of operators. In the following, we assume that the space \(X \) is either smooth and reflexive, or strictly c-convex.

Lemma 3.5. Let \(H = (H_1, \ldots, H_n) \) be a commuting \(n \)-tuple of hermitian operators. If \(a = (a_1, \ldots, a_n) \) is an extreme point of \(V(H) \) and \(a \in V(H) \), then \(a \) is a joint eigenvalue of \(H \).

Proof. The proof is by induction on \(n \). By the theorem above, the statement is true for \(n = 1 \).

Given a positive integer \(n \), suppose that the statement is true for \(n - 1 \). We may assume that \(a = (0, \ldots, 0) \). Since \(0 \) is an extreme point of \(V(H) \), we can choose a linear map \(F \) on \(R^n \), which has an orthogonal matrix, such that

\[
F(V(H)) = \{ z = (z_1, \ldots, z_n) \in R^n : z_n \geq 0 \}.
\]

Let \(K = (K_1, \ldots, K_n) = F(H_1, \ldots, H_n) \). Then \(K \) is a commuting \(n \)-tuple of hermitian operators which has the property \(V(K_n) \subset R^{+} \). Since \(0 \) is an extreme point of \(V(K_n) \), it follows that \(0 \) is the eigenvalue of \(K_n \). Let \(Y \) be the kernel space of \(K_n \). Then \(Y \) is a closed subspace of \(X \) and has the same property as \(X \). Since all \(K_i \) commute with \(K_n \), the restrictions \(K_i \) of \(K_i \) to \(Y \) are commuting hermitian operators on \(Y \) (i = 1, 2, \ldots, n). Thus

\[
(0, \ldots, 0) \in V(K_1, \ldots, K_n).
\]

Clearly, \(V(K_1, \ldots, K_{n-1}, 0) \subset V(K) \).

Therefore \((0, \ldots, 0) \) is an extreme point of \(V(K_1, \ldots, K_{n-1}) \). Hence, by the hypothesis, there exists a non-zero vector \(x \) in \(Y \) such that

\[
K_i x = 0 \quad (i = 1, 2, \ldots, n),
\]

that is, \(0 \) is a joint eigenvalue of \(K \). So \(0 \) is a joint eigenvalue of \(H \). Thus the proof is complete.

Theorem 3.6. Let \(T = (T_1, \ldots, T_n) \) be a commuting \(n \)-tuple of normal operators. If \(z = (z_1, \ldots, z_n) \) is an extreme point of \(V(T) \) and \(z \in V(T) \), then \(z \) is a joint eigenvalue of \(T \).
Proof. Let \(T_j = H_j + ik_j \) and \(z_j = a_j + ib_j \) \((j = 1, 2, \ldots, n)\). Then \((H_1, \ldots, H_n, K_1, \ldots, K_n)\) is a commuting \(2n\)-tuple of hermitian operators. \((a_1, \ldots, a_n, b_1, \ldots, b_n)\) is an extreme point of \(V(H_1, \ldots, H_n, K_1, \ldots, K_n)\) and an element of \(V(H_1, \ldots, H_n, K_1, \ldots, K_n)\). So, by the lemma above, this point is a joint eigenvalue of \(H_1, \ldots, H_n, K_1, \ldots, K_n\).

So the proof is complete.

Remark. From the proof of Theorem 3.2, the following holds:

Let \(T = (T_1, \ldots, T_n) \) be an \(n\)-tuple of operators (not necessarily commuting). Then \(\overline{\cap} V(T) = V(B(X), T)\).

Acknowledgement. I would like to express my thanks to Prof. K. Mattila for her useful suggestion given when we met at Univ. College Cork on May 20, 1987. I also express my thanks to the referee.

REFERENCES

Department of Mathematics
Joetsu University of Education
Joetsu, Niigata 943
Japan