Mathematical Notes.

A Review of Elementary Mathematics and Science.
PUBLISHED BY

THE EDINBURGH MATHEMATICAL SOCIETY Edited by P. PINKERTON, M.A., D.Sc.

Na. 7.

April 1911.

The Tangents of 15° and of $22 \frac{1}{2}^{\circ}$-I. Let $A B C$ be a triangle in which $\widehat{\mathbf{A}}=30^{\circ}, \mathbf{B}=60^{\circ}, \mathbf{C}=90^{\circ}$.

Produce AC to D so that $\mathrm{AD}=\mathrm{AB}$. Join BD.
Then $\widehat{\mathrm{A}} \mathrm{BD}=\mathrm{A} \widehat{\mathrm{D}} \mathrm{B}=\frac{1}{2}\left(180^{\circ}-\mathrm{A}\right)=75^{\circ}$.
(73)
$\therefore \widehat{\mathrm{OBD}}=15^{\circ}$,
and $\quad \tan 15^{\circ}=\frac{\mathrm{CD}}{\mathrm{BC}}$.
Now let $B C=1$.
Then $\mathrm{AD}=\mathrm{AB}=2$,
and $\mathrm{CD}=\mathrm{AD}-\mathrm{AC}=2-\sqrt{ } 3$.

$$
\begin{aligned}
\therefore \tan 15^{\circ} & =\frac{2-\sqrt{ } 3}{1} \\
& =2-\sqrt{ } 3 .
\end{aligned}
$$

II. Let ABC be a triangle in which $\widehat{\mathrm{A}}=\widehat{\mathrm{B}}=45^{\circ}, \widehat{\mathrm{C}}=90^{\circ}$.

With the same construction as above, we have

$$
\begin{gathered}
\widehat{\mathrm{A} D}=\mathrm{A} \widehat{\mathrm{D}} \mathrm{~B}=67 \frac{1}{2}^{\circ} . \\
\therefore \mathrm{CBD}=22 \frac{1}{2}^{\circ} .
\end{gathered}
$$

Taking again $B C=1$, we find

$$
\tan 22 \frac{1}{2}^{\circ}=\frac{\sqrt{ } 2-1}{1}=\sqrt{ } 2-1
$$

Peter Rambay

The Numerically Greatest Term of a Binomial Expansion.-The problem of the greatest term of a binomial expansion is a favourite one in elementary text-books, and its solution is often difficult to a beginner. The difficulty, at least in the case where the index is negative or fractional, seems to be caused by the fact that a "formula" is provided which gives a value for r, such that the $(r+1)$ th term is the greatest. Moreover, this formula is not always the same. Sometimes it is $\frac{(n+1) x}{x+1}$, sometimes $\frac{(n+1) x}{x-1}$; and unless the student has a very good memory he is sure sometimes to make mistakes. Elementary mathematics ought not to be a memory exercise. It is a platitude to say that the educational value of the teaching of mathematics lies in its training of the powers of reasoning. This element is

