Beurling-Dahlberg-Sjögren Type Theorems for Minimally Thin Sets in a Cone

Ikuko Miyamoto, Minoru Yanagishita and Hidenobu Yoshida

Abstract

This paper shows that some characterizations of minimally thin sets connected with a domain having smooth boundary and a half-space in particular also hold for the minimally thin sets at a corner point of a special domain with corners, i.e., the minimally thin set at ∞ of a cone.

1

Introduction

Let \mathbf{R} and \mathbf{R}_{+}be the set of all real numbers and all positive real numbers, respectively. We denote by $\mathbf{R}^{n}(n \geq 2)$ the n-dimensional Euclidean space. A point in \mathbf{R}^{n} is denoted by $P=(X, y), X=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$. The Euclidean distance of two points P and Q in \mathbf{R}^{n} is denoted by $|P-Q|$. Also $|P-O|$ with the origin O of \mathbf{R}^{n} is simply denoted by $|P|$. The boundary and the closure of a set S in \mathbf{R}^{n} are denoted by ∂S and \bar{S}, respectively.

We introduce a system of spherical coordinates $(r, \Theta), \Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-1}\right)$, in \mathbf{R}^{n} which are related to cartesian coordinates $\left(x_{1}, x_{2}, \ldots, x_{n-1}, y\right)$ by

$$
x_{1}=r\left(\Pi_{j=1}^{n-1} \sin \theta_{j}\right) \quad(n \geq 2), \quad y=r \cos \theta_{1}
$$

and if $n \geq 3$, then

$$
x_{n+1-k}=r\left(\Pi_{j=1}^{k-1} \sin \theta_{j}\right) \cos \theta_{k} \quad(2 \leq k \leq n-1)
$$

where $0 \leq r<+\infty,-\frac{1}{2} \pi \leq \theta_{n-1}<\frac{3}{2} \pi$, and if $n \geq 3$, then $0 \leq \theta_{j} \leq \pi(1 \leq j \leq$ $n-2$).

The unit sphere and the upper half unit sphere are denoted by \mathbf{S}^{n-1} and \mathbf{S}_{+}^{n-1}, respectively. For simplicity, a point $(1, \Theta)$ on \mathbf{S}^{n-1} and the set $\{\Theta ;(1, \Theta) \in \Omega\}$ for a set $\Omega, \Omega \subset \mathbf{S}^{n-1}$, are often identified with Θ and Ω, respectively. For two sets $\Lambda \subset \mathbf{R}_{+}$ and $\Omega \subset \mathbf{S}^{n-1}$, the set

$$
\left\{(r, \Theta) \in \mathbf{R}^{n} ; r \in \Lambda,(1, \Theta) \in \Omega\right\}
$$

in \mathbf{R}^{n} is simply denoted by $\Lambda \times \Omega$. In particular, the half-space

$$
\mathbf{R}_{+} \times \mathbf{S}_{+}^{n-1}=\left\{(X, y) \in \mathbf{R}^{n} ; y>0\right\}
$$

will be denoted by \mathbf{T}_{n}.

[^0]AMS subject classification: Primary: 31B05; secondary: 31B20.
(C)Canadian Mathematical Society 2003.

As an extension of a result of Beurling [6, Lemma 1], Dahlberg proved:
Theorem A (Dahlberg [9, Theorem 4]) Suppose that $E \subset \mathbf{T}_{n}$ is measurable and that

$$
\int_{E} \frac{d P}{(1+|P|)^{n}}=\infty
$$

If u is a non-negative superharmonic function in \mathbf{T}_{n} and m is a positive number such that $u(P) \geq m y$ for all $P=(X, y) \in E$, then $u(P) \geq m y$ for all $P=(X, y) \in \mathbf{T}_{n}$.

Sjögren also gave Theorem A in the following form with an ingenious proof of Dahlberg's result.
Theorem B (Sjögren [16, Theorem 2]) Let $u(P)$ be a positive superharmonic function on T_{n} such that

$$
u(P)=\int_{\mathbf{T}_{n}} G(P, Q) d \mu(Q)+\int_{\partial \mathbf{T}_{n}} \Pi(P, Q) d \lambda(Q)
$$

with non-negative measures μ and λ on \mathbf{T}_{n} and $\partial \mathbf{T}_{n}$, respectively, where $G(P, Q)(P, Q \in$ \mathbf{T}_{n}) and

$$
\Pi(P, Q)=y|P-Q|^{-n} \quad\left(P=(X, y) \in \mathbf{T}_{n}, Q \in \partial \mathbf{T}_{n}\right)
$$

is the Green function and the Poisson kernel for \mathbf{T}_{n}, respectively. Then

$$
\int_{E_{u}} \frac{d P}{(1+|P|)^{n}}<\infty
$$

where

$$
E_{u}=\left\{P=(X, y) \in \mathbf{T}_{n} ; u(P)>y\right\}
$$

Let $K(P, Q)\left(P \in \mathbf{T}_{n}, Q \in \partial \mathbf{T}_{n}\right)$ be the Martin function with the reference point $(0,0, \ldots, 0,1) \in \mathbf{T}_{n}$. Then $K(P, \infty)=y$ for any $P=(X, y) \in \mathbf{T}_{n}$. A subset E of \mathbf{T}_{n} is said to be minimally thin at ∞ with respect to \mathbf{T}_{n}, if there exists a point $P=(X, y) \in \mathbf{T}_{n}$ such that

$$
\hat{R}_{K(\cdot, \infty)}^{E}(P) \neq y
$$

where $\hat{R}_{K(\cdot, \infty)}^{E}$ is the regularized reduced function of $K(P, \infty)=y(P=(X, y) \in$ \mathbf{T}_{n}) relative to E (Helms [13, p. 134]).

We remark that the conclusions of Theorems A and B are equivalent to the facts that E is not minimally thin at ∞ and E_{u} is minimally thin at ∞, respectively (Theorem 1 in the case where $\left.C_{n}(\Omega)=\mathbf{T}_{n}\right)$. Hence Theorems A and B say:
Theorem C If $E \subset \mathbf{T}_{n}$ is measurable and minimally thin at ∞ with respect to \mathbf{T}_{n}, then

$$
\begin{equation*}
\int_{E} \frac{d P}{(1+|P|)^{n}}<+\infty \tag{1.1}
\end{equation*}
$$

Further the following Theorem D shows that the characterization of a minimally thin set in Theorem C is sharp.
Theorem D Let E be a union of cubes from the Whitney cubes of \mathbf{T}_{n}. Then (1.1) is also sufficient for E to be minimally thin at ∞ with respect to \mathbf{T}_{n}.

These Theorems A, B, C and D follow from the results of Dahlberg [9, Theorem 2], Sjögren [16, Theorem 2], Aikawa [1, Corollary 7 and Corollary 8], Aikawa and Essén [3, Corollary 7.4.6 in p. 158] which are all connected with a Liapunov-Dini domain in \mathbf{R}^{n}, because \mathbf{T}_{n} is mapped onto a ball by a suitable Kelvin transformation.

All these results are connected to minimally thin sets at a boundary point of domains with smooth boundary. So we can ask what is a result similar to Theorem C with respect to a minimally thin set at a corner of a domain with corners. In this direction, Aikawa [2, Corollary 4] gave a complicated result with respect to a minimally thin set at a boundary point of an NTA domain which is a mostly irregular domain taken into consideration.

In this paper we shall show that the same type of theorems as Theorems C and D are still true with respect to a minimally thin set at a corner point of a special domain with corners, i.e., a minimally thin set at ∞ of a cone. These theorems are proved by modifying Aikawa's method in [3]. Then we shall generalize Theorems A and B for positive superharmonic functions in a cone one of which is a half-space \mathbf{T}_{n}. In view of our results it is natural to ask whether similar results are valid for Lipshitz domains or more generally, for NTA domains.

2 Statements of Results

Let Ω be a domain on $\mathbf{S}^{n-1}(n \geq 2)$ with smooth boundary. Consider the Dirichlet problem

$$
\begin{aligned}
&\left(\Lambda_{n}+\tau\right) f=0 \text { on } \Omega \\
& f=0 \\
& \text { on } \partial \Omega
\end{aligned}
$$

where Λ_{n} is the spherical part of the Laplace operator Δ_{n}

$$
\Delta_{n}=\frac{n-1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial r^{2}}+r^{-2} \Lambda_{n}
$$

We denote the least positive eigenvalue of this boundary value problem by τ_{Ω} and the normalized positive eigenfunction corresponding to τ_{Ω} by $f_{\Omega}(\Theta)$;

$$
\int_{\Omega} f_{\Omega}^{2}(\Theta) d \sigma_{\Theta}=1
$$

where $d \sigma_{\Theta}$ is the surface element on \mathbf{S}^{n-1}. We denote the solutions of the equation

$$
t^{2}+(n-2) t-\tau_{\Omega}=0
$$

by $\alpha_{\Omega},-\beta_{\Omega}\left(\alpha_{\Omega}, \beta_{\Omega}>0\right)$. If $\Omega=\mathbf{S}_{+}^{n-1}$, then $\alpha_{\Omega}=1, \beta_{\Omega}=n-1$ and

$$
f_{\Omega}(\Theta)=\left(2 n s_{n}^{-1}\right)^{1 / 2} \cos \theta_{1}
$$

where s_{n} is the surface area $2 \pi^{n / 2}\{\Gamma(n / 2)\}^{-1}$ of \boldsymbol{S}^{n-1}.

To make simplify our consideration in the following, we shall assume that if $n \geq 3$, then Ω is a $C^{2, \alpha}$-domain $(0<\alpha<1)$ on \mathbf{S}^{n-1} (e.g. see Gilbarg and Trudinger [12, pp. 88-89] for the definition of $C^{2, \alpha}$-domain).

By $C_{n}(\Omega)$, we denote the set $\mathbf{R}_{+} \times \Omega$ in \mathbf{R}^{n} with the domain Ω on $\mathbf{S}^{n-1}(n \geq 2)$. We call it a cone. Then \mathbf{T}_{n} is a special cone obtained by putting $\Omega=\mathbf{S}_{+}^{n-1}$.

It is known that the Martin boundary of $C_{n}(\Omega)$ is the set $\partial C_{n}(\Omega) \cup\{\infty\}$, each of which is a minimal Martin boundary point. When we denote the Martin kernel by $K(P, Q)\left(P \in C_{n}(\Omega), Q \in \partial C_{n}(\Omega) \cup\{\infty\}\right)$ with respect to a reference point chosen suitably, we know

$$
K(P, \infty)=r^{\alpha_{\Omega}} f_{\Omega}(\Theta), \quad K(P, O)=\kappa r^{-\beta_{\Omega}} f_{\Omega}(\Theta) \quad\left(P \in C_{n}(\Omega)\right)
$$

where κ is a positive constant.
A subset E of $C_{n}(\Omega)$ is said to be minimally thin at $Q \in \partial C_{n}(\Omega) \cup\{\infty\}$ with respect to $C_{n}(\Omega)\left(\operatorname{Brelot}\right.$ [7, p. 122], $\operatorname{Doob}\left[10\right.$, p. 208]), if there exists a point $P \in C_{n}(\Omega)$ such that

$$
\hat{R}_{K(\cdot, Q)}^{E}(P) \neq K(P, Q)
$$

where $\hat{R}_{K(\cdot, Q)}^{E}(P)$ is the regularized reduced function of $K(\cdot, Q)$ relative to E.
Let E be a bounded subset of $C_{n}(\Omega)$. Then $\hat{R}_{K(\cdot, \infty)}^{E}$ is bounded on $C_{n}(\Omega)$ and hence the greatest harmonic minorant of $\hat{R}_{K(\cdot, \infty)}^{E}$ is zero. When we denote by $G(P, Q)$ $\left(P \in C_{n}(\Omega), Q \in C_{n}(\Omega)\right)$ the Green function of $C_{n}(\Omega)$, we see from the Riesz decomposition theorem that there exists a unique positive measure λ_{E} on $C_{n}(\Omega)$ such that

$$
\hat{R}_{K(\cdot, \infty)}^{E}(P)=G \lambda_{E}(P)
$$

for any $P \in C_{n}(\Omega)$ and λ_{E} is concentrated on B_{E}, where

$$
B_{E}=\left\{P \in C_{n}(\Omega) ; E \text { is not thin at } P\right\}
$$

(see Brelot [7, Theorem VIII, 11] and Doob [10, XI. 14. Theorem (d)]). The (Green) energy $\gamma_{\Omega}(E)$ of λ_{E} is defined by

$$
\gamma_{\Omega}(E)=\int_{C_{n}(\Omega)}\left(G \lambda_{E}\right) d \lambda_{E}
$$

(see Helms [13, p. 223]). Let E be a Borel subset of $C_{n}(\Omega)$ and $E_{k}=E \cap I_{k}(\Omega)$ ($k=0,1,2, \ldots$), where

$$
I_{k}(\Omega)=\left\{(r, \Theta) \in C_{n}(\Omega) ; 2^{k} \leq r<2^{k+1}\right\}
$$

First we shall state Theorem 1, essentially due to Miyamoto and Yoshida [15, p. 6, Theorem 1], which, with Theorem 2, gives Corollaries 1 and 2 extending Theorems A and B, respectively.

Theorem 1 The following statements are equivalent.
(I) A subset E of $C_{n}(\Omega)$ is minimally thin at ∞ with respect to $C_{n}(\Omega)$.
(II) (Wiener type) $\sum_{k=0}^{\infty} \gamma_{\Omega}\left(E_{k}\right) 2^{-k\left(\alpha_{\Omega}+\beta_{\Omega}\right)}<\infty$.
(III) (Sjögren type) There exists a positive superharmonic function $v(P)$ on $C_{n}(\Omega)$ such that

$$
\begin{equation*}
\inf _{P \in C_{n}(\Omega)} \frac{v(P)}{K(P, \infty)}=0 \tag{2.1}
\end{equation*}
$$

and

$$
E \subset M_{v}
$$

where

$$
M_{v}=\left\{P \in C_{n}(\Omega) ; v(P) \geq K(P, \infty)\right\}
$$

(IV) (Dahlberg type) There exist a positive superharmonic function $v(P)$ on $C_{n}(\Omega)$ and a positive number m such that even if $v(P) \geq m K(P, \infty)(P \in E)$, there exists $P_{0} \in C_{n}(\Omega)$ satisfying $v\left(P_{0}\right)<m K\left(P_{0}, \infty\right)$.

The following Theorem 2 is the main theorem in this paper.
Theorem 2 Let a Borel subset E of $C_{n}(\Omega)$ be minimally thin at ∞ with respect to $C_{n}(\Omega)$. Then we have

$$
\begin{equation*}
\int_{E} \frac{d P}{(1+|P|)^{n}}<\infty \tag{2.2}
\end{equation*}
$$

When we decompose a positive superharmonic function $v(P)$ on $C_{n}(\Omega)$ into

$$
v(P)=\int_{C_{n}(\Omega)} G(P, Q) d \mu(Q)+\int_{\partial C_{n}(\Omega)} K(P, Q) d \nu(Q)+K(P, \infty) \nu(\{\infty\})
$$

with two measures μ and ν on $C_{n}(\Omega)$ and $\partial C_{n}(\Omega) \cup\{\infty\}$, respectively, we see that (2.1) is equivalent to $\nu(\{\infty\})=0$ (Doob [10, p. 213, Theorem]). This fact shows that the following corollary of Sjögren type generalizes Theorem B.
Corollary 1 Let $v(P)$ be a positive superharmonic function on $C_{n}(\Omega)$ such that

$$
\inf _{P \in C_{n}(\Omega)} \frac{v(P)}{K(P, \infty)}=0
$$

Then we have

$$
\int_{M_{v}} \frac{d P}{(1+|P|)^{n}}<\infty
$$

From Theorems 1 and 2 we also obtain the following corollary of Dahlberg type, which generalizes Theorem A.

Corollary 2 Let E be a Borel measurable subset of $C_{n}(\Omega)$ satisfying

$$
\int_{E} \frac{d P}{(1+|P|)^{n}}=+\infty
$$

If $v(P)$ is a non-negative superharmonic function on $C_{n}(\Omega)$ and m is a positive number such that $v(P) \geq m K(P, \infty)$ for all $P \in E$, then $v(P) \geq m K(P, \infty)$ for all $P \in C_{n}(\Omega)$.

In order to state Theorem 3 which shows the sharpness of the characterization of a minimally thin set in Theorem 2, we introduce the Whitney cubes of $C_{n}(\Omega)$.

A cube is of the form

$$
\left[l_{1} 2^{-k},\left(l_{1}+1\right) 2^{-k}\right] \times \cdots \times\left[l_{n} 2^{-k},\left(l_{n}+1\right) 2^{-k}\right]
$$

where k, l_{1}, \ldots, l_{n} are integers. The Whitney cubes of $C_{n}(\Omega)$ are a family of cubes having the following properties:
(i) $\bigcup_{j} W_{j}=C_{n}(\Omega)$,
(ii) $\operatorname{int} W_{j} \cap \operatorname{int} W_{k}=\varnothing(j \neq k)$,
(iii) $\operatorname{diam} W_{j} \leq \operatorname{dist}\left(W_{j}, \mathbf{R}^{n} \backslash C_{n}(\Omega)\right) \leq 4 \operatorname{diam} W_{j}$,
where $\operatorname{int} S$, $\operatorname{diam} S$, $\operatorname{dist}\left(S_{1}, S_{2}\right)$ stand for the interior of S, the diameter of S, the distance between S_{1} and S_{2}, respectively (Stein [17, p. 167, Theorem 1]).

Theorem 3 If E is a union of cubes from the Whitney cubes of $C_{n}(\Omega)$, then (2.2) is also sufficient for E to be minimally thin at ∞ with respect to $C_{n}(\Omega)$.

3 Lemmas and Their Froofs

For a function $F(P, Q)\left(P, Q \in C_{n}(\Omega)\right)$ and a positive measure μ on $C_{n}(\Omega)$,

$$
\int_{C_{n}(\Omega)} F(P, Q) d \mu(Q)
$$

is simply denoted by $F \mu(P)$. We shall also write $g_{1} \approx g_{2}$ for two positive functions g_{1} and g_{2}, if and only if there exists a positive constant a such that $a^{-1} g_{1} \leq g_{2} \leq a g_{1}$.

Let E be a Borel subset of $C_{n}(\Omega)$ and let $\delta(P)=\operatorname{dist}\left(P, \partial C_{n}(\Omega)\right)$ for a point $P \in C_{n}(\Omega)$. We define a measure σ_{Ω} on $C_{n}(\Omega)$ by

$$
\sigma_{\Omega}(E)=\int_{E}\left(\frac{K(P, \infty)}{\delta(P)}\right)^{2} d P
$$

Lemma 1 Let E be a bounded Borel subset of $C_{n}(\Omega)$. Then there exists a constant M_{1} independent of E such that

$$
\sigma_{\Omega}(E) \leq M_{1} \gamma_{\Omega}(E)
$$

Proof First of all, we remark that $\mathbf{R}^{n} \backslash C_{n}(\Omega)$ is $(1,2)$ uniformly fat, i.e., there is a positive constant ι such that at any $P \in \mathbf{R}^{n} \backslash C_{n}(\Omega)$

$$
\operatorname{Cap}\left(\left\{P+r^{-1}(Q-P) \in \mathbf{R}^{n} ; Q \in B(P, r) \cap\left(\mathbf{R}^{n} \backslash C_{n}(\Omega)\right)\right\}\right) \geq \iota
$$

for every positive number r, where $B(P, r)=\left\{Q \in \mathbf{R}^{n}:|Q-P|<r\right\}$ and Cap denotes the Newtonian capacity (see Lewis [14, p. 178]). Then by a result of Lewis [14, Theorem 2], there is a positive constant M_{1} depending only on ι and n such that

$$
\begin{equation*}
\int_{C_{n}(\Omega)}\left|\frac{\psi(P)}{\delta(P)}\right|^{2} d P \leq M_{1} \int_{C_{n}(\Omega)}|\nabla \psi(P)|^{2} d P \tag{3.1}
\end{equation*}
$$

for every $\psi \in C_{0}^{\infty}\left(C_{n}(\Omega)\right)$ (also see Ancona [4]).
We denote the function $G \lambda_{E}(P)=\hat{R}_{K(\cdot, \infty)}^{E}(P)$ on $C_{n}(\Omega)$ by $v_{E}(P)$. It is well known that the Green energy can be represented as the Dirichlet integral, i.e.,

$$
\begin{equation*}
\gamma_{\Omega}(E)=\int_{C_{n}(\Omega)}\left|\nabla v_{E}\right|^{2} d P \tag{3.2}
\end{equation*}
$$

Since

$$
\begin{equation*}
A^{-1} r^{\alpha_{\Omega}} f_{\Omega}(\Theta) t^{-\beta_{\Omega}} f_{\Omega}(\Phi) \leq G(P, Q) \leq A r^{\alpha_{\Omega}} f_{\Omega}(\Theta) t^{-\beta_{\Omega}} f_{\Omega}(\Phi) \tag{3.3}
\end{equation*}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$ and any $Q=(t, \Phi) \in C_{n}(\Omega)$ satisfying $2 r \leq t$, where A is a positive constant (see Azarin [5, Lemma 1]) and

$$
\begin{equation*}
f_{\Omega}(\Theta) \approx \delta(P) \tag{3.4}
\end{equation*}
$$

for any $P=(1, \Theta) \in \Omega$ (see Courant and Hilbert [8]), we also see

$$
\begin{equation*}
\int_{C_{n}(\Omega)}\left|\frac{v_{E}(P)}{\delta(P)}\right|^{2} d P<+\infty \tag{3.5}
\end{equation*}
$$

Hence we have $v_{E} \in H\left(C_{n}(\Omega)\right)$ from (3.2) and (3.5), where

$$
H\left(C_{n}(\Omega)\right)=\left\{f \in L_{\mathrm{loc}}^{2}\left(C_{n}(\Omega)\right): \nabla f \in L^{2}\left(C_{n}(\Omega)\right), \delta^{-1} f \in L^{2}\left(C_{n}(\Omega)\right)\right\}
$$

equipped with the norm

$$
\|f\|_{H\left(C_{n}(\Omega)\right)}=\left(\|\nabla f\|_{L^{2}\left(C_{n}(\Omega)\right)}^{2}+\left\|\delta^{-1} f\right\|_{L^{2}\left(C_{n}(\Omega)\right)}^{2}\right)^{\frac{1}{2}}
$$

and further $v_{E} \in H_{0}\left(C_{n}(\Omega)\right)$, where $H_{0}\left(C_{n}(\Omega)\right)$ denotes the closure of $C_{0}^{\infty}\left(C_{n}(\Omega)\right)$ in $H\left(C_{n}(\Omega)\right)$. Thus we obtain from (3.1) that

$$
\int_{C_{n}(\Omega)}\left|\frac{v_{E}(P)}{\delta(P)}\right|^{2} d P \leq M_{1} \int_{C_{n}(\Omega)}\left|\nabla v_{E}(P)\right|^{2} d P
$$

(see Ancona [4, p. 288]). Since $v_{E}=K(\cdot, \infty)$ quasi everywhere on E and hence a.e. on E, we have from (3.2)

$$
\gamma_{\Omega}(E) \geq M_{1}^{-1} \int_{C_{n}(\Omega)}\left(\frac{v_{E}(P)}{\delta(P)}\right)^{2} d P \geq M_{1}^{-1} \int_{E}\left(\frac{K(P, \infty)}{\delta(P)}\right)^{2} d P=M_{1}^{-1} \sigma_{\Omega}(E)
$$

which gives the conclusion.
Lemma 2 Let W_{j} be a cube from the Whitney cubes of $C_{n}(\Omega)$. Then there exists a constant M_{2} independent of j such that

$$
\gamma_{\Omega}\left(W_{j}\right) \leq M_{2} \sigma_{\Omega}\left(W_{j}\right)
$$

Proof If we apply a result of Aikawa and Essén [3, Theorem 5.6, p. 19] for compact set \bar{W}_{j}, we obtain a measure μ on $C_{n}(\Omega), \operatorname{supp} \mu \subset \bar{W}_{j}, \mu\left(\bar{W}_{j}\right)=1$ such that

$$
\begin{cases}\int_{C_{n}(\Omega)}|P-Q|^{2-n} d \mu(Q)=\left\{\operatorname{Cap}\left(\bar{W}_{j}\right)\right\}^{-1} & (n \geq 3) \tag{3.6}\\ \int_{C_{2}(\Omega)} \log |P-Q| d \mu(Q)=\log \operatorname{Cap}\left(\bar{W}_{j}\right) & (n=2)\end{cases}
$$

for any $P \in \bar{W}_{j}$. Also there exists a positive measure $\lambda_{\bar{W}_{j}}$ on $C_{n}(\Omega)$ such that

$$
\begin{equation*}
\hat{R}_{K(\cdot, \infty)}^{\bar{W}_{j}}(P)=G \lambda_{\bar{W}_{j}}(P) \quad\left(P \in C_{n}(\Omega)\right) \tag{3.7}
\end{equation*}
$$

Let $P_{j}=\left(r_{j}, \Theta_{j}\right), \rho_{j}, t_{j}$ be the center of W_{j}, the diameter of W_{j}, the distance between W_{j} and $\partial C_{n}(\Omega)$, respectively. Then we have $\rho_{j} \leq t_{j} \leq 4 \rho_{j}$ and $\rho_{j} \leq r_{j}$. Then from (3.4) we can find a positive constant A_{1} independent of j such that

$$
\begin{equation*}
A_{1}^{-1} r_{j}^{\alpha_{\Omega}-1} \rho_{j} \leq K(P, \infty) \leq A_{1} r_{j}^{\alpha_{\Omega}-1} \rho_{j} \tag{3.8}
\end{equation*}
$$

for any $P \in \bar{W}_{j}$. We can also prove that

$$
G(P, Q) \geq \begin{cases}A_{2}|P-Q|^{2-n} & (n \geq 3) \tag{3.9}\\ \log \frac{A_{3} \rho_{j}}{|P-Q|} & (n=2)\end{cases}
$$

for any $P \in \bar{W}_{j}$ and any $Q \in \bar{W}_{j}$, where A_{2} and A_{3} are two positive constants independent of j. Hence we obtain

$$
\lambda_{\bar{W}_{j}}\left(C_{n}(\Omega)\right) \leq \begin{cases}\left(A_{1} / A_{2}\right) r_{j}^{\alpha_{\Omega}-1} \rho_{j} \operatorname{Cap}\left(\bar{W}_{j}\right) & (n \geq 3) \tag{3.10}\\ A_{1} r_{j}^{\alpha_{\Omega}-1} \rho_{j}\left\{\log \frac{A_{3} \rho_{j}}{\operatorname{Cap}\left(\bar{W}_{j}\right)}\right\}^{-1} & (n=2)\end{cases}
$$

from (3.6), (3.7), (3.8) and (3.9). Since

$$
\gamma_{\Omega}\left(\bar{W}_{j}\right)=\int G \lambda_{\bar{W}_{j}} d \lambda_{\bar{W}_{j}} \leq \int_{\bar{W}_{j}} K(P, \infty) d \lambda_{\bar{W}_{j}}(P) \leq A_{1} r_{j}^{\alpha_{\Omega}-1} \rho_{j} \lambda_{\bar{W}_{j}}\left(C_{n}(\Omega)\right)
$$

from (3.7) and (3.8), we have from (3.10)

$$
\gamma_{\Omega}\left(\bar{W}_{j}\right) \leq \begin{cases}A_{1}^{2} A_{2}^{-1} r_{j}^{2 \alpha_{\Omega}-2} \rho_{j}^{2} \operatorname{Cap}\left(\bar{W}_{j}\right) & (n \geq 3) \tag{3.11}\\ A_{1}^{2} r_{j}^{2 \alpha_{\Omega}-2} \rho_{j}^{2}\left\{\log \frac{A_{3} \rho_{j}}{\operatorname{Cap}\left(\bar{W}_{j}\right)}\right\}^{-1} & (n=2)\end{cases}
$$

Since

$$
\begin{cases}\operatorname{Cap}\left(\bar{W}_{j}\right) \approx \rho_{j}^{n-2} & (n \geq 3) \\ \operatorname{Cap}\left(\bar{W}_{j}\right) \approx \rho_{j} & (n=2)\end{cases}
$$

we obtain from (3.11)

$$
\begin{equation*}
\gamma_{\Omega}\left(W_{j}\right) \leq A_{4} r_{j}^{2 \alpha_{\Omega}-2} \rho_{j}^{n} \tag{3.12}
\end{equation*}
$$

with a positive constant A_{4}. On the other hand, we have from (3.4) that

$$
\begin{equation*}
\sigma_{\Omega}\left(W_{j}\right) \approx r_{j}^{2 \alpha_{\Omega}-2} \rho_{j}^{n} \tag{3.13}
\end{equation*}
$$

for any $P=(r, \Theta) \in W_{j}$. From (3.12) and (3.13) we finally have

$$
\gamma_{\Omega}\left(W_{j}\right) \leq M_{2} \sigma_{\Omega}\left(W_{j}\right)
$$

which is the conclusion of Lemma 2.

4 Proofs of Theorems 1, 2 and 3

Proof of Theorem 1 It is a result of Miyamoto and Yoshida [15, Theorem 1] that (II) follows from (I).

We shall show that (III) follows from (II). Since

$$
\hat{R}_{K(\cdot, \infty)}^{E_{k}}(Q)=K(Q, \infty)
$$

for any $Q \in B_{E_{k}}$ (Brelot [7, p. 61] and Doob [10, p. 169]) and $\lambda_{E_{k}}$ is concentrated on $B_{E_{k}}$, we have

$$
\begin{aligned}
\gamma_{\Omega}\left(E_{k}\right) & =\int_{B_{E_{k}}} K(Q, \infty) d \lambda_{E_{k}}(Q) \\
& \geq 2^{k \alpha_{\Omega}} \int_{B_{E_{k}}} f_{\Omega}(\Phi) d \lambda_{E_{k}}(t, \Phi) \quad\left(Q=(t, \Phi) \in C_{n}(\Omega)\right)
\end{aligned}
$$

and hence from (3.3)

$$
\begin{align*}
\hat{R}_{K(\cdot, \infty)}^{E_{k}}(P) & \leq A r^{\alpha_{\Omega}} f_{\Omega}(\Theta) \int_{B_{E_{k}}} t^{-\beta_{\Omega}} f_{\Omega}(\Phi) d \lambda_{E_{k}}(t, \Phi) \tag{4.1}\\
& \leq A r^{\alpha_{\Omega}} f_{\Omega}(\Theta) 2^{-k\left(\alpha_{\Omega}+\beta_{\Omega}\right)} \gamma_{\Omega}\left(E_{k}\right)
\end{align*}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$ and any integer k satisfying $2^{k} \geq 2 r$. If we define a measure μ on $C_{n}(\Omega)$ by

$$
\mu=\sum_{k=0}^{\infty} \lambda_{E_{k}},
$$

then from (II) and (4.1)

$$
G \mu(P)=\sum_{k=0}^{\infty} \hat{R}_{K(\cdot, \infty)}^{E_{k}}(P)
$$

is a finite-valued superharmonic function on $C_{n}(\Omega)$,

$$
G \mu(P) \geq \hat{R}_{K(\cdot, \infty)}^{E_{k}}(P)=r^{\alpha_{\Omega}} f_{\Omega}(\Theta)
$$

for any $P=(r, \Theta) \in B_{E_{k}}(k=0,1,2, \ldots)$, and from (3.3)

$$
G \mu(P) \geq A_{5} r^{\alpha_{\Omega}} f_{\Omega}(\Theta)
$$

for any $P=(r, \Theta) \in\left\{P=(r, \Theta) \in C_{n}(\Omega) ; 0<r<1\right\}$, where

$$
A_{5}=A^{-1} \int_{\left\{Q=(t, \Phi) \in C_{n}(\Omega) ; 2 \leq t\right\}} t^{-\beta_{\Omega}} f_{\Omega}(\Phi) d \mu(Q)
$$

If we set

$$
E^{\prime}=\bigcup_{k=-1}^{\infty} B_{E_{k}}
$$

where

$$
\begin{equation*}
E_{-1}=E \cap\left\{P=(r, \Theta) \in C_{n}(\Omega) ; 0<r<1\right\} \tag{4.2}
\end{equation*}
$$

and $A_{6}=\min \left(A_{5}, 1\right)$, then

$$
E^{\prime} \subset\left\{P=(r, \Theta) \in C_{n}(\Omega) ; G \mu(P) \geq A_{6} r^{\alpha_{\Omega}} f_{\Omega}(\Theta)\right\}
$$

and E^{\prime} is equal to E except a polar set S (see Brelot [7, p. 57] and Doob [10, p. 177]). If we take a positive measure η on $C_{n}(\Omega)$ such that $G \eta$ is identically $+\infty$ on S (see Doob [10, p. 58]) and define a measure ν on $C_{n}(\Omega)$ by

$$
\nu=A_{6}^{-1}(\mu+\eta),
$$

then

$$
E \subset\left\{P=(r, \Theta) \in C_{n}(\Omega) ; G \nu(P) \geq r^{\alpha_{\Omega}} f_{\Omega}(\Theta)\right\} .
$$

If we put $v(P)=G \nu(P)$, then this shows that $v(P)$ is the function required in (III).
Now we shall see that (IV) follows from (III). Let $v(P)$ be the function in (III). It follows that

$$
v(P) \geq K(P, \infty)
$$

for any $P \in E$. On the other hand from (2.1) we can find a point $P_{0} \in C_{n}(\Omega)$ satisfying

$$
v\left(P_{0}\right)<K\left(P_{0}, \infty\right) .
$$

Therefore $v(P)$ satisfies (IV) with $m=1$.
Finally we shall prove that (I) follows from (IV). Let $v(P)$ be the function in (IV). If we put

$$
\inf _{P \in C_{n}(\Omega)} \frac{v(P)}{K(P, \infty)}=c_{\infty}(v)
$$

and

$$
u(P)=v(P)-c_{\infty}(v) K(P, \infty),
$$

then we have

$$
\inf _{P \in C_{n}(\Omega)} \frac{u(P)}{K(P, \infty)}=0 .
$$

Since there exists $P_{0} \in C_{n}(\Omega)$ satisfying $v\left(P_{0}\right)<m K\left(P_{0}, \infty\right)$, we note that

$$
c_{\infty}(v)<m .
$$

Now we obtain

$$
\begin{aligned}
u(P) & \geq m K(P, \infty)-c_{\infty}(v) K(P, \infty) \\
& =\left(m-c_{\infty}(v)\right) K(P, \infty)
\end{aligned}
$$

for any $P \in E$. Hence by a result of Doob [10, p. 213], E is minimally thin at ∞ with respect to $C_{n}(\Omega)$, which is the statement of (I).

Proof of Theorem 2 First of all we remark that
(4.3) $\int_{E} \frac{d P}{(1+|P|)^{n}}=\int_{E_{-1}} \frac{d P}{(1+|P|)^{n}}+\sum_{k=0}^{\infty} \int_{E_{k}} \frac{d P}{(1+|P|)^{n}} \leq\left|E_{-1}\right|+\sum_{k=0}^{\infty} 2^{-k n}\left|E_{k}\right|$,
where E_{-1} is the set in (4.2) and $\left|E_{k}\right|$ is the n-dimensional Lebesgue measure of E_{k}. We have from (3.4)

$$
A_{7} \delta(P) \leq r f_{\Omega}(\Theta)
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$, where A_{7} is a positive constant, hence

$$
\begin{aligned}
\sigma_{\Omega}\left(E_{k}\right) & =\int_{E_{k}}\left(\frac{K(P, \infty)}{\delta(P)}\right)^{2} d P \geq A_{7}^{2} \int_{E_{k}}\left(\frac{r^{\alpha_{\Omega}} f_{\Omega}(\Theta)}{r f_{\Omega}(\Theta)}\right)^{2} d P \\
& =A_{7}^{2} \int_{E_{k}} r^{2 \alpha_{\Omega}-2} d P \geq 2^{-2} A_{7}^{2} \int_{E_{k}} 2^{k\left(2 \alpha_{\Omega}-2\right)} d P \\
& =2^{-2} A_{7}^{2} 2^{k\left(2 \alpha_{\Omega}-2\right)}\left|E_{k}\right|
\end{aligned}
$$

By using Lemma 1, we obtain

$$
\begin{equation*}
\gamma_{\Omega}\left(E_{k}\right) \geq M_{1}^{-1} \sigma_{\Omega}\left(E_{k}\right) \geq A_{8} 2^{k\left(2 \alpha_{\Omega}-2\right)}\left|E_{k}\right| \tag{4.4}
\end{equation*}
$$

where A_{8} is a positive constant.
If E is minimally thin at ∞ with respect to $C_{n}(\Omega)$, then from Theorem 1, (4.3) and (4.4), we have

$$
\begin{aligned}
\int_{E} \frac{d P}{(1+|P|)^{n}} & \leq\left|E_{-1}\right|+\sum_{k=0}^{\infty} 2^{k\left(2 \alpha_{\Omega}-2\right)}\left|E_{k}\right| 2^{-k\left(\alpha_{\Omega}+\beta_{\Omega}\right)} \\
& \leq\left|E_{-1}\right|+A_{8}^{-1} \sum_{k=0}^{\infty} \gamma_{\Omega}\left(E_{k}\right) 2^{-k\left(\alpha_{\Omega}+\beta_{\Omega}\right)}<\infty
\end{aligned}
$$

which is the conclusion of Theorem 2.
Proof of Theorem 3 Let $\left\{W_{j}\right\}$ be a family of cubes from the Whitney cubes of $C_{n}(\Omega)$ such that $E=\bigcup_{j} W_{j}$. Let $\left\{W_{k, j}\right\}$ be a subfamily of $\left\{W_{j}\right\}$ such that $W_{k, j} \subset$ $\left(E_{k-1} \cup E_{k} \cup E_{k+1}\right)(k=1,2, \ldots)$.

Since γ_{Ω} is a countably subadditive set function (Essén and Jackson [11, Lemma 2.1]), we have

$$
\begin{equation*}
\gamma_{\Omega}\left(E_{k}\right) \leq \sum_{j} \gamma_{\Omega}\left(W_{k, j}\right) \quad(k=1,2, \ldots) \tag{4.5}
\end{equation*}
$$

Hence we see from Lemma 2

$$
\begin{equation*}
\sum_{j} \gamma_{\Omega}\left(W_{k, j}\right) \leq M_{2} \sum_{j} \sigma_{\Omega}\left(W_{k, j}\right) \quad(k=1,2, \ldots) \tag{4.6}
\end{equation*}
$$

Since we see from (3.4)

$$
r f_{\Omega}(\Theta) \leq A_{9} \delta(P)
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$, where A_{9} is a positive constant, we have

$$
\begin{align*}
& \sum_{j} \sigma_{\Omega}\left(W_{k, j}\right) \leq A_{9}^{2}\left\{\int_{E_{k-1}} r^{2\left(\alpha_{\Omega}-1\right)} d P+\int_{E_{k}} r^{2\left(\alpha_{\Omega}-1\right)} d P+\int_{E_{k+1}} r^{2\left(\alpha_{\Omega}-1\right)} d P\right\} \tag{4.7}\\
& \leq A_{10}\left\{2^{(k-1)\left(2 \alpha_{\Omega}-2\right)}\left|E_{k-1}\right|+2^{k\left(2 \alpha_{\Omega}-2\right)}\left|E_{k}\right|+2^{(k+1)\left(2 \alpha_{\Omega}-2\right)}\left|E_{k+1}\right|\right\} \\
&(k=1,2, \ldots)
\end{align*}
$$

where A_{10} is a positive constant. Thus (4.5), (4.6) and (4.7) give

$$
\gamma_{\Omega}\left(E_{k}\right) \leq M_{2} \cdot A_{10}\left\{2^{(k-1)\left(2 \alpha_{\Omega}-2\right)}\left|E_{k-1}\right|+2^{k\left(2 \alpha_{\Omega}-2\right)}\left|E_{k}\right|+2^{(k+1)\left(2 \alpha_{\Omega}-2\right)}\left|E_{k+1}\right|\right\}
$$

for $k=1,2, \ldots$ Finally we obtain

$$
\begin{aligned}
\sum_{k=0}^{\infty} \gamma_{\Omega}\left(E_{k}\right) 2^{-k\left(\alpha_{\Omega}+\beta_{\Omega}\right)} & \leq \gamma_{\Omega}\left(E_{0}\right)+A_{11} \cdot 2^{-2 n} \sum_{k=0}^{\infty} 2^{k\left(2 \alpha_{\Omega}-2\right)}\left|E_{k}\right| 2^{-k\left(\alpha_{\Omega}+\beta_{\Omega}\right)} \\
& \leq \gamma_{\Omega}\left(E_{0}\right)+A_{11} \int_{E} \frac{d P}{(1+|P|)^{n}}<\infty
\end{aligned}
$$

where A_{11} is a positive constant, which shows with Theorem 1 that E is minimally thin at ∞ with respect to $C_{n}(\Omega)$.

References

[1] H. Aikawa, Quasiadditivity of Riesz capacity. Math. Scand. 69(1991), 15-30.
[2] \longrightarrow Quasiadditivity of capacity and minimal thinness. Ann. Acad. Sci. Fenn. Math. Ser. AI 18(1993), 65-75.
[3] H. Aikawa and M. Essén, Potential Theory-Selected Topics. Lecture Notes in Math. 1633, Springer-Verlag, 1996.
[4] A. Ancona, On strong barriers and an inequality of Hardy for domains in \mathbf{R}^{n}. J. London Math. Soc. (2) 34(1986), 274-290.
[5] V. S. Azarin, Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone. Mat. Sb. 66 (108)(1965), 248-264; Amer. Math. Soc. Transl. (2) 80(1969), 119-138.
[6] A. Beurling, A minimum principle for positive harmonic functions. Ann. Acad. Sci. Fenn. Ser. AI. Math. 372, 1965.
[7] M. Brelot, On topologies and boundaries in potential theory. Lecture Notes in Math. 175, Springer-Verlag, 1971.
[8] R. Courant and D. Hilbert, Methods of mathematical physics. 1st English edition, Interscience, New York, 1954.
[9] B. E. J. Dahlberg, A minimum principle for positive harmonic functions. Proc. London Math. Soc. (3) 33(1976), 238-250.
[10] J. I. Doob, Classical potential theory and its probabilistic counterpart. Springer-Verlag, 1984.
[11] M. Essén and H. L. Jackson, On the covering properties of certain exceptional sets in a half-space. Hiroshima Math. J. 10(1980), 233-262.
[12] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 1977.
[13] L. L. Helms, Introduction to potential theory. Wiley, New York, 1969.
[14] J. L. Lewis, Uniformly fat sets. Trans. Amer. Math. Soc. 308(1988), 177-196.
[15] I. Miyamoto and H. Yoshida, Two criteria of Wiener type for minimally thin sets and rarefied sets in a cone. J. Math. Soc. Japan, to appear.
[16] P. Sjögren, Une propriété des fonctions harmoniques positives d'après Dahlberg. In: Séminaire de théorie du potentiel, Lecture Notes in Math. 563, Springer, Berlin, 1976, 275-282.
[17] E. M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press, 1970.

Department of Mathematics and Informatics
Faculty of Science
Chiba University
1-33 Yayoi-cho, Inage-ku
Chiba 263-8522
Japan
email: miyamoto@math.s.chiba-u.ac.jp
myanagis@g.math.s.chiba-u.ac.jp
yoshida@math.s.chiba-u.ac.jp

[^0]: Received by the editors July 31, 2001; revised November 22, 2001.

