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Beurling-Dahlberg-Sjögren Type Theorems
for Minimally Thin Sets in a Cone

Ikuko Miyamoto, Minoru Yanagishita and Hidenobu Yoshida

Abstract. This paper shows that some characterizations of minimally thin sets connected with a do-

main having smooth boundary and a half-space in particular also hold for the minimally thin sets at a

corner point of a special domain with corners, i.e., the minimally thin set at ∞ of a cone.

1 Introduction

Let R and R+ be the set of all real numbers and all positive real numbers, respectively.

We denote by Rn (n ≥ 2) the n-dimensional Euclidean space. A point in Rn is denoted

by P = (X, y), X = (x1, x2, . . . , xn−1). The Euclidean distance of two points P and Q

in Rn is denoted by |P − Q|. Also |P − O| with the origin O of Rn is simply denoted

by |P|. The boundary and the closure of a set S in Rn are denoted by ∂S and S̄,

respectively.

We introduce a system of spherical coordinates (r,Θ), Θ = (θ1, θ2, . . . , θn−1), in

Rn which are related to cartesian coordinates (x1, x2, . . . , xn−1, y) by

x1 = r(Πn−1
j=1 sin θ j) (n ≥ 2), y = r cos θ1,

and if n ≥ 3, then

xn+1−k = r(Πk−1
j=1 sin θ j) cos θk (2 ≤ k ≤ n − 1),

where 0 ≤ r < +∞, − 1
2
π ≤ θn−1 <

3
2
π, and if n ≥ 3, then 0 ≤ θ j ≤ π (1 ≤ j ≤

n − 2).

The unit sphere and the upper half unit sphere are denoted by Sn−1 and Sn−1
+ ,

respectively. For simplicity, a point (1,Θ) on Sn−1 and the set {Θ ; (1,Θ) ∈ Ω} for a

set Ω, Ω ⊂ Sn−1, are often identified with Θ and Ω, respectively. For two sets Λ ⊂ R+

and Ω ⊂ Sn−1, the set

{(r,Θ) ∈ Rn ; r ∈ Λ, (1,Θ) ∈ Ω}

in Rn is simply denoted by Λ × Ω. In particular, the half-space

R+ × Sn−1
+ = {(X, y) ∈ Rn ; y > 0}

will be denoted by Tn.
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As an extension of a result of Beurling [6, Lemma 1], Dahlberg proved:

Theorem A (Dahlberg [9, Theorem 4]) Suppose that E ⊂ Tn is measurable and that

∫

E

dP

(1 + |P|)n
= ∞.

If u is a non-negative superharmonic function in Tn and m is a positive number such

that u(P) ≥ my for all P = (X, y) ∈ E, then u(P) ≥ my for all P = (X, y) ∈ Tn.

Sjögren also gave Theorem A in the following form with an ingenious proof of

Dahlberg’s result.

Theorem B (Sjögren [16, Theorem 2]) Let u(P) be a positive superharmonic function

on Tn such that

u(P) =

∫

Tn

G(P,Q) dµ(Q) +

∫

∂Tn

Π(P,Q) dλ(Q)

with non-negative measures µ and λ on Tn and ∂Tn, respectively, where G(P,Q) (P,Q ∈
Tn) and

Π(P,Q) = y|P − Q|−n
(

P = (X, y) ∈ Tn,Q ∈ ∂Tn

)

is the Green function and the Poisson kernel for Tn, respectively. Then

∫

Eu

dP

(1 + |P|)n
<∞,

where

Eu = {P = (X, y) ∈ Tn ; u(P) > y}.

Let K(P,Q) (P ∈ Tn, Q ∈ ∂Tn) be the Martin function with the reference point

(0, 0, . . . , 0, 1) ∈ Tn. Then K(P,∞) = y for any P = (X, y) ∈ Tn. A subset E

of Tn is said to be minimally thin at ∞ with respect to Tn, if there exists a point

P = (X, y) ∈ Tn such that

R̂E
K(·,∞)(P) 6= y,

where R̂E
K(·,∞) is the regularized reduced function of K(P,∞) = y

(

P = (X, y) ∈

Tn

)

relative to E (Helms [13, p. 134]).

We remark that the conclusions of Theorems A and B are equivalent to the facts

that E is not minimally thin at ∞ and Eu is minimally thin at ∞, respectively (Theo-

rem 1 in the case where Cn(Ω) = Tn). Hence Theorems A and B say:

Theorem C If E ⊂ Tn is measurable and minimally thin at ∞ with respect to Tn, then

(1.1)

∫

E

dP

(1 + |P|)n
< +∞.

Further the following Theorem D shows that the characterization of a minimally

thin set in Theorem C is sharp.

Theorem D Let E be a union of cubes from the Whitney cubes of Tn. Then (1.1) is also

sufficient for E to be minimally thin at ∞ with respect to Tn.
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These Theorems A, B, C and D follow from the results of Dahlberg [9, Theorem 2],

Sjögren [16, Theorem 2], Aikawa [1, Corollary 7 and Corollary 8], Aikawa and Essén

[3, Corollary 7.4.6 in p. 158] which are all connected with a Liapunov-Dini domain

in Rn, because Tn is mapped onto a ball by a suitable Kelvin transformation.

All these results are connected to minimally thin sets at a boundary point of do-

mains with smooth boundary. So we can ask what is a result similar to Theorem C

with respect to a minimally thin set at a corner of a domain with corners. In this di-

rection, Aikawa [2, Corollary 4] gave a complicated result with respect to a minimally

thin set at a boundary point of an NTA domain which is a mostly irregular domain

taken into consideration.

In this paper we shall show that the same type of theorems as Theorems C and D

are still true with respect to a minimally thin set at a corner point of a special domain

with corners, i.e., a minimally thin set at ∞ of a cone. These theorems are proved by

modifying Aikawa’s method in [3]. Then we shall generalize Theorems A and B for

positive superharmonic functions in a cone one of which is a half-space Tn. In view

of our results it is natural to ask whether similar results are valid for Lipshitz domains

or more generally, for NTA domains.

2 Statements of Results

Let Ω be a domain on Sn−1(n ≥ 2) with smooth boundary. Consider the Dirichlet

problem

(Λn + τ ) f = 0 on Ω

f = 0 on ∂Ω,

where Λn is the spherical part of the Laplace operator ∆n

∆n =
n − 1

r

∂

∂r
+
∂2

∂r2
+ r−2

Λn.

We denote the least positive eigenvalue of this boundary value problem by τΩ and the

normalized positive eigenfunction corresponding to τΩ by fΩ(Θ);

∫

Ω

f 2
Ω(Θ) dσΘ = 1,

where dσΘ is the surface element on Sn−1. We denote the solutions of the equation

t2 + (n − 2)t − τΩ = 0

by αΩ, −βΩ (αΩ, βΩ > 0). If Ω = Sn−1
+ , then αΩ = 1, βΩ = n − 1 and

fΩ(Θ) = (2ns−1
n )1/2 cos θ1,

where sn is the surface area 2πn/2{Γ(n/2)}−1 of Sn−1.
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To make simplify our consideration in the following, we shall assume that if n ≥ 3,

then Ω is a C2,α-domain (0 < α < 1) on Sn−1 (e.g. see Gilbarg and Trudinger [12,

pp. 88–89] for the definition of C2,α-domain).

By Cn(Ω), we denote the set R+ ×Ω in Rn with the domain Ω on Sn−1(n ≥ 2). We

call it a cone. Then Tn is a special cone obtained by putting Ω = Sn−1
+ .

It is known that the Martin boundary of Cn(Ω) is the set ∂Cn(Ω) ∪ {∞}, each of

which is a minimal Martin boundary point. When we denote the Martin kernel by

K(P,Q)
(

P ∈ Cn(Ω),Q ∈ ∂Cn(Ω) ∪ {∞}
)

with respect to a reference point chosen

suitably, we know

K(P,∞) = rαΩ fΩ(Θ), K(P,O) = κr−βΩ fΩ(Θ)
(

P ∈ Cn(Ω)
)

,

where κ is a positive constant.

A subset E of Cn(Ω) is said to be minimally thin at Q ∈ ∂Cn(Ω)∪{∞} with respect

to Cn(Ω) (Brelot [7, p. 122], Doob [10, p. 208]), if there exists a point P ∈ Cn(Ω) such

that

R̂E
K(·,Q)(P) 6= K(P,Q),

where R̂E
K(·,Q)(P) is the regularized reduced function of K(·,Q) relative to E.

Let E be a bounded subset of Cn(Ω). Then R̂E
K(·,∞) is bounded on Cn(Ω) and

hence the greatest harmonic minorant of R̂E
K(·,∞) is zero. When we denote by G(P,Q)

(

P ∈ Cn(Ω),Q ∈ Cn(Ω)
)

the Green function of Cn(Ω), we see from the Riesz de-

composition theorem that there exists a unique positive measure λE on Cn(Ω) such

that

R̂E
K(·,∞)(P) = GλE(P)

for any P ∈ Cn(Ω) and λE is concentrated on BE, where

BE = {P ∈ Cn(Ω) ; E is not thin at P}

(see Brelot [7, Theorem VIII, 11] and Doob [10, XI. 14. Theorem (d)]). The (Green)

energy γΩ(E) of λE is defined by

γΩ(E) =

∫

Cn(Ω)

(GλE) dλE

(see Helms [13, p. 223]). Let E be a Borel subset of Cn(Ω) and Ek = E ∩ Ik(Ω)

(k = 0, 1, 2, . . . ), where

Ik(Ω) = {(r,Θ) ∈ Cn(Ω) ; 2k ≤ r < 2k+1}.

First we shall state Theorem 1, essentially due to Miyamoto and Yoshida [15, p. 6,

Theorem 1], which, with Theorem 2, gives Corollaries 1 and 2 extending Theorems A

and B, respectively.

Theorem 1 The following statements are equivalent.

(I) A subset E of Cn(Ω) is minimally thin at ∞ with respect to Cn(Ω).
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(II) (Wiener type)
∑∞

k=0 γΩ(Ek)2−k(αΩ+βΩ) <∞.

(III) (Sjögren type) There exists a positive superharmonic function v(P) on Cn(Ω) such

that

(2.1) inf
P∈Cn(Ω)

v(P)

K(P,∞)
= 0

and

E ⊂ Mv,

where

Mv = {P ∈ Cn(Ω) ; v(P) ≥ K(P,∞)}.

(IV) (Dahlberg type) There exist a positive superharmonic function v(P) on Cn(Ω)

and a positive number m such that even if v(P) ≥ mK(P,∞) (P ∈ E), there exists

P0 ∈ Cn(Ω) satisfying v(P0) < mK(P0,∞).

The following Theorem 2 is the main theorem in this paper.

Theorem 2 Let a Borel subset E of Cn(Ω) be minimally thin at∞with respect to Cn(Ω).

Then we have

(2.2)

∫

E

dP

(1 + |P|)n
<∞.

When we decompose a positive superharmonic function v(P) on Cn(Ω) into

v(P) =

∫

Cn(Ω)

G(P,Q) dµ(Q) +

∫

∂Cn(Ω)

K(P,Q) dν(Q) + K(P,∞)ν({∞})

with two measures µ and ν on Cn(Ω) and ∂Cn(Ω) ∪ {∞}, respectively, we see that

(2.1) is equivalent to ν({∞}) = 0 (Doob [10, p. 213, Theorem]). This fact shows

that the following corollary of Sjögren type generalizes Theorem B.

Corollary 1 Let v(P) be a positive superharmonic function on Cn(Ω) such that

inf
P∈Cn(Ω)

v(P)

K(P,∞)
= 0.

Then we have
∫

Mv

dP

(1 + |P|)n
<∞.

From Theorems 1 and 2 we also obtain the following corollary of Dahlberg type,

which generalizes Theorem A.

Corollary 2 Let E be a Borel measurable subset of Cn(Ω) satisfying

∫

E

dP

(1 + |P|)n
= +∞.

If v(P) is a non-negative superharmonic function on Cn(Ω) and m is a positive number

such that v(P) ≥ mK(P,∞) for all P ∈ E, then v(P) ≥ mK(P,∞) for all P ∈ Cn(Ω).
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In order to state Theorem 3 which shows the sharpness of the characterization of

a minimally thin set in Theorem 2, we introduce the Whitney cubes of Cn(Ω).

A cube is of the form

[l12−k, (l1 + 1)2−k] × · · · × [ln2−k, (ln + 1)2−k]

where k, l1, . . . , ln are integers. The Whitney cubes of Cn(Ω) are a family of cubes

having the following properties:

(i)
⋃

j W j = Cn(Ω),

(ii) int W j ∩ int Wk = ∅ ( j 6= k),

(iii) diam W j ≤ dist
(

W j ,Rn \Cn(Ω)
)

≤ 4 diam W j ,

where int S, diam S, dist(S1, S2) stand for the interior of S, the diameter of S, the

distance between S1 and S2, respectively (Stein [17, p. 167, Theorem 1]).

Theorem 3 If E is a union of cubes from the Whitney cubes of Cn(Ω), then (2.2) is also

sufficient for E to be minimally thin at ∞ with respect to Cn(Ω).

3 Lemmas and Their Proofs

For a function F(P,Q)
(

P,Q ∈ Cn(Ω)
)

and a positive measure µ on Cn(Ω),

∫

Cn(Ω)

F(P,Q) dµ(Q)

is simply denoted by Fµ(P). We shall also write g1 ≈ g2 for two positive functions g1

and g2, if and only if there exists a positive constant a such that a−1g1 ≤ g2 ≤ ag1.

Let E be a Borel subset of Cn(Ω) and let δ(P) = dist
(

P, ∂Cn(Ω)
)

for a point

P ∈ Cn(Ω). We define a measure σΩ on Cn(Ω) by

σΩ(E) =

∫

E

(

K(P,∞)

δ(P)

)2

dP.

Lemma 1 Let E be a bounded Borel subset of Cn(Ω). Then there exists a constant M1

independent of E such that

σΩ(E) ≤ M1γΩ(E).

Proof First of all, we remark that Rn \ Cn(Ω) is (1, 2) uniformly fat, i.e., there is a

positive constant ι such that at any P ∈ Rn \Cn(Ω)

Cap
(

{

P + r−1(Q − P) ∈ Rn ; Q ∈ B(P, r) ∩
(

Rn \Cn(Ω)
)}

)

≥ ι

for every positive number r, where B(P, r) = {Q ∈ Rn : |Q − P| < r} and Cap

denotes the Newtonian capacity (see Lewis [14, p. 178]). Then by a result of Lewis

[14, Theorem 2], there is a positive constant M1 depending only on ι and n such that

(3.1)

∫

Cn(Ω)

∣

∣

∣

∣

ψ(P)

δ(P)

∣

∣

∣

∣

2

dP ≤ M1

∫

Cn(Ω)

|∇ψ(P)|2 dP
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for every ψ ∈ C∞
0

(

Cn(Ω)
)

(also see Ancona [4]).

We denote the function GλE(P) = R̂E
K(·,∞)(P) on Cn(Ω) by vE(P). It is well known

that the Green energy can be represented as the Dirichlet integral, i.e.,

(3.2) γΩ(E) =

∫

Cn(Ω)

|∇vE|
2 dP.

Since

(3.3) A−1rαΩ fΩ(Θ)t−βΩ fΩ(Φ) ≤ G(P,Q) ≤ ArαΩ fΩ(Θ)t−βΩ fΩ(Φ)

for any P = (r,Θ) ∈ Cn(Ω) and any Q = (t,Φ) ∈ Cn(Ω) satisfying 2r ≤ t , where A

is a positive constant (see Azarin [5, Lemma 1]) and

(3.4) fΩ(Θ) ≈ δ(P)

for any P = (1,Θ) ∈ Ω (see Courant and Hilbert [8]), we also see

(3.5)

∫

Cn(Ω)

∣

∣

∣

∣

vE(P)

δ(P)

∣

∣

∣

∣

2

dP < +∞.

Hence we have vE ∈ H
(

Cn(Ω)
)

from (3.2) and (3.5), where

H
(

Cn(Ω)
)

=
{

f ∈ L2
loc

(

Cn(Ω)
)

: ∇ f ∈ L2
(

Cn(Ω)
)

, δ−1 f ∈ L2
(

Cn(Ω)
)}

equipped with the norm

‖ f ‖H(Cn(Ω)) = (‖∇ f ‖2
L2(Cn(Ω)) + ‖δ−1 f ‖2

L2(Cn(Ω)))
1
2 ,

and further vE ∈ H0

(

Cn(Ω)
)

, where H0

(

Cn(Ω)
)

denotes the closure of C∞
0

(

Cn(Ω)
)

in H
(

Cn(Ω)
)

. Thus we obtain from (3.1) that

∫

Cn(Ω)

∣

∣

∣

∣

vE(P)

δ(P)

∣

∣

∣

∣

2

dP ≤ M1

∫

Cn(Ω)

|∇vE(P)|2 dP

(see Ancona [4, p. 288]). Since vE = K(·,∞) quasi everywhere on E and hence a.e.

on E, we have from (3.2)

γΩ(E) ≥ M−1
1

∫

Cn(Ω)

(

vE(P)

δ(P)

)2

dP ≥ M−1
1

∫

E

(

K(P,∞)

δ(P)

)2

dP = M−1
1 σΩ(E),

which gives the conclusion.

Lemma 2 Let W j be a cube from the Whitney cubes of Cn(Ω). Then there exists a

constant M2 independent of j such that

γΩ(W j) ≤ M2σΩ(W j).
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Proof If we apply a result of Aikawa and Essén [3, Theorem 5.6, p. 19] for compact

set W j , we obtain a measure µ on Cn(Ω), supp µ ⊂ W j , µ(W j) = 1 such that

(3.6)

{

∫

Cn(Ω)
|P − Q|2−n dµ(Q) = {Cap(W j)}

−1 (n ≥ 3),
∫

C2(Ω)
log |P − Q| dµ(Q) = log Cap(W j) (n = 2),

for any P ∈ W j . Also there exists a positive measure λW j
on Cn(Ω) such that

(3.7) R̂
W j

K(·,∞)(P) = GλW j
(P)

(

P ∈ Cn(Ω)
)

.

Let P j = (r j ,Θ j), ρ j , t j be the center of W j , the diameter of W j , the distance

between W j and ∂Cn(Ω), respectively. Then we have ρ j ≤ t j ≤ 4ρ j and ρ j ≤ r j .

Then from (3.4) we can find a positive constant A1 independent of j such that

(3.8) A−1
1 rαΩ−1

j ρ j ≤ K(P,∞) ≤ A1rαΩ−1
j ρ j

for any P ∈ W j . We can also prove that

(3.9) G(P,Q) ≥

{

A2|P − Q|2−n (n ≥ 3),

log
A3ρ j

|P−Q| (n = 2),

for any P ∈ W j and any Q ∈ W j , where A2 and A3 are two positive constants

independent of j. Hence we obtain

(3.10) λW j

(

Cn(Ω)
)

≤







(A1/A2)rαΩ−1
j ρ j Cap(W j) (n ≥ 3)

A1rαΩ−1
j ρ j

{

log
A3ρ j

Cap(W j )

}−1

(n = 2)

from (3.6), (3.7), (3.8) and (3.9). Since

γΩ(W j) =

∫

GλW j
dλW j

≤

∫

W j

K(P,∞) dλW j
(P) ≤ A1rαΩ−1

j ρ jλW j

(

Cn(Ω)
)

from (3.7) and (3.8), we have from (3.10)

(3.11) γΩ(W j) ≤







A2
1A−1

2 r2αΩ−2
j ρ2

j Cap(W j) (n ≥ 3),

A2
1r2αΩ−2

j ρ2
j

{

log
A3ρ j

Cap(W j )

}−1

(n = 2).

Since
{

Cap(W j) ≈ ρn−2
j (n ≥ 3),

Cap(W j) ≈ ρ j (n = 2),

we obtain from (3.11)

(3.12) γΩ(W j) ≤ A4r2αΩ−2
j ρn

j

with a positive constant A4. On the other hand, we have from (3.4) that

(3.13) σΩ(W j) ≈ r2αΩ−2
j ρn

j

for any P = (r,Θ) ∈ W j . From (3.12) and (3.13) we finally have

γΩ(W j) ≤ M2σΩ(W j),

which is the conclusion of Lemma 2.

https://doi.org/10.4153/CMB-2003-025-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-025-5


260 Ikuko Miyamoto, Minoru Yanagishita and Hidenobu Yoshida

4 Proofs of Theorems 1, 2 and 3

Proof of Theorem 1 It is a result of Miyamoto and Yoshida [15, Theorem 1] that

(II) follows from (I).

We shall show that (III) follows from (II). Since

R̂Ek

K(·,∞)(Q) = K(Q,∞)

for any Q ∈ BEk
(Brelot [7, p. 61] and Doob [10, p. 169]) and λEk

is concentrated on

BEk
, we have

γΩ(Ek) =

∫

BEk

K(Q,∞) dλEk
(Q)

≥ 2kαΩ

∫

BEk

fΩ(Φ) dλEk
(t,Φ)

(

Q = (t,Φ) ∈ Cn(Ω)
)

and hence from (3.3)

R̂Ek

K(·,∞)(P) ≤ ArαΩ fΩ(Θ)

∫

BEk

t−βΩ fΩ(Φ) dλEk
(t,Φ)

≤ ArαΩ fΩ(Θ)2−k(αΩ+βΩ)γΩ(Ek)

(4.1)

for any P = (r,Θ) ∈ Cn(Ω) and any integer k satisfying 2k ≥ 2r. If we define a

measure µ on Cn(Ω) by

µ =

∞
∑

k=0

λEk
,

then from (II) and (4.1)

Gµ(P) =

∞
∑

k=0

R̂Ek

K(·,∞)(P)

is a finite-valued superharmonic function on Cn(Ω),

Gµ(P) ≥ R̂Ek

K(·,∞)(P) = rαΩ fΩ(Θ)

for any P = (r,Θ) ∈ BEk
(k = 0, 1, 2, . . . ), and from (3.3)

Gµ(P) ≥ A5rαΩ fΩ(Θ)

for any P = (r,Θ) ∈ {P = (r,Θ) ∈ Cn(Ω) ; 0 < r < 1}, where

A5 = A−1

∫

{Q=(t,Φ)∈Cn(Ω);2≤t}

t−βΩ fΩ(Φ) dµ(Q).

If we set

E ′
=

∞
⋃

k=−1

BEk
,
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Beurling-Dahlberg-Sjögren Type Theorems 261

where

(4.2) E−1 = E ∩ {P = (r,Θ) ∈ Cn(Ω) ; 0 < r < 1}

and A6 = min(A5, 1), then

E ′ ⊂ {P = (r,Θ) ∈ Cn(Ω) ; Gµ(P) ≥ A6rαΩ fΩ(Θ)}

and E ′ is equal to E except a polar set S (see Brelot [7, p. 57] and Doob [10, p. 177]).

If we take a positive measure η on Cn(Ω) such that Gη is identically +∞ on S (see

Doob [10, p. 58]) and define a measure ν on Cn(Ω) by

ν = A−1
6 (µ + η),

then

E ⊂ {P = (r,Θ) ∈ Cn(Ω) ; Gν(P) ≥ rαΩ fΩ(Θ)}.

If we put v(P) = Gν(P), then this shows that v(P) is the function required in (III).

Now we shall see that (IV) follows from (III). Let v(P) be the function in (III). It

follows that

v(P) ≥ K(P,∞)

for any P ∈ E. On the other hand from (2.1) we can find a point P0 ∈ Cn(Ω)

satisfying

v(P0) < K(P0,∞).

Therefore v(P) satisfies (IV) with m = 1.

Finally we shall prove that (I) follows from (IV). Let v(P) be the function in (IV).

If we put

inf
P∈Cn(Ω)

v(P)

K(P,∞)
= c∞(v)

and

u(P) = v(P) − c∞(v)K(P,∞),

then we have

inf
P∈Cn(Ω)

u(P)

K(P,∞)
= 0.

Since there exists P0 ∈ Cn(Ω) satisfying v(P0) < mK(P0,∞), we note that

c∞(v) < m.

Now we obtain

u(P) ≥ mK(P,∞) − c∞(v)K(P,∞)

=
(

m − c∞(v)
)

K(P,∞)

for any P ∈ E. Hence by a result of Doob [10, p. 213], E is minimally thin at ∞ with

respect to Cn(Ω), which is the statement of (I).
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Proof of Theorem 2 First of all we remark that

(4.3)

∫

E

dP

(1 + |P|)n
=

∫

E
−1

dP

(1 + |P|)n
+

∞
∑

k=0

∫

Ek

dP

(1 + |P|)n
≤ |E−1| +

∞
∑

k=0

2−kn|Ek|,

where E−1 is the set in (4.2) and |Ek| is the n-dimensional Lebesgue measure of Ek.

We have from (3.4)

A7δ(P) ≤ r fΩ(Θ),

for any P = (r,Θ) ∈ Cn(Ω), where A7 is a positive constant, hence

σΩ(Ek) =

∫

Ek

(

K(P,∞)

δ(P)

)2

dP ≥ A2
7

∫

Ek

(

rαΩ fΩ(Θ)

r fΩ(Θ)

)2

dP

= A2
7

∫

Ek

r2αΩ−2 dP ≥ 2−2A2
7

∫

Ek

2k(2αΩ−2) dP

= 2−2A2
72k(2αΩ−2)|Ek|.

By using Lemma 1, we obtain

(4.4) γΩ(Ek) ≥ M−1
1 σΩ(Ek) ≥ A82k(2αΩ−2)|Ek|,

where A8 is a positive constant.

If E is minimally thin at ∞ with respect to Cn(Ω), then from Theorem 1, (4.3) and

(4.4), we have

∫

E

dP

(1 + |P|)n
≤ |E−1| +

∞
∑

k=0

2k(2αΩ−2)|Ek|2
−k(αΩ+βΩ)

≤ |E−1| + A−1
8

∞
∑

k=0

γΩ(Ek)2−k(αΩ+βΩ) <∞,

which is the conclusion of Theorem 2.

Proof of Theorem 3 Let {W j} be a family of cubes from the Whitney cubes of

Cn(Ω) such that E =
⋃

j W j . Let {Wk, j} be a subfamily of {W j} such that Wk, j ⊂
(Ek−1 ∪ Ek ∪ Ek+1) (k = 1, 2, . . . ).

Since γΩ is a countably subadditive set function (Essén and Jackson [11,

Lemma 2.1]), we have

(4.5) γΩ(Ek) ≤
∑

j

γΩ(Wk, j) (k = 1, 2, . . . ).

Hence we see from Lemma 2

(4.6)
∑

j

γΩ(Wk, j) ≤ M2

∑

j

σΩ(Wk, j) (k = 1, 2, . . . ).
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Since we see from (3.4)

r fΩ(Θ) ≤ A9δ(P)

for any P = (r,Θ) ∈ Cn(Ω), where A9 is a positive constant, we have

∑

j

σΩ(Wk, j ) ≤ A2
9

{
∫

Ek−1

r2(αΩ−1) dP +

∫

Ek

r2(αΩ−1) dP +

∫

Ek+1

r2(αΩ−1) dP

}

≤ A10{2(k−1)(2αΩ−2)|Ek−1| + 2k(2αΩ−2)|Ek| + 2(k+1)(2αΩ−2)|Ek+1|}

(k = 1, 2, . . . ),

(4.7)

where A10 is a positive constant. Thus (4.5), (4.6) and (4.7) give

γΩ(Ek) ≤ M2 · A10{2(k−1)(2αΩ−2)|Ek−1| + 2k(2αΩ−2)|Ek| + 2(k+1)(2αΩ−2)|Ek+1|}

for k = 1, 2, . . . . Finally we obtain

∞
∑

k=0

γΩ(Ek)2−k(αΩ+βΩ) ≤ γΩ(E0) + A11 · 2−2n

∞
∑

k=0

2k(2αΩ−2)|Ek|2
−k(αΩ+βΩ)

≤ γΩ(E0) + A11

∫

E

dP

(1 + |P|)n
<∞,

where A11 is a positive constant, which shows with Theorem 1 that E is minimally

thin at ∞ with respect to Cn(Ω).
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