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Abstract

Wemodel scientific theories as Bayesian networks. Nodes carry credences and function as abstract
representations of propositions within the structure. Directed links carry conditional probabilities
and represent connections between those propositions. Updating is Bayesian across the network
as a whole. The impact of evidence at one point within a scientific theory can have a very different
impact on the network than does evidence of the same strength at a different point. A Bayesian
model allows us to envisage and analyze the differential impact of evidence and credence change
at different points within a single network and across different theoretical structures.

1. Introduction: web of belief
Quine (1951/1953) painted a picture of science as a web of belief:1

“The totality of our so-called knowledge or beliefs, from the most casual matters of
geography and history to the profoundest laws of atomic physics or even of pure
mathematics and logic, is a man-made fabric which impinges on experience only
along the edges. Or, to change the figure, total science is like a field of force, whose
boundary conditions are experience. A conflict with experience at the periphery
occasions readjustments in the interior of the field. Truth values have to be
redistributed over some of our statements. Reevaluation of some statements entails
reevaluation of others, because of their logical interconnections : : : ” (1951/1953, 42)

As Skyrms and Lambert (1995, 139) note, “however attractive this picture may be,
Quine does not offer any methodology for modeling and mapping the networks of
belief : : : ”
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1 See also Quine and Ullian (1978).
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Bayesian nets offer precisely such a model and do so in many of the respects called
for by Skyrms and Lambert: “We believe that the best framework for a precise reali-
zation of these ideas is the theory of personal probability. The question then arises
how to map a network of degrees of belief in a way which reveals the weak and strong
resistances to disconfirmation and more generally how need for revision tends to be
accommodated by the network : : : . Based on the conditional probability structure,
notions of invariance, independence, and conditional independence all play a role
in determining the place of a statement on the web of belief” (1995, 139–40).

“Webs of belief” in general, personal or cultural, scientific or non-, may take
various forms, demanding various patterns of connection and updating. We don’t
intend the models offered here to represent them all. We concentrate on a particular
type of web, that characteristic of much of science, with emphasis on two character-
istic relations—inference and confirmation. Bayesian nets, we propose, offer a partic-
ularly promising model of inference and confirmation within scientific theories.2

Bayesian approaches to confirmation, of which there are important variations,
have been widely applauded as alternatives to their 20th century predecessors in
the philosophy of science, which were couched largely in classical logic (Skyrms
1987; Easwaran 2011; Pettigrew 2016; Crupi 2020). But the success of Bayesianism
contrasts with its predecessors, and debates over its variations have largely proceeded
using examples of a single piece of evidence, new or old, and its impact on a single
hypothesis. Here we emphasize the networks of propositions that constitute scientific
theories, a theme that is central, though in relatively vague qualitative form, in a very
different tradition in philosophy of science (Kuhn 1962; Lakatos 1968; Laudan 1978) and
in an extensive history of conceptual maps scattered across disciplines (Axelrod 1976;
Aguilar 2013; Kosko 1986; Papageorgiou and Stylos 2008; Hobbs et al. 2002; van Vliet,
Kok, and Veldkamp 2010; Soler et al. 2012; Cakmak et al. 2013; Jeter and Sperry 2013;
Homer-Dixon et al. 2014; Thagard 2015; Findlay and Thagard 2015).

Other efforts have been made to model networks of agents updating on information
from other agents with various degrees of reliability or trust (Bovens and Hartmann
2002, 2003; Olsson 2013; Olsson and Vallinder 2013). This is again a different picture
and a different target that we pursue here. Our closest predecessors are Henderson
et al. (2010) and Climenhaga (2019, forthcoming). The first of these is restricted to
strictly linear hierarchical models of levels of abstraction with a focus on Bayesian
issues of simplicity. Climenhaga represents explanatory relations between proposi-
tions as Bayesian nets in ways that complement our work here, informally in
Climenhaga (forthcoming) and more formally, but with a focus on the specific
question of which probabilities determine the values of other probabilities, in
Climenhaga (2019). A more complete quantitative model of scientific theories, tracing
the dynamics of evidence, implication, and confirmation percolating through
branching networks of propositions, has not yet been fully drawn.

In this paper we concentrate on the structure of scientific theory and how
that structure determines sensitivity to evidence impact and credence change.
Evidence of a given strength can have far greater impact at one node than at another
in the same structure. Webs of belief with different structures can be differentially

2 A very different model of Quinean webs of belief as NK landscapes is offered in passing in Alexander,
Himmelreich and Thompson (2015).
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vulnerable or resistant to the impact of evidence at a given level or the impact of a
pattern of evidence over time. A study of network structure can thus reveal what
Skyrms and Lambert hoped for: “the weak and strong resistances to disconfirmation”
and, more generally, “how need for revision tends to be accommodated by the
network.” (1995, 139–40)

Section 2 outlines a Bayesian network model of scientific theories, offering exam-
ples of the differential impact of evidence at different nodes in section 3. In section 4
those results are generalized using a graphic measure of differential evidence impact
at different nodes, with an analysis through examples in section 5 of how evidence
works—the interplay of network factors in the impact of evidence. To this point in
the paper, for the sake of simplicity the theoretical structures considered are limited
to polytrees. In section 6 the treatment is expanded to directed acyclic graphs in general.
The search for generalizations regarding influential nodes in networks of various sorts is
extensive across disciplines, incomplete and ongoing (Kempe, Kleinberg, and Tardos 2005;
Chen et al. 2013; Lawyer 2015; Bao et al. 2017; Li, Zhang, and Deng 2018; Champion and
Elkan 2017; Wei et al. 2018; Hafiene, Karoui, and Romdhane 2019). Ours is a particular
form of that search, geared to a particular kind of evidence influence in theoretical
credence networks in particular.

Figure 1. A causal theory for the failure of the 17th Street canal levee in New Orleans during Hurricane
Katrina. Sources: American Society of Civil Engineers Hurricane Katrina External Review Panel 2007; Bea
2008; Rogers et al. 2008; Boyd 2012.
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We conclude in section 7 with further emphasis on philosophical implications of
model simulations. Basic conclusions, though perhaps qualitatively intuitive, are
captured here in a quantitative model open for analysis. Our attempt in the paper
as a whole is to take some first steps in understanding the contribution to epistemic
sensitivity and significance made by the network structure of our theories.

2. A Bayesian model of scientific theory
Bayesian networks have been developed, interpreted, and widely applied as models of
causal relations between events (Pearl 1988, 2009; Spirtes, Glymour, and Scheines
2000; Spirtes 2010). But it is clear that they can equally well be taken as models of
causal inference between propositions descriptive of those events—as theories.
One form that scientific theories take is precisely this—a propositional representa-
tion of a causal network, between either types or tokens of events. We can therefore
study structural aspects of at least one type of scientific theory by applying structural
lessons from Bayesian nets.

A partial reconstruction of a causal theory for the failure of the 17th Street canal
levee in New Orleans during Hurricane Katrina is shown in figure 1. A major assump-
tion in many applications of Bayesian nets with an eye to causal inference is that all
causal factors, or at least all relevant causal factors, direct or latent, are included in
the representation. This is certainly not true of the reconstruction here—a partial
reconstruction that captures the spirit, though not the detail, of a full causal theory.

Lessons from causal models can also be generalized (Schaffer 2016; Climenhaga
2019). The propositions within a scientific theory need not be descriptions of events,
and the relations between them need not be those of causal inference. From funda-
mental and more general hypotheses within a theory, which might be envisaged as
root nodes, multiple layers of derivative and more specific hypotheses may be
inferred (Henderson et al. 2010). That inference may be probabilistic, from general
grounding hypotheses to the more specific hypotheses they ground, modellable by
conditional probabilities precisely as in Bayesian nets—though here our arrows repre-
sent not “x causes y” but “the credibility of y is grounded in the credibility of x” and
often “x explains y.” In the other direction, evidence for more specific or applicational
hypotheses can serve to confirm the more general hypotheses from which they can be
inferred. This direction is often clearest in terms of disconfirmation: To what extent
would x be disconfirmed were its implication y disconfirmed? Climenhaga (forth-
coming) outlines a network approach of this type informally, intended to include infer-
ence to the best explanation, enumerative induction, and analogical inference.

A partial reconstruction of a theoretical structure of this type regarding the
COVID-19 pandemic is shown in figure 2. As in the causal case, a full Bayesian net
representation would require all relevant grounding nodes. This is certainly not true
of the reconstruction here, a partial reconstruction that captures the spirit, though
not the detail, of a full theoretical structure.

Classical 20th century models of inference and confirmation were couched largely
in terms of classical logic. Bayesian models are seen as an alternative. But there is a
general pattern that the two clearly share. In classical models, evidence for a hypoth-
esis is evidence for that which it entails. In the current model, we use inference rather
than entailment, cashed out in Bayesian terms of priors and conditional probabilities.
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In classical models, evidence for a hypothesis offers confirmation for hypotheses
which entail it. Here, we take evidence for a hypothesis to offer confirmation for
hypotheses from which it may be inferred, but confirmation appears in a quantitative
Bayesian rather than qualitative Hempelian form. Although in accord with the spirit
of classical philosophy of science, an image of scientific theories as Bayesian nets
offers a far more quantitative and far more nuanced view of the basic relations of
theoretical inference and evidential confirmation.3

We model a scientific theory as a directed acyclic network.4 Nodes represent
proposition-like elements that carry credences (degrees of belief). It seems natural
to speak of nodes as “beliefs,” and we will, though it is no part of our effort to defend
that nomenclature literally nor to enter the debate as to what degree of credence or
commitment, absolute or contextual, qualifies an item as a full “belief.” Spohn (2012)
emphasizes the difficulties posed by the Lottery Paradox in the latter regard. It is
sufficient for the abstract purposes of our model that the nodes represent elements
of a “theoretical system” or “web of belief” that carry degrees of credence or commit-
ment. Our nodes take values in the open interval (0,1), excluding 0 and 1 themselves,
though variations in this regard are also possible.

The links of our model represent the connections between the claims within a
scientific theory. What is crucial is that the elements in the network are linked in
such a way that credence change at one point produces credence change at the points
with which it is linked. Our directed links x→y carry weights as conditional probabil-
ities, allowing us to update both y conditional on a given credence at x and x on the
basis of evidence at y. Our model networks accord with the Markhov condition:
Conditional on their parents, nodes are independent of all nondescendants.

Figure 2. A reconstruction of foundational theory for the COVID-19 pandemic. Sources: Kermack and
McKendrick 1927; Anderson and May 1979; Hassan et al. 2020.

3 One thing a Bayesian approach does not do, unfortunately, is solve classical paradoxes of confirma-
tion such as Goodman’s grue (Goodman 1955). See Sober (1994) and Bandyopadhyay, Brittan, and Taper
(2016).

4 Contact of our approach with either “syntactic” or “semantic” models of scientific theories is
remote. For the relation to these and superior features of a Bayesian model, see Skyrms (1984) and
Hartmann (2008).
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Our attempt is to model scientific networks or theoretical webs of belief as
Bayesian nets, percolating credence changes at nodes through a given network struc-
ture. Some major limitations should be noted, both within this model and beyond.

Within the model, simplifying assumptions regarding conditional probability and
credence assignments are noted throughout. We work with static network structures in
the models explored here: Neither nodes nor links are added or subtracted. We also work
with single snapshots of evidence impact; we leave to further work the promising study of
dynamicnetworkchangewith iteratedevidenceover time, includingrollingchanges inboth
nodecredencesandconditionalprobabilitiesonlinks. Inall theseregards itmustbeadmitted
thatwhatweofferherearemerely firststeps inmodelingscientific theoriesasBayesiannets.

Beyond thismodel, itmustbeadmitted that there areprobabilistic networkalternatives
to straight Bayesian nets, well worthy of exploration. Our hope is that the exploration of
Bayesian nets in particular may motivate further work in these alternatives as well.

3. Differences in evidence impact: initial examples
We start with a simple illustration of the relative importance of differently positioned
nodes in a theoretical structure. In some cases, evidence may affect just one belief or
several closely related beliefs in a significant way, decaying quickly in influence across
the network. In other cases, evidence of the same strength regarding another element
with a scientific theory can cascade with a far stronger influence throughout the network.

Figure 3 shows a simple example of a theoretical structure modeled as a Bayesian
network with credences and conditional probabilities (marked as conditional
credences) in place. We offer a piece of evidence of strength [0.75, 0.25] at node y
with prior credence 0.54, indicating that such a piece of evidence has a likelihood of
0.25 should y be true and a likelihood of 0.75 should y be false. On standard Bayesian

Figure 3. A simple Bayesian network.
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conditioning, our credence at y, given that piece of evidence, changes from 0.54 to
approximately 0.28:

c yje� � � c ejy� �
× c y

� �

c ejy� �
× c y

� �� c ej � y
� �

× c � y
� �

c yje� � � 0:25 × 0:54
0:25 × 0:54� 0:75 × 0:46

� 0:28125

But of course, a change in credence at y demands a change in credences downstream
as well. Given a new credence of 0.28 at y with an indicated conditional probability of z,
given y, and assuming the evidence e affects credence at z only by way of changed
credence at y, our revised credence at z, given evidence e at y, changes from 0.484 to 0.587:

c�zje� � c�zjy� × c�yje� � c�zj � y� × c�� yje�
c�zje� � 0:3 × 0:28� 0:7 × 0:72

by independence of z and e conditional on y.
In an extended network with the same independence assumption at each step,

changes would continue downstream in the same manner.
Credence change percolates upstream as well. Using

c xjy� � � c yjx� �
× c x� �

c y
� �

from Bayes with our initial priors and conditional probabilities,

c xjy� � � 0:7 × 0:6
0:54

� 0:78:

Using

c xj�y
� � � c � yjx� �

× c x� �
c �y
� � ;

our initial values give us

c xj�y
� � � 0:3 × 0:6

0:46
� 0:39

Again making use of an assumption of independence, the updated credence for x,
given our new value for y on evidence e at y, is

c�xje� � c�xjy� × c�yje� � c�xj�y� × c��yje�
c�xje� � 0:78 × 0:28� 0:39 × 0:72

by independence of x and e conditional on y. Thus credence at parent node x changes
from 0.6 to 0.5.5

5 We think of our updating as by Jeffrey conditioning (Jeffrey 1965; Shafer 1981) rather than strictly
Bayesian, since beyond the initial point of evidence, updating is in terms of partitions (here binary) and
using credences other than 1, but we follow common practice in referring to the Jeffrey generalization as
Bayesian. On the close relation between Jeffrey conditioning and the simple law of total probability,
see Hájek (2011, section 7.2).
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In this picture, the direct impact of evidence on a given node ramifies one step
downward to its immediate descendants and one step upward to its parents. With
a screening-off assumption at each step, revised credence values for the descendants
of those descendants—and parents of those parents—can be calculated in the same
fashion. What we have in effect is a game of telephone, tracing revised credences
percolating throughout the structure of a scientific theory.6

We can use the absolute difference between prior and posterior credences at each
node as a simple measure of credence impact at each node. Using that measure in this
example, a piece of evidence of strength [0.75, 0.25] at node y has an impact of
0.26 at node y and of approximately 0.1 at the other nodes, giving a total network
impact of 0.46.

Starting with the same priors, consider now evidence of the same strength at root
node x instead. In that case, credence at x changes from 0.6 to 0.33, credence at y from
0.54 to 0.43, and credence at z from 0.48 to 0.526. The total network impact is 0.42.
In this network with these conditional probabilities and priors, evidence impact at the
central node y dominates the impact of the same evidence at the root node x.7

A similar story holds if evidence of the same strength is delivered at node z.
In that case, credence change at node z is from 0.48 to 0.23, the value of y becomes
0.637 from 0.54, and the value of x becomes 0.637 from 0.6, with a total network
impact of 0.38.

Given the structure of this simple network and the patterns of belief-to-belief
influence modeled by conditional probabilities and with these initial credences in
place, it is the central node y that carries the most network-wide impact for a piece
of evidence of the same strength.

Different network structures with different conditional links and different
priors will clearly exhibit different evidence sensitivities. A second example is offered
in figure 4.

Initial credences and conditional probabilities are shown in the graph. With a piece
of evidence of strength [0.9, 0.1] at node a—indicating a piece of evidence with a
conditional probability of 0.1 if a is true, 0.9 if a is false—our credences change to
0.3 at the root node, 0.579 at each central branch, and 0.469 at the leaves; a change
of 0.5 at the root node, 0.199 at the central branches, and 0.079 at the leaves. The total
change for the network is 1.214, or an average change of 0.173 per node. That same
strength of evidence at g gives us a total change in credences of 0.602, or an average
change of 0.086 per node, less than half the change at the root. Evidence of that
strength is clearly of greater impact at the top (the root) than at the bottom (the leaf).

6 As indicated below, backtracking will also occur. In a “star” or “hub” tree with one root and many
leaf nodes, change at one leaf of the tree will affect credence upward at the root node, which will then in
turn affect credence downward at a second leaf.

7 Here we use a difference measure between posterior and prior credences, |c(x|e) – c(x)|, as our
measure of impact. This carries over to our use of Brier divergence below. An alternative would be
to use a ratio measure, c(x|e)/c(x). In both this example and in general, that alternative measure would
of course change the absolute values of evidence impact, but in neither this case nor in general would it
appear to make any difference in the relative impact of evidence at different nodes—at which nodes a
given strength of evidence has the greatest network impact. The question of appropriate metrics for
evidence impact is closely allied with the question of appropriate metrics for degree of confirmation.
Crupi, Tentori, and Gonzalez (2007) offer a very useful overview of the latter.
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But the situation is different if our evidence is of strength [0.1, 0.9] rather than
[0.9, 0.1]. In that case the total change at the root node a is 0.418, an average change
of merely 0.059 per node. Evidence of that same strength at leaf node g gives us a total
change of 0.623—an average change of 0.089. Evidence with the conditional proba-
bilities reversed thus has a roughly 50% greater impact in this network at a leaf
node g than at the root node a.

What even these simple examples demonstrate is disparity in the effect of
evidence, given the structure of a theoretical network, the conditional probabilities
of its links, and initial priors. Given the same structure and conditional probabilities,
moreover, which is the most evidentially influential node may well depend on the
character of the evidence itself—in this example, [0.1, 0.9] rather than [0.9, 0.1].
At what point is a scientific theory most vulnerable to change in light of evidence?
Using a Bayesian model, we have to conclude that the answer can depend on all these
factors—network structure, conditional probabilities, prior credences, and the char-
acter of the evidence itself. The role that each has to play and their interaction are
outlined roughly below.

4. A graphic portrait of evidence impact
What we have offered above are single-point snapshots of the differential impact of
evidence of the same strength at different nodes within a network. We can envisage
differential node impact more generally with graphs such as that in figure 8, illus-
trating impact in the network shown in figure 7.

Our graphing conventions differ from those used above. In our examples, evidence
strength was indicated in terms of two conditional likelihoods [0.8, 0.1] at a node h,

Figure 4. A second simple Bayesian network.
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indicating a piece of evidence with a probability of 0.1 if h is true, or 0.8 if h is false. In
fact, this is more information than is needed to determine the impact of evidence on
the entire network. The ratio of these likelihoods—in this case, 1/8—fully determines
evidential strength. Hence, it does not matter whether our evidence is [0.8, 0.1], [0.4,
0.05], or [0.08, 0.01]; both the immediate effect on the node in question and its overall
impact on the network as a whole will be the same. Therefore, we take the likelihood
ratio as a concise description of evidence strength, used on the horizontal axis of our
graph in figure 5. A log scale is used to illustrate the symmetry between what we can
think of as positive evidence, with likelihood ratios in (1, ∞), and negative evidence,
with likelihood ratios in (0,1). We choose base 2 somewhat arbitrarily.

We used a simple total of changes across a network and the average change per
node in our calculations above. A more elegant measure of network change is
Kullback-Leibler divergence, a relative entropy measure given by:

DKL p; q
� �

:�
Xn

i�1

p Ai� � � log�p Ai� �jq Ai� ��

where p and q denote probability measures and Ai are the propositions over which
these measures are defined. Kullback-Leibler divergence gives the difference between
probability measures in terms of a sum of products; namely, the product of the prob-
ability of Ai according to p and the log of the probability of Ai according to p, condi-
tional on the probability of Ai according to q. It can thus be interpreted as the
expected logarithmic difference between distributions p and q, with the expectation

Figure 5. Node-averaged Kullback-Leibler divergence for evidence strength (in terms of exponent of
likelihood ratio) at different nodes of the network in figure 4.

Philosophy of Science 51

https://doi.org/10.1017/psa.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2021.18


taken according to p. Kullback-Leibler divergence averaged over nodes is taken as our
measure on the y axis in figure 5.

The graph is read in terms of the Kullback-Leibler divergence across the entire
network for evidence of a specific strength at marked nodes. On the right side of
the graph a piece of evidence with strength ratio of 23 or 8/1 at node a, for example,
results in a Kullbach-Leibler divergence for the network as a whole of approximately
0.03. A piece of evidence of that same strength at nodes c, d, f, or g results in a
Kullback-Leibler divergence of approximately 0.07 for the network as a whole. The
network impact of evidence of that strength at nodes b or e is approximately 0.13.
On the left side of the graph, a piece of evidence with strength 2−3 or 1/8 has a
Kullback-Leibler network impact of 0.07 at nodes b and e; 0.09 at nodes c, d, f, or
g; and approximately 0.14 at root node a.

An alternative measure for network change, less familiar in some formal disci-
plines but more common in the philosophical literature, is Brier divergence, propor-
tional to a squared Euclidean distance measure (Joyce 2009; Pettigrew 2016). The
difference between prior and posterior probability distributions is taken to be the
mean of the squared difference between the prior and posterior probability attached
to each proposition in the network. Formally:

DBrier p; q
� �

:� 1
n

Xn

i�1

p Ai� � � q Ai� �� �
2

Results for Brier divergence, read in the same manner, are shown in figure 6.

Figure 6. Node-averaged Brier divergence for evidence strength (in terms of exponent of likelihood ratio)
at different nodes of the network in figure 4.
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Kullback-Leibler divergence is a measure of probability distance between the
distributions of individual nodes, averaged in figure 5 to obtain a divergence metric
for the network as a whole. Brier divergence is defined over a set of nodes, so it natu-
rally serves as a network divergence metric.8

These more complete graphical analyses underscore the conclusions drawn above,
that epistemic impact across a network of evidence at a node z can depend on both z’s
place in the network and on the character of the evidence, gauged in terms of its
likelihood ratio— the probability, given that proposition z is true, over its probability,
given that proposition z is false. In this network with these priors, the strongest
impact for evidence more likely if a node’s value is false is at the root node. The stron-
gest impact for evidence more likely if a node’s value is true is at the central nodes of
the network. Evidence at the leaf tips within these parameters for evidence of either
character falls in between.

We can draw two clear, though simple, conclusions on the basis of the work to this
point, pursued further in the details of section 5.

The first conclusion is that in this case, as in network studies in general, the impact
of evidence at a node depends on the position of that node within the theoretical
structure. That is clear “vertically” from the graphs in figures 5 and 6, for example:
Values at any point above or below an exponent of 0 vary with node position.

A second conclusion, in contrast to other network studies, is that the Bayesian
structure of these networks is crucially important. This is clear “horizontally” from
the graphs in figures 5 and 6. Any network measure that fails to incorporate the
crucial factor of the character of impact at a node, in terms of likelihood ratio, will
fail to identify the most epistemically influential nodes. That impact changes quite
dramatically from the left to the right of graphs such as those in figures 5 and 6,
though the network structure, all conditional probabilities, and all priors remain
the same.

5. How evidence works: interactive factors in scientific networks
Results like those found in section 4 offer the prospect of being able to gauge episte-
mically sensitive nodes within the structure of a scientific theory—those elements at
which evidence of a particular character would have a particular impact in terms of
credence change across the network as a whole and those points at which a scientific
theory would be most evidence-sensitive to change. Establishing precisely how
evidence impacts a theoretical network, however, quickly becomes a challenging task.

There has been a disciplinary widespread search, for various purposes—social,
technological, and epidemiological—for principles governing most influential nodes
within a network (Kempe, Kleinberg, and Tardos 2005; Chen et al. 2013; Bao et al. 2017;
Li, Zhang, and Deng 2018; Champion and Elkan 2017; Wei et al. 2018; Hafiene, Karoui,
and Romdhane 2019). Essentially all of this work, however, has been on networks far
simpler than the Bayesian models we envisage here—on undirected networks
without weighted links, for example. To the extent that consensus has emerged on

8 In general, Kullback-Leibler is a multiplicative score, whereas Brier is additive; it should also perhaps
be noted that Brier is symmetric, whereas Kullback-Leibler is not.
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network measures for most influential nodes—a consensus is far from complete—
those measures will also prove too simple for Bayesian models.

Vulnerability and robustness of network structures have been studied in terms of
the removal of nodes in undirected networks with applied examples such as circum-
stantial mechanical failures within electrical grids, evolutionary impact on specific
species within an ecosystem, and terrorist attacks on airline or internet hubs
(Albert, Jeong, and Barabási 2000; Newman 2010). For removal of nodes at random,
it is scale-free and preferential attachment networks—those with a small proportion
of highly connected “hubs”—that prove the most resilient against attack. Random
removal is most likely to hit something other than a hub, doing relatively little
damage. These are also the most vulnerable networks for targeted attacks, however,
such as deliberate acts of informed sabotage—removal of a few carefully chosen hubs
can do a great deal of damage. We can certainly expect something like a hub effect in
our Bayesian networks. In a downward direction, credence change in nodes with more
children can to that extent be expected to have an effect on a wider number of nodes
and thus a more pronounced effect on the network as a whole. But here the character
of that effect and its extent must also take into account the conditional probabilities
on links to child nodes, not merely the existence of a link, and the character of
evidence at the parent node, not merely its removal. Upward change to a parental
hub node from its children must include the complication of its priors.

Eigenvector centrality and its variants (e.g., Katz centrality and PageRank) appear
to be the primary candidates for measures of “most influential node” in networks far
simpler than those envisaged here, despite a number of critical studies (Borgatti and
Everett 2006; Newman 2010; da Silva, Vianna, and da Fontoura Costa 2012; Chen et al.
2013; Dablander and Hine 2019). But at their best these too are most appropriate for
undirected networks modeling something like infection dynamics or directed
networks modeling something like internet searches. They count transitive numbers
of contacts, but don’t include the complexities of prior credences, conditional prob-
abilities, and the likelihood ratios of evidence that are an inherent part of change
within epistemic networks.

We can analyze some of the complexities involved, working toward general rules
of thumb for epistemic impact, by considering three simple networks. Figure 4,
considered above, has the structure of a binary tree. We represent its structure alone
in figure 7 (center). The binary tree can be thought of as a structure intermediate

Figure 7. Three basic networks: linear, binary tree, and hub or star.
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between two others—a purely linear network, shown in figure 7 (left), and a hub or
“star,” shown in figure 7 (right).

The binary tree may represent a theoretical structure in which a fundamental
theory a supports two derivative theories b and e independently, each of which
supports two further hypotheses. The purely linear network exaggerates the vertical
descent of such a structure—a unary “tree”—in which a fundamental theory
supports a derivative theory at b, supporting a hypothesis at c, which in turn supports
a hypothesis at d. One can think of the hub or star figure as exaggerating the hori-
zontal spread within a theory. Here, a single fundamental theory supports directly
subsidiary hypotheses at b, c, and so forth. These, then, are differences in overall
network structure. Within those structures our Kullbach-Leibler and Brier divergence
graphs show the network impact at different nodes of evidence across the range of
likelihood ratios. We can further consider variations in prior credences and condi-
tional probabilities. We will emphasize Brier divergence simply because of its concep-
tual simplicity and greater familiarity in the philosophical literature.

For purposes of the rough rules of thumb we aim for here, we can think of a
credence as high if it is greater than 0.5 (corresponding to a greater probability that
it is true than that it is false) and as low if it is less than 0.5. In line with the exponents
on our x axes, we can think of evidence with a likelihood ratio >1 as positive, and
evidence with a likelihood ratio <1 as negative. Negative evidence in the case of a
hypothesis with low credence, like positive evidence in the case of a hypothesis with
high credence, we will term “credence-reinforcing” or, simply, “reinforcing”
regarding the current credence. The opposite we will term “credence-counter” or,
simply, “counterevidence.”9 Finally, we can think of a pair of conditional probabilities
(y|x) and (y|∼x) as positive if (y|x)> 0.5 and (y|∼x)< 0.5 and as negative if (y|x)< 0.5
and (y|∼x)> 0.5. Here we consider only symmetrical conditional probabilities, such
that (y|x) and (y|∼x) sum to 1, and use the same conditional probabilities on all links.
These are particularly severe limitations in this first exploration of such a model; we
start with them merely for the sake of simplicity.

The simplest case of our three examples, though illustrative of some general prin-
ciples that hold throughout, is the hub or star of figure 7. Figures 8A and 8B show the
case in which conditional probabilities are positive throughout (uniformly [0.3, 0.7]),
and our root node is given a high value of 0.6 on the left and a low of 0.4 on the right
with derivative high credences of 0.54 for all other nodes on the left and a low of 0.46
on the right.

The clear left–right reversal of the two graphs follows a simple pattern that holds
throughout the examples we give, not only because the priors of 0.6 and 0.4 that we
use as examples are symmetrical around 0.5, but because of the assumption noted
that our conditional probabilities for y|x and y|∼x sum to 1. Both of these assumptions
are made simply for the sake of simplicity in exposition. Varying either of these
modeling assumptions breaks the symmetry shown.

9 We’ve resisted a temptation to use the term “confirmatory” for negative evidence in the case of low
credences, and positive evidence in the case of high credences, in order to avoid confusion with standard
terminology, in which “e confirms h” is used to indicate that e raises the probability of h, regardless of h’s
initial credence. We are obliged to an anonymous referee for pointing out the potential confusion.

Philosophy of Science 55

https://doi.org/10.1017/psa.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2021.18


The fact that values are higher on the left in figure 8A and on the right in figure 8B
follows simple Bayesian principles. We offer figure 9 as a reminder of the differential
impact of evidence e gauged in terms of likelihood ratio contingent on the prior for a
hypothesis, h.

A high prior, given evidence with what we’ve termed a positive likelihood ratio
(>1), leaves us with a high posterior credence, but our posterior plummets sharply
as the likelihood ratio declines and turns negative. A low prior, given evidence with a

Figure 8. Brier divergence at different likelihood ratios for introduced evidence in the star network with
positive conditional probabilities [0.3, 0.7] and priors of 0.6 and 0.54 (A) and 0.4 and 0.46 (B) at root and leaf
nodes.

Figure 9. A reminder of the immediate Bayesian impact of evidence at a node, in terms of likelihood ratio,
depending on its prior.
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negative likelihood ratio (<1), leaves us with a low posterior, but that posterior
climbs sharply as the likelihood ratio climbs and turns positive. With the conditional
probabilities in place in this case, that effect carries through our example network as
a whole. In figure 8A our credences for all nodes are high (>0.5), with the result that
positive evidence on the right side of the graph produces a lesser impact than does
negative evidence on the left. In figure 8B all credences are symmetrically low (<0.5),
explaining the reverse pattern.

In the case illustrated in figure 8, regardless of whether evidence is positive or
negative, it is the root node, a, that is the most influential. With this network, these
conditional probabilities, and these priors, it is uniformly credence change at the root
that has the greatest impact. That changes, however, if our conditional probabilities
are changed from positive to negative in our rough sense, from [0.3, 0.7] to [0.7, 0.3]—
from probabilities (y|x) of 0.7 and (y|∼x) of 0.3 for a node y and its parent x to prob-
abilities (y|x) of 0.3 and (y|∼x) of 0.7. With a prior of 0.6 at node a, priors for our leaf
nodes are 0.46 in this case, giving us the Brier divergence graphs of figure 10.

The reversal in our two graphs is the same as before. The fact that our root node
has a higher impact than leaf nodes in the case of negative evidence in figure 10A, but
lower in the case of positive evidence, is explained by the disparity in our priors. The
prior for our root node is high; that for our leaf nodes is low. In this case, negative
evidence constitutes counterevidence for node a while reinforcing credences in the
leaf nodes, resulting in a higher credence change for the former than the latter, here
reflected in changes in the network as a whole. Positive evidence, on the other
hand, will be counterevidence for our leaf nodes while reinforcing evidence for
our root node, reflected in the reversal of effects from the left to the right side
of figure 10A. A mirror-image explanation applies for the mirror image graph of
figure 10B.

The interactive factors of priors, conditional probabilities, and evidence likelihood
play out along similar lines but with different effects in the different structures of our
other sample networks. Figures 11A and 11B show Brier divergence in a binary tree

Figure 10. Brier divergence at different likelihood ratios for introduced evidence in the star network with
positive conditional probabilities [0.7, 0.3] and priors of 0.6 and 0.46 (A) and 0.4 and 0.54 (B) at root and leaf
nodes.
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structure with priors set at 0.6 (figure 11A) and 0.4 (figure 11B) and with negative
conditional probabilities of [0.7, 0.3].

Here, the pattern is similar to that analyzed in section 4. For negative evidence in
the case of figure 11A, it is the root node that has the greatest influence, followed by
the central nodes and finally the leaf nodes. This is what one might expect from the
same evidence impact at nodes with descending high priors. For positive evidence,
in contrast, it is the central nodes b and c that have the most influence, followed
by the leaf nodes and finally by the root. Here secondary effects of updating through
the network dominate the simple effect of evidence at impact nodes.

Figures 12A and 12B show Brier divergence with the same binary tree structure
and priors, but in which conditional probabilities are set at [0.7, 0.3] throughout
instead of [0.3, 0.7].

The role of positive evidence in the case of figure 12A and of negative evidence in the
case of figure 12B follows the same pattern as in the case of reversed conditional proba-
bilities in figures 11A and 11B. The difference in conditional probabilities makes a clear
difference on the other sides of the graphs. In the case of negative evidence in figure 12A
and positive evidence in figure 12B the change in conditional probabilities collapses the
impact of central and leaf nodes. Here evidence at the root node has a high impact, with
evidence at all other nodes effectively the same, roughly as in the case of the star.

Of our three basic network structures, it is perhaps surprising that a simple linear
network proves to be the most complex. Figures 13A and 13B show graphs of Brier
divergence for the purely linear network of figure 7 where conditional probabilities
are again set uniformly at a positive [0.3, 0.7]. In figure 13A a root node initiated at 0.6
gives us descending credences of 0.54, 0.516, 0.5064, 0.50256, 0.501024, and 0.50041 at
nodes b through g. In figure 13B a root node of 0.4 gives us descending credences of
0.4, 0.46, 0.484, 0.493, 0.497, 0.498, and 0.49959.

Figure 11. Brier divergence at different likelihood ratios for introduced evidence in the binary tree network
with negative conditional probabilities [0.7, 0.3]. (A) A root node prior of 0.6 at node a entails credences of
0.54 at central branch nodes and 0.516 at leaves. (B) A root node of 0.4 entails credences of 0.46 at central
branch nodes and 0.484 at leaves.
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Basic principles noted above still apply: Our exploration of symmetrical priors
with an assumption of conditional probabilities that add to 1 still dictates a mirror
symmetry between the two cases, and counterevidence in our sense will have a
greater impact on credence change in a node than will reinforcing evidence. But
the pattern does not show a simple descent in overall node influence in terms
of either descending network order or diminishing prior credence (in the case of

Figure 12. Brier divergence at different likelihood ratios for introduced evidence in the binary tree network
with positive conditional probabilities [0.3, 0.7]. (A) A root node prior of 0.6 at node a entails credences of
0.46 at central branch nodes and 0.516 at leaves. (B) A root node of 0.4 entails credences of 0.54 at central
branch nodes and 0.484 at leaves.

Figure 13. Brier divergence at different likelihood ratios for introduced evidence in the linear network with
positive conditional probabilities [0.3, 0.7]. (A) A root node prior of 0.6 at node a entails descending
credences of 0.54, 0.516, 0.5064, 0.50256, 0.501024, and 0.50041 at nodes b through g. (B) A root node
prior of 0.4 entails descending credences of 0.4, 0.46, 0.484, 0.4936, 0.49744, 0.498976, and 0.49959 at
nodes b through g. Color version available as an online enhancement.
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figure 13A) or increasing prior credence (in the case of figure 13B). The fact that
evidence at node a has the highest impact in counterevidence cases and the lowest
in credence-reinforcing cases may be credited to its relatively high prior credence.
But the fact that evidence at node b with the second highest prior shows the lowest
impact of all nodes in counterevidence cases and the highest in credence-reinforcing
cases calls for an explanation that includes node position in the network and the
asymmetrical strength of upward influence through conditioning, which is sensitive
to the priors of upwardly influenced nodes, and downward influence through our
conditional probabilities, which is not sensitive to downstream priors. In each case
those asymmetrical effects are magnified by the transitive effects through successive
nodes.

The situation becomes still more complex when our conditional probabilities are
set at [0.7, 0.3] instead of [0.3, 0.7], shown in figure 14 for root node priors of
0.6 and 0.4.

Here, unlike in the preceding cases, our priors are neither all high (>0.5) nor all
low (<0.5). Evidence with the same likelihood ratio will therefore affect different
nodes differently. Upward transfer by conditioning, moreover, will be differently
affected by the differently high or low credences of nodes through which it proceeds.

The variety of effects in even these simple structures with differently positive or
negative evidence, conditional probabilities, and high or low initial priors offer some
hints toward the form that a network metric for evidence influence in theoretical
networks would have to take. It is clear that influence metrics appropriate to the
simple contact networks that have been studied, directed or undirected—without
node credences, without differential evidence characteristics, and without link
complexities of conditional probabilities and the complexities of Bayesian updating
and conditionalization—will be inadequate here. Development of a Bayesian net

Figure 14. Brier divergence at different likelihood ratios for introduced evidence in the linear network with
negative conditional probabilities [0.7, 0.3]. (A) A root node prior of 0.6 at node a entails descending
credences of 0.46, 0.516, 0.4936, 0.50256, 0.498976, and 0.50041 for nodes b through g. (B) A root node
of 0.4 entails descending credences of 0.54, 0.484, 0.5064, 0.49744, 0.501024, and 0.49959. Color version
available as an online enhancement.
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analogue to eigenvector centrality that includes these factors seems a promising, if
forbidding, prospect, but is beyond the scope of our work here.

6. Theoretical structures beyond polytrees
In work to this point, for the sake of simplicity we have concentrated on polytrees—
structures in which each node has a single parent. Things becomes more complex
when we expand consideration—as we should—to the wider range of directed acyclic
graphs in general. Both of our initial examples—the causal structure of the failure of
the 17th Street levee in New Orleans and the grounding structure of the theory
regarding the COVID-19 pandemic—include not merely branches but downward junc-
tures or “colliders” from multiple nodes as well as branches, well beyond simple
polytrees.

Figure 15. A simple downward juncture.

Figure 16. Brier divergence at different likelihood ratios for introduced evidence in a simple “or-like”
juncture with conditional probabilities [0.1, 0.9] for all cases except a= 0 and b= 0, where conditional
probabilities are [0.9, 0.1]. Root node priors of 0.6 at both a and b entail a prior credence of 0.772 for c.
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Figure 15 shows the simplest downward juncture, in which credence for c is deter-
mined by values for both a and b. The simple conditional credences used above must
be replaced with a conditional probability matrix, reflecting values for c contingent
on combinatory values for a and b. Figure 16 shows Brier divergence for a case in
which we start with a credence of 0.6 at both a and b and in which our matrix is
“or-like,” specifying a value for c of 0.9 if either a or b is true and a value of 0.1
otherwise. Figure 17 shows Brier divergence for the same values at a and b but a
conditional matrix that is “and-like,” specifying a value of 0.9 for c only if both
a and b are true and a value of 0.1 otherwise.

With the same priors at root nodes and conditional probabilities of 0.1 and 0.9, the
difference between “and-like” and “or-like” junctures is clear even in the priors
entailed for the juncture node c—a positive 0.772 in the case of an “or-like” juncture,
0.338 in the case of “and.” The result is a reversal of evidence importance at nodes: The
sensitivity of c dominates that of a and b with negative evidence in the case of an “or”
juncture, while both a and b dominate c with negative evidence in the case of “and.”
Appropriately to their status as duals, the cases are reversed for positive evidence.

We have already noted the complexity of evidence impact contingent on theoret-
ical structure, priors, and conditional probabilities in the case of polytrees. Expansion
to full directed acyclic graphs increases that complexity significantly even with the
simple “and-like” and “or-like” junctures illustrated, let alone for the far richer
palette of possible probability distributions.

The tools outlined do offer us greater prospects for understanding the parameters
of evidence impact in different theoretical structures, however. As a final illustration,

Figure 17. Brier divergence at different likelihood ratios for introduced evidence in a simple “and-like”
juncture with conditional probabilities [0.9, 0.1] for all cases except a= 1 and b= 1, where conditional
probabilities are [0.1, 0.9]. Root node priors of 0.6 at both a and b entail a prior credence of 0.338 for c.
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while fully recognizing its limitations, we offer a Brier divergence graph for the
COVID-19 graph with which we began (figure 18). We use the formal treatment
outlined in section 5, which builds in independence assumptions that are undoubtedly
unrealistic. Full specifications for our largely ad hoc assignments of priors and condi-
tional probabilities in this case are documented in the Appendix.

It is perhaps not surprising that the theoretical structure exhibited for the coro-
navirus is most sensitive to negative or counterevidence, which appears on the left
side of the graph, at or near the root nodes. Were we to find out that our basic
assumptions regarding germ theory, the susceptible–infected–recovery (SIR) model,
or composition of viruses were incorrect our credence in the other propositions in the
theory would be importantly impacted. On the right side of the graph, it is perhaps
more surprising that positive or credence-reinforcing evidence most affects the graph
with confirmation that handwashing stops the spread of COVID-19. It is perhaps less
surprising that confirmation that SARS-CoV-2 causes COVID-19 strongly strengthens
credence in other elements of the theoretical structure. As detailed in the Appendix,
however, there is by no means a simple inversion in node order with regard to
evidence impact from the left to the right side of the graph. Evidence regarding
an R0 for the coronavirus, for example, appears relatively high on both the left
and the right side of the graph, in the eighth and fifth places, respectively.

Figure 18. Evidence sensitivity in the theoretical structure for COVID-19 shown in figure 2. Full specifi-
cations for conditional probabilities and priors, as well as Brier scores for all nodes, appear in the Appendix.
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7. Conclusion
The structure of scientific theories can be modeled as Bayesian nets with values at
nodes modeling credence in different propositions in the structure and conditional
probabilities modeling the inferential and evidential connections between elements
of the theory. Precisely because of that structure, a scientific theory will be more
vulnerable to the impact of evidence of the same strength at different nodes, modeled
in terms of the Bayesian impact of evidence of a particular likelihood ratio at
that node.

This conclusion has two clear epistemic implications, both of which are probably
intuitive, but both of which are captured here in a quantitative model.

The first implication is that relative position of different nodes within a single theo-
retical structure can make a major epistemic difference. Given a single theoretical
structure, evidence impact at one point in a structure will have a different effect on
credences, percolated through the network, than will evidence impact at another point.
Calculating the network factors that lead to greater influence, however, is far from
simple, depending not merely on the skeletal structure of a network but on the specific
conditional probabilities on inferential and evidential links, the specific prior credences
within the network, and the likelihood-ratio character of the evidence itself.

The second and related implication is that the differences between different theo-
retical structures can make a major epistemic difference. The same piece of evidence
at the leaf node of a star-like network will have an importantly different effect than at
the leaf node of a linear network, or a binary tree. Here again, however, calculating
the aspects of theoretical structure that make the difference in evidence impact in
different cases proves to be far from simple.

These are first steps; we have emphasized the preliminary and suggestive
character of our work throughout. The promise of an approach to scientific theories
as Bayesian nets is the promise of being better able to understand the theoretical–
structure–relative dynamics of scientific evidence and scientific change. Fulfilling
that promise will demand development of a more complete understanding of
node-importance centrality in Bayesian nets, further modeling of dynamic change
within Bayesian nets with iterated credence changes, and modeling of structural
changes in the theoretical structures themselves. That is where some of the questions
of greatest interest lie, but all of that we leave to further work.
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Appendix

Specifications of root node priors and conditional probabilities for sensitivity calculations in the
reconstruction of the COVID-19 theoretical structure shown in section 7.

Nodes:

a = germ theory
b = transmission
c = Koch
d = causes COVID-19
e = respiratory infection
f = airborne and contact
g = proximate human contact
h = social distancing
I = coronavirus composition
j = SARS-CoV-2 is coronavirus
k = breaking lipid
l = soap and water
m = handwashing coronaviruses
n = handwashing SARS-CoV-2
o = handwashing COVID-19
p = SIR
q = Kermack-McKendrick
r = R0
s = COVID-19 R0 1.4–2.0
t = extremely contagious
u = sigmoid curve
v = levelling off
w = acquired immunity
x = COVID-19 extinction
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Root nodes a, c, I, j, and p—prior credences of 0.8. Nodes l, f, a, w—prior credences of 0.7.
Conditional probabilities:

p(b|a)= 0.8; p(b|∼a)= 0.2
p(d|b, c)= 0.8;= 0.2 otherwise
p(e|d, f)= 0.8; p(e|d,∼f)= 0.5; p(e|∼d, f)= 0.5; p(e|∼d, ∼f)= 0.2
p(g|f)= 0.8; p(g|∼f)= 0.2
p(h|g)= 0.8; p(h|∼g)= 0.4
p(k|i)= 0.7; p(k|∼i)= 0.2
p(m|l, k)= 0.8; p(m|l,∼k)= 0.5; p(m|∼l,k)= 0.5; p(m|∼l,∼k)= 0.2
p(n|m,j)= 0.8; p(n|m,∼j)= 0.5; p(n|∼m,j)= 0.5; p(n|∼m,∼j)= 0.2
p(o|d.n)= 0.8;= 0.2 otherwise
p(q|p)= 0.8; p(q|∼p)= 0.2
p(r|q)= 0.8; p(r|∼q)= 0.2
p(u|q)= 0.8; p(u|∼q)= 0.2
p(t|r,s)= 0.8; 0.2 otherwise
p(v|u)= 0.8; p(v|∼u)= 0.5
p(x|j,d,w,v)= 0.9; p(x|∼j,d,w,v)= 0.8; p(x|j,∼d,w,v)= 0.8; p(x|∼j,∼d,w,v)= 0.7; p(x|j,d,∼w,v)= 0.8;

p(x|∼j,d,∼w,v)= 0.7;
p(x|j, ∼d,∼w,v)= 0.7; p(x|∼j,∼d,∼w,v)= 0.6; p(x|j,d,w,∼v)= 0.8; p(x|∼j,d,w,∼v)= 0.7;

p(x|j,∼d,w,∼v)= 0.7; p(x|∼j,∼d,w,∼v)= 0.6; p(x|j,d,∼w,∼v)= 0.7;
p(x|∼j, d,∼w,∼v)= 0.6; p(x|j,∼d,∼w,∼v)= 0.6; p(x|∼j,∼d,∼w,∼v)= 0.2

Brier divergence scores by node for evidence likelihood 2−5, left side of figure 21:

0.032702925196386255 p SIR
0.03197274586977256 q Kermack-McKendrick
0.02892300064134992 a germ theory
0.025206021616052884 I coronavirus composition
0.023849404607912673 c Koch
0.023530107955275256 b transmission
0.021985716054253094 j SARS-CoV-2 is coronavirus
0.021732855368419703 r R0
0.020731908792273795 u sigmoid curve
0.02050306150659843 x COVID-19 extinction
0.018859774335903478 s COVID-19 R0 1.4
0.01876352205497495 v levelling off
0.018291007460366212 l soap and water
0.018142736120275237 f airborne and contact
0.01684255830020106 w acquired immunity
0.01577183852380332 m handwashing coronaviruses
0.015542370861284812 k breaking lipid
0.015403295972751313 n handwashing SARS-CoV-2
0.0153470017407081 d causes COVID-19
0.015074719685156309 h social distancing
0.013945521086314742 e respiratory infection
0.01066307009488828 g proximate contact
0.01028733771960207 t extremely contagious
0.006463834532320453 o handwashing COVID-19

Brier divergence scores by node for evidence likelihood 25, right side of figure 21:

0.01664743806591248 o handwashing COVID-19
0.01439930691393785 t extremely contagious
0.012583132032143445 d causes COVID-19
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0.010663070094888275 g proximate contact
0.009542603689210295 r R0
0.009103101547024603 u sigmoid curve
0.008347243506501229 e respiratory infection
0.007966962560939319 m handwashing coronaviruses
0.007820365918820486 q Kermack-McKendrick
0.0072646504369333125 k breaking lipid
0.007046065875329723 h social distancing
0.006301081627599784 n handwashing SARS-CoV-2
0.005755340972874356 b transmission
0.004496778986033397 v levelling off
0.0038829270106076202 s COVID-19 R0 1.4
0.003765826974073341 l soap and water
0.0037353002678103607 f airborne and contact
0.003467614372621885 w acquired immunity
0.002546901691876484 p SIR
0.0022525214128471527 a germ theory
0.002231827418619689 x COVID-19 extinction
0.001963043327588758 I coronavirus composition
0.0018573900830391689 c Koch
0.0017122461394334491 j SARS-CoV-2 is coronavirus
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