A NOTE ON LINEAR RECURSIVE SEQUENCES

M. MIGNOTTE

(Received 1 April 1974)

Communicated by E. S. Barnes

1. Introduction

We consider linear recursive sequences of integers not all zero such that

(1) $u_{n+k} = a_1 u_{n+k-1} + \dots + a_k u_n$, for $n = 0, 1, 2, \dots$,

where the a_j are rational integers.

If

$$X^{k} - a_{1}X^{k-1} - \dots - a_{k-1}X - a_{k} = \prod_{j=1}^{k} (X - \omega_{j})^{r_{j}}$$

is the decomposition of the associated polynomial P, $|\omega_1| \ge \cdots \ge |\omega_h|$, it is well-known that u_n is given by

(2)
$$u_n = \sum_{j=1}^n P_j(n)\omega_j^n,$$

where P_i is a polynomial of degree $\langle r_i$, with coefficients in $Q(\omega_1, \dots, \omega_h)$.

We recall first a theorem of Mahler (1969).

THEOREM A. Suppose that the u_n are given by (1), where

$$k = 2, a_1^2 + 4a_2 < 0, a_2 \leq -2, (a_1, a_2) = 1$$

Let $\varepsilon > 0$ be an arbitrary constant. Then, as soon as n is sufficiently large,

$$|u_n| \geq |\omega_1|^{(1-\varepsilon)n}.$$

Our aim is to prove the following result.

THEOREM 1. Let (u_n) be a sequence of integers satisfying (1). Suppose that P has at most 3 roots of greatest modulus and that these roots $\omega_1, \dots, \omega_l$ are

simple. Then, there exist n_0 and c, which are calculable, such that, for $n \ge n_0$, we have

$$\left|u_{n}\right| \geq \left|\omega_{1}\right|^{n} n^{-c} \text{ if } v_{n} = P_{1}\omega_{1}^{n} + \dots + P_{l}\omega_{l}^{n} \neq 0, \quad l \leq 3.$$

(The polynomials P_1, \dots, P_l are constant.)

It is clear that this result is nearly the best possible. It seems to be difficult to extend this theorem to the general case.

2. A lemma

LEMMA. Let x_n be defined by

$$x_n = b + b_1 y_1^n + \bar{b}_1 \bar{y}_1^n$$

where b_1, y_1 are algebraic numbers, $|y_1| = 1$, b = 0 or 1. Then, there exists calculable n_0 and C such that, for $n \ge n_0$, the following implication holds

$$x_n \neq 0 \Rightarrow |x_n| \ge n^{-C}$$

PROOF. Because of $|x_n| \ge b - 2|b_1|$, it suffices to consider the case $b \le 2|b_1|$. Put

$$b_1 = |b_1|e^{i\psi}, y_1 = e^{i\theta}, |b/b_1| = -2\cos\phi, \theta, \phi, \psi \in [-\pi, \pi[.$$

We have

$$|x_n| = 4|b_1| \sin \frac{\psi + n\theta + \phi}{2} \sin \frac{\psi + n\theta - \phi}{2}|.$$

The inequality $|x_n| \leq \eta$ implies

(3)
$$\left| \sin \frac{\psi + n\theta + \phi}{2} \sin \frac{\psi + n\theta - \phi}{2} \right| \leq \frac{\eta}{4|b_1|}.$$

If $\phi \neq 0$, (3) leads to an inequality of the form

$$|n\theta + m\pi \pm \phi + \psi| \leq c_1\eta, \ m \in \mathbb{Z}, \ |m| \leq n, \ \text{if} \ \eta < \eta_0,$$

whereas, if $\phi = 0$, it implies

$$|n\theta + m\pi + \psi| \leq c_2 \eta^{\frac{1}{2}}, \text{ if } \eta < \eta_1.$$

In both cases, for $x_n \neq 0$, we get

$$0 < |n\theta + m\pi + \psi \pm \phi| \leq c\eta^{\frac{1}{2}}, \text{ if } \eta < \eta_2.$$

Here $i\theta$, $i\pi$, $i\phi$, $i\psi$ are values of logarithms of algebraic numbers and the conclusion follows from Baker's theorem (1972):

THEOREM. Let β_1, \dots, β_k be fixed algebraic numbers. There exists a calculable constant C_0 , such that for $0 < \delta < \frac{1}{2}$, the inequalities

M. Mignotte

$$0 < \left| b_1 \log \beta_1 + \dots + b_{k-1} \log \beta_{k-1} - \log \beta_k \right| < \delta^{c_0} e^{-\delta B}$$

have no integer solutions b_1, \dots, b_{k-1} , with $\max |b_i| \leq B$.

Here, for
$$B > 2C_0$$
, we choose $\delta = C_0/B$, thus, if $|b_1 \log \beta_1 + \cdots| \neq 0$,

$$\left| b_1 \log \beta_1 + \cdots \right| > \left(\frac{C_0}{e} \right)^{C_0} B^{-C_0}.$$

3. Proof of the Theorem

We may write

$$|v_n| = a |\omega_1^n x_n|,$$

where x_n verifies the hypothesis of the lemma. The conclusion follows at once from the lemma (use (2)).

References

A. Baker (1974), 'A sharpening of the bounds for linear forms in logarithms', Acta Arith. 21, 117-129.

K. Mahler (1966), 'A remark on recursive sequences', J. Math. Sci. 1, 12-17.

Université Paris – Nord Place du 8 mai 45 93. Saint Denis (France).