A NOTE ON LINEAR RECURSIVE SEQUENCES

M. MIGNOTTE

(Received 1 April 1974)
Communicated by E. S. Barnes

1. Introduction

We consider linear recursive sequences of integers not all zero such that

$$
\begin{equation*}
u_{n+k}=a_{1} u_{n+k-1}+\cdots+a_{k} u_{n}, \quad \text { for } n=0,1,2, \cdots \tag{1}
\end{equation*}
$$

where the a_{j} are rational integers.
If

$$
X^{k}-a_{1} X^{k-1}-\cdots-a_{k-1} X-a_{k}=\prod_{j=1}^{h}\left(X-\omega_{j}\right)^{r j}
$$

is the decomposition of the associated polynomial $P,\left|\omega_{1}\right| \geqq \cdots \geqq\left|\omega_{h}\right|$, it is well-known that u_{n} is given by

$$
\begin{equation*}
u_{n}=\sum_{j=1}^{h} P_{j}(n) \omega_{j}^{n} \tag{2}
\end{equation*}
$$

where P_{j} is a polynomial of degree $<r_{j}$, with coefficients in $Q\left(\omega_{1}, \cdots, \omega_{h}\right)$.
We recall first a theorem of Mahler (1969).
Theorem A. Suppose that the u_{n} are given by (1), where

$$
k=2, a_{1}^{2}+4 a_{2}<0, a_{2} \leqq-2,\left(a_{1}, a_{2}\right)=1
$$

Let $\varepsilon>0$ be an arbitrary constant. Then, as soon as n is sufficiently large,

$$
\left|u_{n}\right| \geqq\left|\omega_{1}\right|^{(1-\varepsilon) n}
$$

Our aim is to prove the following result.
Theorem 1. Let $\left(u_{n}\right)$ be a sequence of integers satisfying (1). Suppose that P has at most 3 roots of greatest modulus and that these roots $\omega_{1}, \cdots, \omega_{l}$ are
simple. Then, there exist n_{0} and c, which are calculable, such that, for $n \geqq n_{0}$, we have

$$
\left|u_{n}\right| \geqq\left|\omega_{1}\right|^{n^{-c}} \text { if } v_{n}=P_{1} \omega_{1}^{n}+\cdots+P_{l} \omega_{l}^{n} \neq 0, \quad l \leqq 3
$$

(The polynomials P_{1}, \cdots, P_{l} are constant.)
It is clear that this result is nearly the best possible. It seems to be difficult to extend this theorem to the general case.

2. A lemma

Lemma. Let x_{n} be defined by

$$
x_{n}=b+b_{1} y_{1}^{n}+\bar{b}_{1} \tilde{y}_{1}^{n}
$$

where b_{1}, y_{1} are algebraic numbers, $\left|y_{1}\right|=1, b=0$ or 1 . Then, there exists calculable n_{0} and C such that, for $n \geqq n_{0}$, the following implication holds

$$
x_{n} \neq 0 \Rightarrow\left|x_{n}\right| \geqq n^{-c}
$$

Proof. Because of $\left|x_{n}\right| \geqq b-2\left|b_{1}\right|$, it suffices to consider the case b $\leqq 2\left|b_{1}\right|$. Put

$$
b_{1}=\left|b_{1}\right| e^{i \psi}, y_{1}=e^{i \theta},\left|b / b_{1}\right|=-2 \cos \phi, \theta, \phi, \psi \in[-\pi, \pi[
$$

We have

$$
\left|x_{n}\right|=4\left|b_{1}\right|\left|\sin \frac{\psi+n \theta+\phi}{2} \sin \frac{\psi+n \theta-\phi}{2}\right|
$$

The inequality $\left|x_{n}\right| \leqq \eta$ implies

$$
\begin{equation*}
\left|\sin \frac{\psi+n \theta+\phi}{2} \sin \frac{\psi+n \theta-\phi}{2}\right| \leqq \frac{\eta}{4\left|b_{1}\right|} \tag{3}
\end{equation*}
$$

If $\phi \neq 0$, (3) leads to an inequality of the form

$$
|n \theta+m \pi \pm \phi+\psi| \leqq c_{1} \eta, m \in \mathbb{Z},|m| \leqq n, \text { if } \eta<\eta_{0}
$$

whereas, if $\phi=0$, it implies

$$
|n \theta+m \pi+\psi| \leqq c_{2} \eta^{\frac{1}{2}}, \text { if } \eta<\eta_{1}
$$

In both cases, for $x_{n} \neq 0$, we get

$$
0<|n \theta+m \pi+\psi \pm \phi| \leqq c \eta^{\frac{1}{2}}, \text { if } \eta<\eta_{2}
$$

Here $i \theta$, $i \pi, i \phi, i \psi$ are values of logartithms of algebraic numbers and the conclusion follows from Baker's theorem (1972):

Theorem. Let $\beta_{1}, \cdots, \beta_{k}$ be fixed algebraic numbers. There exists a calculable constant C_{0}, such that for $0<\delta<\frac{1}{2}$, the inequalities

$$
0<\left|b_{1} \log \beta_{1}+\cdots+b_{k-1} \log \beta_{k-1}-\log \beta_{k}\right|<\delta^{C_{0}} e^{-\delta B}
$$

have no integer solutions b_{1}, \cdots, b_{k-1}, with $\max \left|b_{i}\right| \leqq B$.
Here, for $B>2 C_{0}$, we choose $\delta=C_{0} / B$, thus, if $\left|b_{1} \log \beta_{1}+\cdots\right| \neq 0$,

$$
\left|b_{1} \log \beta_{1}+\cdots\right|>\left(\frac{C_{0}}{e}\right)^{c_{0}} B^{-c_{0}}
$$

3. Proof of the Theorem

We may write

$$
\left|v_{n}\right|=a\left|\omega_{1}^{n} x_{n}\right|
$$

where x_{n} verifies the hypothesis of the lemma. The conclusion follows at once from the lemma (use (2)).

References

A. Baker (1974), 'A sharpening of the bounds for linear forms in logarithms', Acta Arith. 21, 117-129.
K. Mahler (1966), 'A remark on recursive sequences’, J. Math. Sci. 1, 12-17.

Université Paris - Nord
Place du 8 mai 45
93. Saint Denis (France).

