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The present study investigates the modal stability of the steady incompressible flow
inside a toroidal pipe for values of the curvature δ (ratio between pipe and torus radii)
approaching zero, i.e. the limit of a straight pipe. The global neutral stability curve for
10−7 ≤ δ ≤ 10−2 is traced using a continuation algorithm. Two different families of
unstable eigenmodes are identified. For curvatures below 1.5× 10−6, the critical Reynolds
number Recr is proportional to δ−1/2. Hence, the critical Dean number is constant,
Decr = 2 Recr

√
δ ≈ 113. This behaviour confirms that the Hagen–Poiseuille flow is stable

to infinitesimal perturbations for any Reynolds number and suggests that a continuous
transition from the curved to the straight pipe takes place as far as it regards the stability
properties. For low values of the curvature, an approximate self-similar solution for
the steady base flow can be obtained at a fixed Dean number. Exploiting the proposed
semi-analytic scaling in the stability analysis provides satisfactory results.

Key words: bifurcation, instability

1. Introduction

The computations by Meseguer & Trefethen (2003) showed that the Hagen–Poiseuille flow
is stable to infinitesimal disturbances even for Re = 5× 106, with Re being the Reynolds
number based on the bulk velocity Ub, the radius of the pipe cross-section Rp, and the
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kinematic viscosity ν (a different definition is used in the reference). Extrapolating their
numerical results, the authors inferred that the laminar flow in a straight pipe is modally
stable for Re→∞. This conclusion stems from numerical evidence. Analytical proof
supporting it exists only for axisymmetric perturbations (Herron 1991), while it is missing
in the case of non-axisymmetric disturbances. Nonetheless, transition to turbulence in a
straight pipe has been known to occur at much lower values of Re since the seminal work
by Reynolds (1883), even though a deeper physical understanding of the process has been
achieved only recently (Barkley 2016; Avila, Barkley & Hof 2023).

For curved pipes, the flow becomes turbulent at higher Reynolds numbers than for a
straight geometry (Taylor 1929; White 1929), and different transition mechanisms take
place at the inner and outer walls, respectively (Sreenivasan & Strykowski 1983). For
values of the curvature – defined as the ratio between the radius of the cross-section of the
pipe and the curvature radius of the torus centreline (δ = Rp/Rc) – below approximately
0.028, the flow undergoes subcritical transition (Kühnen et al. 2015), and the intermittent
coexistence of laminar flow and turbulent puffs can be observed (Rinaldi, Canton &
Schlatter 2019). On the other hand, for higher curvatures, the transition is initiated by
a supercritical Hopf bifurcation, as shown numerically by Canton, Schlatter & Örlü
(2016) and experimentally by Kühnen et al. (2014), and a bifurcation cascade takes place
(Canton et al. 2020). In a restricted region of the (δ, Re) parameter space, both scenarios
are possible, and the asymptotic state is dictated by the initial condition (Canton et al.
2020).

The modal stability analysis of straight pipe flow, or flows in toroidal pipes with
curvature approaching zero, is not directly relevant in practice, since the transition
to turbulence is triggered by finite-amplitude perturbations (Kühnen et al. 2015).
Nevertheless, the study of the global neutral stability curve for these curvatures can provide
further theoretical evidence of the stability of the Hagen–Poiseuille flow to infinitesimal
perturbations at any Reynolds number. This conjecture is based on the fact that the flow in
a torus tends to that in a straight pipe for δ→ 0, and the same behaviour is therefore
expected for its stability properties. To verify this hypothesis here, the global neutral
stability curve computed by Canton et al. (2016) is extended to values of the curvature
between 10−7 and 10−2. For this purpose, we employ a tailored continuation algorithm
and accurate numerical computations of both base flow and disturbances.

2. Governing equations

2.1. Base flow
The dynamics of the incompressible flow of a viscous Newtonian fluid in a toroidal pipe is
described by the incompressible Navier–Stokes equations, which are made dimensionless
by scaling with the bulk velocity Ub, the radius of the cross-section of the pipe Rp, and the
constant density of the fluid ρ, and read

∂u
∂t
+ (u · ∇)u+∇p− 1

Re
∇2u− f = 0, (2.1a)

∇ · u = 0. (2.1b)

They are formulated using an orthogonal toroidal reference system {s, r, θ} (Germano
1982), shown in figure 1 together with a sketch of the toroidal pipe. Therefore, u =
(us, ur, uθ )

T is the velocity vector, p is the non-dimensional pressure, and Re = Ub Rp/ν.
The flow is driven by a volume force f = (F/hs)es, where es is the unit vector in the
streamwise direction, F is a scalar constant representing the forcing amplitude, and
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Rc

s

r θ

Rp

Figure 1. Sketch of the toroidal pipe showing the radius of the cross-section of the pipe Rp, the curvature
radius of the torus centreline Rc, and the reference system {s, r, θ}.

hs = 1+ δr sin(θ). This force mimics the effect of a streamwise pressure gradient, as
described by Noorani & Schlatter (2015) and Canton, Örlü & Schlatter (2017).

Provided that the streamwise pressure gradient is set to zero since the flow is driven by
the volume force defined above, the incompressible Navier–Stokes equations (2.1) written
in toroidal coordinates read as follows. For the s-momentum,

∂us

∂t
+ 1

hs

∂(usus)

∂s
+ 1

hsr
∂(hsrusur)

∂r
+ 1

hsr
∂(hsusuθ )

∂θ
+ δ sin(θ)

hs
usur

+ δ cos(θ)

hs
usuθ − F

hs
− 1

Re

[
2
hs

∂

∂s

(
1
hs

(
∂us

∂s
+ δ sin(θ) ur + δ cos(θ) uθ

))

+ 1
hsr

∂

∂r

(
h2

s r
∂

∂r

(
us

hs

)
+ r

∂ur

∂s

)
+ 1

hsr
∂

∂θ

(
h2

s

r
∂

∂θ

(
us

hs

)
+ ∂uθ

∂s

)

+ δ sin(θ)

(
∂

∂r

(
us

hs

)
+ 1

h2
s

∂ur

∂s

)
+ δ cos(θ)

(
1
r

∂

∂θ

(
us

hs

)
+ 1

h2
s

∂uθ

∂s

)]
= 0.

(2.2a)

For the r-momentum,

∂ur

∂t
+ 1

hs

∂(usur)

∂s
+ 1

hsr
∂(hsrurur)

∂r
+ 1

hsr
∂(hsuruθ )

∂θ
− δ sin(θ)

hs
usus

− uθuθ

r
+ ∂p

∂r
− 1

Re

[
1
hs

∂

∂s

(
hs

∂

∂r

(
us

hs

)
+ 1

hs

∂ur

∂s

)

+ 2
hsr

∂

∂r

(
hsr

∂ur

∂r

)
+ 1

hs

∂

∂θ

(
hs

(
1
r2

∂ur

∂θ
+ ∂

∂r

(uθ

r

)))

− 2δ sin(θ)

h2
s

(
∂us

∂s
+ δ sin(θ) ur + δ cos(θ) uθ

)
− 2

r2

(
∂uθ

∂θ
+ ur

)]
= 0. (2.2b)
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For the θ -momentum,

∂uθ

∂t
+ 1

hs

∂(usuθ )

∂s
+ 1

hsr
∂(hsruruθ )

∂r
+ 1

hsr
∂(hsuθuθ )

∂θ
− δ cos(θ)

hs
usus

+ 1
r

uruθ + 1
r

∂p
∂θ
− 1

Re

[
1
hs

∂

∂s

(
hs

r
∂

∂θ

(
us

hs

)
+ 1

hs

∂uθ

∂s

)

+ 1
hsr

∂

∂r

(
hs

(
∂ur

∂θ
+ r2 ∂

∂r

(uθ

r

)))
+ 2

hsr2
∂

∂θ

(
hs

(
∂uθ

∂θ
+ ur

))

− 2δ cos(θ)

h2
s

(
∂us

∂s
+ δ sin(θ) ur + δ cos(θ) uθ

)
+
(

1
r2

∂ur

∂θ
+ ∂

∂r

(uθ

r

))]
= 0.

(2.2c)

The incompressibility constraint is

∂(rus)

∂s
+ ∂(hsrur)

∂r
+ ∂(hsuθ )

∂θ
= 0. (2.2d)

It needs to be remarked that for δ = 0, (2.2) can be written as the equations for a straight
pipe flow (Meseguer & Trefethen 2003), confirming that the flow in a torus tends to the
Hagen–Poiseuille flow as δ→ 0.

The steady base flow Q = (U, P)T satisfies the steady counterpart of the system
(2.1) subject to no-slip and impermeability boundary conditions on the pipe wall and
homogeneity in the streamwise direction s. Therefore, the problem can be solved on
a two-dimensional cross-section of the toroidal pipe while retaining all three velocity
components.

2.2. Modal stability analysis
The modal stability analysis is performed considering infinitesimal perturbations q′ =
(u′, p′)T evolving on top of the steady base flow Q. To this aim, the incompressible
Navier–Stokes equations are linearised about the steady basic state, reading

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U +∇p′ − 1

Re
∇2u′ = 0, (2.3a)

∇ · u′ = 0. (2.3b)

The formulation of (2.3) in toroidal coordinates is reported in Appendix A. At the wall,
the same boundary conditions as for the nonlinear problem are imposed. Since the base
flow is homogeneous in the streamwise direction, the following normal mode ansatz can
be introduced for the perturbations

q′(s, r, θ, t) =
∞∑

α=−∞
q̂α(r, θ) exp(i(αs− λt)), (2.4)

where α = 2πRp/ls ∈ R is the streamwise wavenumber, with ls indicating the wavelength,
and λ = ω + iσ ∈ C, with σ being the growth rate and ω the angular frequency. In this
framework, the modal stability analysis is often termed BiGlobal in the literature (Theofilis
2003, 2011).
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Substituting (2.4) into (2.3), the following generalised eigenvalue problem for the
complex-valued eigenmode q̂α = (ûα, p̂α)T and the corresponding eigenvalue λ is
obtained for each streamwise wavenumber α:

− iλRq̂α = Lα q̂α, (2.5)

where R is a singular operator (identity for the velocity, zero for the pressure), and Lα

corresponds to the Fourier transform of the linearised Navier–Stokes operator, i.e.

R =
(I 0

0 0

)
, Lα =

(
−∇0U −U · ∇α + 1

Re
∇2

α −∇α

∇α· 0

)
. (2.6a,b)

It is clear from the ansatz (2.4) that infinitesimal perturbations grow exponentially in time
if Im(λ) = σ > 0, thus the flow exhibits a modal instability. Note that the values of the
streamwise wavenumber α are discrete, such that k = α/δ ∈ Z, because of the geometrical
periodicity of the torus.

3. Numerical method

3.1. Spatial discretisation
The numerical computations are carried out on a two-dimensional domain using an
in-house developed MATLAB code based on a Fourier–Chebyshev spectral collocation
method and written in primitive variables. Fourier basis functions are used in the azimuthal
direction θ , whereas Chebyshev polynomials are employed in the radial direction r. The
latter are defined for r ∈ [−Rp, Rp]. In this way, the nodes are clustered only close to
the wall. Moreover, by using an even number of Chebyshev polynomials, i.e. the highest
order being odd, there are no grid points at the pipe centreline such that any singularity
is avoided. The computational domain, sketched in figure 2, consists of Np = nr × nθ

collocation points, where nr corresponds to half the nodes defined on −Rp ≤ r ≤ Rp, and
nθ represents the number of grid points in the azimuthal direction.

The one-dimensional differentiation matrices are obtained using the routines in the
MATLAB DMSUITE by Weideman & Reddy (2000). The two-dimensional differentiation
matrices for the first- and second-order derivatives in the azimuthal direction can then be
defined using the Kronecker product ⊗ as

D(1)
θ = Inr ⊗ D(1)

θ,1D, D(2)
θ = Inr ⊗ D(2)

θ,1D, (3.1a,b)

where D(1)
θ,1D and D(2)

θ,1D are the one-dimensional differentiation matrices in θ , and In
stands for the identity matrix of order n. Because of the node ordering and the sign
change of the derivatives across r = 0, the two-dimensional differentiation matrices in
the radial direction have a more complex structure. They have different expressions for the
streamwise (subscript s) and the radial/azimuthal (subscript r/θ ) velocity components and
are denoted by

D(n)
r,k ∈ R

Np×Np, n = 1, 2 and k = s, r/θ. (3.2)

They consist of n2
r sub-blocks of size nθ × nθ of the form

{
D(n)

r,k

}
i,j
=
([

D(n)
i,j D(n)

i,m−j

D(n)
m−i,j D(n)

m−i,m−j

]
∗ A(n)

k

)
⊗ Inθ/2, i, j = 1, . . . , nr, (3.3)
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Figure 2. Sketch of the polar mesh for the Fourier–Chebyshev spatial discretisation on the pipe cross-section.
In this example, nr = 3 and nθ = 6. The node ordering is also indicated.

where m = 2nr + 1, ∗ denotes element-wise multiplication, A(n)
k is a matrix incorporating

the sign changes for even and odd derivatives for each component, given by

A(n)
s =

[
1 1

(−1)n (−1)n

]
, A(n)

r/θ =
[

1 −1
(−1)n+1 (−1)n

]
, (3.4a,b)

and D(n)
i,j stands for the corresponding element of D(n)

r,1D, such that

D(n)
r,1D = [D(n)

i,j ]. (3.5)

3.2. Steady-state solver
The numerical computation of the steady base flow consists of finding the zeros of the
nonlinear function N (q) representing the steady counterpart of (2.1), where q = (u, p)T.
This task is performed by employing the Newton–Raphson method, which at the iteration
n+ 1 reads

J |qn(qn+1 − qn) = −N (qn), (3.6)

where J |qn is the Fréchet derivative of N (q) computed in qn. The initial guess for the
Newton–Raphson method is provided by either the solution of the linear Stokes equations
or a previous steady state computed for different parameters δ and Re. The solution is
required to have a volumetric flow rate

Qs =
∫ 2π

0

∫ Rp

0
Us(r, θ) r dr dθ = πR2

pUb. (3.7)

This condition is imposed by augmenting the system (3.6) with the constraint Qs( f )−
πR2

pUb = 0, which provides the required forcing amplitude F.
Because a collocated grid is used, the solution exhibits spurious pressure modes (Canuto

et al. 1988). The only spurious pressure mode affecting the problem under investigation is
the checkerboard mode. In addition, the pressure is determined up to an additive constant
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because it appears in the equations solely through its gradient, and only Dirichlet boundary
conditions for the velocity are prescribed. However, this constant pressure mode is not
referred to as parasitic in the literature (Canuto et al. 1988). Two different techniques are
implemented to solve the indeterminacy of the pressure. The first approach consists of
imposing that the solution has a null projection on the checkerboard and constant pressure
modes. The second method implies solving the augmented system[

J n
nT 0

](

q
β

)
=
(−N

0

)
, (3.8)

where J is the Jacobian matrix, 
q = qn+1 − qn, N represents the discrete version of
N (qn), n includes the checkerboard and constant pressure modes, and β is an additional
variable of the augmented system. For a more detailed explanation of this method, the
reader is referred to Gustavsson (2003). The algorithm is considered to reach convergence
when

1
3Np
‖R N‖2 < 10−9 and |Qs − πR2

pUb| < 10−9, (3.9a,b)

where R is the discrete form of the operator R.
For different values of δ and Re, the steady state computed with the present code

is compared with that obtained by Canton et al. (2017) using the in-house developed,
unstructured, low-order, finite-element code PaStA. The Euclidean norm per grid point of
the relative difference between the fields computed with the two codes is at most of the
order of 10−3, whereas the relative difference between the friction factors is found to be
of the order of 10−4. Good agreement is obtained for both the location and magnitude
of the maxima of streamwise and in-plane velocities. It is worth noting that to allow the
comparison between the basic states, linear interpolation between the finite-element mesh
and the spectral grid is performed, which introduces additional sources of differences. The
accuracy of all computed base flows is related to ‖R N‖2, and thus to the tolerance chosen
for the Newton–Raphson method.

3.3. Tracking of the global neutral stability curve
The stability of the flow in a torus depends on three main parameters: Re, δ and α.
The critical Reynolds number is computed by employing a continuation algorithm that
exploits the Newton–Raphson method to find the zeros of σ(Re) for different values of the
curvature δ and the streamwise wavenumber α. The eigenvalues are obtained using either
the shift-and-invert Arnoldi method implemented in the MATLAB command eigs or the
generalised Rayleigh quotient iteration described in algorithm 1.

The latter approach has a lower computational cost and allows tracking a family of
marginally stable modes at different curvatures or streamwise wavenumbers. Neutral
stability curves Recr(δ) are computed for several fixed values of the streamwise
wavenumber using this method. The envelope of these curves represents the global neutral
stability curve of the flow. The critical Reynolds number is also computed as a function
of α for fixed values of the curvature to obtain an improved initial guess for tracking the
least stable mode. Since the steady base flow in a torus cannot be derived analytically, in
contrast with other flows (e.g. channel and straight pipe flows), the continuation method
is coupled with the steady-state solver (which is also based on the continuation of the
previous solution) to compute the basic state at each iteration of the algorithm.

The numerical method is validated against previous results in the literature. The
comparison between the spectrum computed with the present code for δ = 0.01,
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Algorithm 1 Generalised Rayleigh quotient iteration

Given the generalised eigenvalue problem Ax = λBx
Input: A, B, x0

x0 ←
x0√

xH
0 Bx0

� Normalise initial vector

for k = 0, 1, . . . do

λk =
xH

k Axk

xH
k Bxk

� Compute generalised Rayleigh quotient

Solve
(
A− λk B

)
xk+1 = Bxk � Update eigenvector

xk+1 ←
xk+1√

xH
k+1Bxk+1

� Normalise eigenvector

if ‖(A− λk B)xk+1‖2 < tol then � Check convergence
return

end if
end for � n steps or ‖(A− λk B)xk+1‖2 < tol

0 0.2 0.4 0.6 0.8 1.0 1.2
–0.03

–0.02

–0.01

0

0.01

ω

σ

Figure 3. Portion of the eigenvalue spectrum for δ = 0.01, Re = 2150, 0 ≤ α ≤ 1. The region close to the
unstable branch is shown. The black dashed line indicates marginal stability (σ = 0). Black crosses indicate
results from present code; maroon circles indicate data from Canton et al. (2016).

Re = 2150, 0 ≤ α ≤ 1 and that obtained by Canton et al. (2016) for the same parameters
is shown in figure 3. Note that the value of the Reynolds number in the present work
is half of that in Canton et al. (2016) because of the different length scales used for
normalisation. The present code is found able to capture correctly the unstable branch,
and good agreement is observed for the remaining portion of the spectrum as well.

4. Global neutral stability curve

Modal stability analysis is carried out according to the theoretical framework presented
in § 2.2. Preliminary computations are performed for values of the curvature one order
of magnitude apart from each other to identify how the eigenvalue spectrum and the
most unstable eigenmode change with δ. For all curvatures, the maximum value of
the streamwise wavenumber considered at this stage is at least α = 1 (the wavelength
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ω

σ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
–0.010

–0.008

–0.006

–0.004

–0.002

0

Figure 4. Portion of the eigenvalue spectrum for δ = 10−5, Re = 14 550, 0.005 ≤ α ≤ 1.55 computed with
different radial and azimuthal resolutions: nr × nθ = 25× 50 (black + symbols), nr × nθ = 35× 70 (blue
circles), nr × nθ = 45× 90 (maroon × symbols).

is normalised with the pipe radius). The MATLAB built-in function eigs is used to
compute the portion of the spectrum closest to marginal stability. A convergence study
is also performed to determine the required spatial resolution for capturing the instability.
A portion of the eigenvalue spectrum for δ = 10−5, Re = 14 550, 0.005 ≤ α ≤ 1.55 is
shown in figure 4 for three spatial resolutions. Two different branches of eigenvalues can
be observed close to criticality, i.e. σ = 0. A spectral grid with nr × nθ = 25× 50 is
sufficient for converging the branch characterised by lower angular frequency. This branch
is associated with the centre modes defined in the following. On the other hand, the branch
with higher values of ω, associated with wall modes, requires spatial resolution nr × nθ =
35× 70. The spatial structure of the eigenmodes belonging to these two branches is
described in more detail in the following.

At this stage of the analysis, a bisection method is used to obtain an estimate of the
critical Reynolds number for a given curvature. However, computing accurately Recr
with this approach is considerably expensive because of the slow convergence rate of
the method. Better and faster computation of the neutral stability curve can be obtained
by employing a continuation algorithm that exploits the Newton–Raphson method, as
described in § 3.3.

The global neutral stability curve obtained pursuing the latter approach for 10−7 ≤
δ ≤ 10−2 is shown in figure 5, together with that computed by Canton et al. (2016) for
10−2 ≤ δ ≤ 1. For curvatures between 1.5× 10−4 and 10−2, the critical Reynolds number
increases smoothly with decreasing curvature. The critical eigenmodes are antisymmetric
with respect to the equatorial plane and located predominantly in the central part of the
cross-section, as shown in figure 6 for the case at δ = 10−3, Re = 3575 and α = 0.338.
These modes are referred to as centre modes. Their tracking is carried out on a spectral
grid with nr × nθ = 25× 50, according to the resolution study discussed previously.

The global neutral stability curve exhibits a kink at curvatures close to 1.5× 10−4 since
a different family of modes is found at criticality for 1.5× 10−6 � δ � 1.5× 10−4. They
are symmetric with respect to the equatorial plane and concentrated mainly in the near-wall
region, towards the outer side of the bend. Therefore, they are referred to as wall modes.
An example of the spatial structure of these modes is shown in figure 7, which displays
the real part of the critical eigenmode for δ = 10−4, Re = 5338 and α = 1.848. The wall
modes are associated with higher absolute values of the streamwise wavenumber α and the
angular frequency ω than the centre modes. For δ � 1.5× 10−4, the neutral stability curve
associated with this family of modes shows that they become unstable for higher values
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Figure 5. Global neutral stability curve in (a) the δ–Re plane and (b) the δ–De plane. Solid lines for 10−7 ≤
δ ≤ 10−2 (computed in the present work) and dashed lines for 10−2 ≤ δ ≤ 1 (adapted from Canton et al. 2016).
The curve is the envelope of the neutral stability curves computed for various streamwise wavenumbers.
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Figure 6. Real part of the critical eigenmode for δ = 10−3, Re = 3575, α = 0.338, belonging to the family of
centre modes. Arbitrary scaling of the velocity magnitude. The inner wall of the bend is located on the bottom,
whereas the top corresponds to the outer wall.
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Figure 7. Real part of the critical eigenmode for δ = 10−4, Re = 5338, α = 1.848, belonging to the family of
wall modes. Arbitrary scaling of the velocity magnitude. The inner wall of the bend is located on the bottom,
whereas the top corresponds to the outer wall.

of Re than the centre modes. As stated previously, a higher spatial resolution is employed
for tracking wall modes. The need for finer grid spacing is likely ascribed to their spatial
structure, which exhibits a thin layer close to the wall.
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Modal stability of toroidal pipe flow at low curvature

For curvatures below approximately 1.5× 10−6, the critical Reynolds number follows
the power-law trend Recr ∝ δ−1/2. This result implies that Recr diverges to infinity as
δ→ 0 and that the Dean number De = 2 Re

√
δ at criticality is constant, approximately

equal to 113, for these values of δ. The critical eigenmodes correspond to the centre modes
described above since the wall modes become unstable at higher values of the Reynolds
number in this range of curvatures.

For curvatures below approximately 10−4, the centre modes exhibit a peculiar
behaviour: they become unstable at a certain Reynolds number, and restabilise for higher
values of Re, becoming eventually unstable as the Reynolds number is increased further.
To better understand this phenomenon, the growth rate associated with this family of
modes is computed for several values of α and Re by means of the generalised Rayleigh
quotient iteration. In this way, only the centre modes are tracked.

Neutral stability curves in the Re–α plane are identified by considering the flow as
marginally stable when the absolute value of the computed growth rate is below 10−9.
They are shown in figure 8 for δ = 10−3, 10−4, 10−5. The range of considered streamwise
wavenumbers varies depending on the curvature. For δ = 10−3, the centre modes do not
restabilise after becoming unstable. On the other hand, for δ = 10−4, a small detached
region of instability is observed for 0.135 � α � 0.185 and 6200 � Re � 7500. This
island of instability arises because the growth rate of the centre modes does not exhibit
a monotonic trend with Re after crossing the marginal stability limit for the considered
parameters. Hence, the centre modes become unstable and then restabilise in this region
of the parameter space. A similar behaviour is also observed at δ = 10−5 for 0.0375 � α �
0.0725. For this value of the curvature, the analysis is also carried out using higher spatial
resolution in both radial and azimuthal directions, confirming the robustness of the results.
Islands of instability have not been observed by Canton et al. (2016), most likely because
they are characteristic of low curvatures. Nevertheless, they appear in spiral Couette flow
(Meseguer & Marques 2000) and spiral Poiseuille flow (Meseguer & Marques 2002) as a
result of the competition between different instability mechanisms. However, it needs to be
remarked that they arise within the same family of modes in the case under investigation.

The streamwise wavenumber α and the phase speed vp = ωRp/α of the critical modes
are reported in figure 9. For curvatures at which centre modes occur at criticality, the
streamwise wavenumber exhibits a clear decreasing trend as δ decreases. In particular, for
δ � 1.5× 10−6, the critical streamwise wavenumber is proportional to the square root of
the curvature. According to Trefethen, Trefethen & Schmid (1999), the least stable mode in
a straight pipe occurs for α /= 0. Hence, it is expected that the critical α for toroidal pipes
approaches this value smoothly as δ→ 0. For δ ≈ 1.5× 10−6 and δ ≈ 1.5× 10−4, step
discontinuities can be observed in the critical streamwise wavenumber since wall modes,
characterised by larger absolute values of α, are the least stable for 1.5× 10−6 � δ �
1.5× 10−4. For the wall modes, the streamwise wavenumber at criticality decreases as δ

is reduced, but at a lower rate than for centre modes. The wavelength of wall modes is thus
less affected by the curvature.

The critical phase speed increases slightly with decreasing curvature for 1.5× 10−4 �
δ � 10−2, and it exhibits discontinuities at δ ≈ 1.5× 10−4 and δ ≈ 1.5× 10−6 due to the
switching between the two families of critical modes. For the wall modes, vp decreases as
the curvature is lowered, and its value is close to the amplitude of the base flow streamwise
velocity in the region close to the outer wall, where the eigenmodes are predominant.
On the other hand, for curvatures below approximately 1.5× 10−6, the phase speed at
criticality is almost constant, approximately equal to 1.5Ub. Given that the critical modes
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Figure 8. Neutral stability curves of the centre modes in the Re–α plane for (a) δ = 10−3, (b) δ = 10−4,
(c) δ = 10−5. Shaded areas indicate regions where the base flow is unstable. For all values of the curvature, the
computations are performed with nr × nθ = 25× 50 (blue × symbols). For δ = 10−5, results for a grid with
nr × nθ = 35× 70 (maroon circles) are also shown.

for δ � 1.5× 10−6 have their core close to the centre of the pipe, this value of the critical
phase speed is not surprising since it is almost equal to the magnitude of the streamwise
velocity component of the base flow in this region.

5. Influence of the base flow

The stability analysis of toroidal pipe flows requires the numerical computation of the
steady base flow, which increases both the complexity and computational cost of the
algorithm. This task can be avoided if a sufficiently accurate eigenvalue spectrum can
be obtained using an approximate basic state. In this section, the eigenvalue spectrum
computed using different approximate base flows is compared to that obtained by
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Figure 9. (a) Streamwise wavenumber α and (b) phase speed vp of the critical modes as functions of the
curvature. Solid lines indicate data for 10−7 ≤ δ ≤ 10−2 (computed in the present work), whereas dashed lines
show data adapted from Canton et al. (2016) for 10−2 ≤ δ ≤ 1.

linearising the incompressible Navier–Stokes equations about the numerically computed
steady state.

5.1. Semi-analytic base flow
An approximate base flow can be derived by expanding the steady incompressible
Navier–Stokes equations in powers of δ. Considering only the leading-order terms,
after some algebraic manipulations, the equations can be written as follows. For the
s-momentum,

De

2
√

δ

(
r2Us

∂Ur

∂r
+ r2Ur

∂Us

∂r
+ rUrUs + rUθ

∂Us

∂θ
+ rUs

∂Uθ

∂θ

)

− r2 ∂2Us

∂r2 − r
∂Us

∂r
− ∂2Us

∂θ2 = F
De

2
√

δ
r2. (5.1a)

For the r-momentum,

De
2δ

(
r2 ∂P

∂r
+ 2r2Ur

∂Ur

∂r
+ rU2

r + rUθ

∂Ur

∂θ
+ rUr

∂Uθ

∂θ
− rU2

θ

)

+ 1√
δ

(
2Ur − r

∂2Uθ

∂r ∂θ
− 2r2 ∂2Ur

∂r2 − 2r
∂Ur

∂r
− ∂2Ur

∂θ2 + 3
∂Uθ

∂θ

)
= 0. (5.1b)
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Figure 10. Amplitude of the volume force F for steady base flows at De = 200 and different values of the
curvature. The dashed line indicates the trend

√
δ.

For the θ -momentum,

De
2δ

(
r

∂P
∂θ
+ r2Uθ

∂Ur

∂r
+ r2Ur

∂Uθ

∂r
+ 2rUrUθ + 2rUθ

∂Uθ

∂θ

)

+ 1√
δ

(
Uθ − r

∂2Ur

∂r ∂θ
− r2 ∂2Uθ

∂r2 − r
∂Uθ

∂r
− 3

∂Ur

∂θ
− 2

∂2Uθ

∂θ2

)
= 0. (5.1c)

The incompressibility constraint is

r
∂Ur

∂r
+ Ur + ∂Uθ

∂θ
= 0. (5.1d)

Numerical evidence shows that F ∝ √δ for a fixed value of De (see figure 10).
Therefore, for a given Dean number, the field (Us, Ur/

√
δ, Uθ /

√
δ, P/δ)T is a solution

of (5.1) for any combination of δ and Re.
The higher-order terms in the expansion can be neglected for curvatures approaching

zero, and an approximate steady base flow for a given combination of curvature and
Reynolds number can then be derived simply by scaling the solution obtained for different
values of δ and Re yielding the same Dean number. This result confirms the conclusion of
Canton et al. (2017), i.e. that the Dean number similarity does not hold for any value of De,
even at low curvatures. It needs to be remarked that the semi-analytic scaling introduced
here can be applied only for low curvatures, as in the solution proposed by Dean (1927,
1928), but it is valid for any Dean number. Additionally, since the critical Dean number
is constant for low curvatures, the proposed scaling implies that the magnitude of the
secondary flow at criticality decreases with decreasing δ.

5.1.1. Numerical verification
Numerical computations of steady base flows Q = (U, P)T for different combinations
of δ and Re corresponding to the same Dean number support the semi-analytic scaling
derived above. Figure 11 shows the absolute value of the difference between the scaled base
flows (Us, Ur/

√
δ, Uθ /

√
δ, P/δ)T at De = 200 computed for δ = 10−6 and δ = 10−8. The

maximum difference between the two cases is of the order of 10−5. The energy norm of
the relative difference between scaled base flows separated by one decade in δ at De = 200
decays linearly as the curvature decreases, as displayed in figure 12.
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Figure 11. Absolute value of the difference of the scaled velocity components and pressure at De = 200
between the steady base flows at δ = 10−6, Re = 105 and δ = 10−8, Re = 106, i.e. separated by one order
of magnitude in Re. The inner wall of the bend is located on the bottom, whereas the top corresponds to the
outer wall.
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Figure 12. Energy norm of the relative difference of scaled velocity components and pressure between steady
base flows at De = 200 separated by one decade in δ. The dashed line indicates the linear decay as δ decreases.

5.2. Eigenvalue spectra
The base flow for low curvatures can be constructed synthetically from previously
computed steady solutions by exploiting the semi-analytic scaling described in § 5.1,
thus avoiding its explicit numerical computation. However, it is not guaranteed that the
accuracy of the base flow asymptotic expansion carries over to the eigenvalue spectrum.
Indeed, highly non-normal operators can be significantly affected by small perturbations
(Trefethen et al. 1993). The effect on the eigenvalues of having an approximate basic state
is thus assessed for δ = 10−7, Re = 500 000. Three different approximate basic states
are employed in the stability analysis: a base flow built from the solution at δ = 10−5,
Re = 50 000 exploiting the scaling described above, the Hagen–Poiseuille flow (retaining
non-zero curvature in the linearised incompressible Navier–Stokes equations), and the
numerically computed base flow with in-plane velocity components Ur and Uθ set to zero.
The leading eigenvalues for these basic states are reported in figure 13, together with the
spectrum for the numerically computed base flow. Using the Hagen–Poiseuille flow as
basic state completely fails to capture the spectrum, and considerably unstable eigenvalues
are observed. This discrepancy is ascribed to the substantial difference between the base
flow at δ = 10−7, Re = 500 000 and the laminar flow in a straight pipe. Setting the in-plane
velocity components to zero in the numerically computed base flow does not provide
satisfactory results either. This finding implies that the secondary motion in the basic state
has a crucial role in determining the stability properties of the flow, even though it has low
intensity (see also Canton et al. 2017). Nevertheless, as stated above, the magnitude of the
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Figure 13. Portion of the eigenvalue spectrum for δ = 10−7, Re = 500 000, 0.0002 ≤ α ≤ 0.0155 computed
using different basic states: numerically computed base flow (black × symbols), Hagen–Poiseuille flow
with δ /= 0 in the linearised Navier–Stokes equations (blue diamonds), base flow derived applying the
semi-analytic scaling to the solution for δ = 10−5, Re = 50 000 (maroon circles), base flow with in-plane
velocity components set to zero (green Mercedes star symbols).

secondary flow at criticality decreases as δ→ 0. Therefore, better agreement is expected
for lower curvatures.

No substantial differences are observed between the eigenvalue spectra computed using
the scaled basic state and the numerically computed base flow. Hence, the truncation of
the asymptotic expansion does not have a significant influence on the stability properties.

It should be pointed out that it is not possible to perform the stability analysis using
Dean’s expansion of the base flow (Dean 1927) since it is valid only for De� 37.94. Thus,
it loses any meaning at criticality, where Decr ≈ 113. Indeed, at Dean numbers as high as
those on the global neutral stability curve, the base flow derived by Dean exhibits reversed
flow, which is not physical in the considered configuration. However, the semi-analytic
scaling described in § 5.1 can be applied in these cases.

6. Discussion and outlook

The present work extends the modal stability analysis of toroidal pipe flows carried out
by Canton et al. (2016) to values of the curvature δ approaching zero, i.e. a straight pipe.
The global neutral stability curve is traced through a continuation algorithm. Because of
the properties of the geometry, the critical modes are either symmetric or antisymmetric
with respect to the equatorial plane, depending on the value of the curvature. Although
the flow in a toroidal pipe undergoes subcritical transition for δ � 0.028, the present work
highlights that the critical Reynolds number for modal instability diverges to infinity as
the curvature approaches zero. The Dean number at criticality is approximately equal
to 113 for low curvatures. For sufficiently low values of δ, the streamwise wavenumber
of the critical mode is proportional to

√
δ, whereas the critical phase speed plateaus at

a value of approximately 1.5Ub. These findings constitute further proof of the fact that
the Hagen–Poiseuille flow is indeed stable to infinitesimal disturbances for any Reynolds
number, as stated by Meseguer & Trefethen (2003) based on stability calculations. They
also indicate a continuous transition of the stability properties of curved pipe flows towards
the straight pipe limit.

The influence on the eigenvalue spectrum of having an approximate base flow is also
investigated. Asymptotic expansions, corroborated by numerical evidence, show that the
field (Us, Ur/

√
δ, Uθ /

√
δ, P/δ)T is an approximate self-similar solution of the steady

incompressible Navier–Stokes equations for any combination of δ and Re corresponding
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to a fixed Dean number. The error of the approximation is found to be negligible for very
low curvatures. For a given Dean number, an approximate base flow can then be derived
from a solution at different curvature and Reynolds number. For δ = 10−7 and Re =
500 000, this approximate basic state provides an eigenvalue spectrum in good agreement
with that obtained using the numerically computed base flow. On the other hand, using
the Hagen–Poiseuille flow as basic state and retaining non-zero curvature in the linearised
incompressible Navier–Stokes equations does not yield accurate results, implying that the
secondary flow is pivotal in the stability analysis. Neither does the stability analysis for
the numerically computed base flow with the in-plane velocity components set to zero
correctly capture the eigenvalue spectrum, confirming this finding.

Finally, it is worth mentioning that a validation of the present results by means of direct
numerical simulations or experiments is not straightforward. Indeed, assuming that one
can eliminate all the disturbances leading to subcritical transition, a complete torus of
length Lt = 2πRp/δ needs to be investigated in order not to miss any potentially relevant
wavenumber. Considering an experimental facility consisting of a pipe with cross-section
diameter 1 m (the pipe facility at CICLoPE has diameter 90 cm; see Örlü et al. 2017), a
complete torus with curvature δ = 10−7 will have length approximately 31 000 km, which
is of the same order of magnitude of Earth’s circumference (approximately 40 000 km).
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Appendix A. Linearised incompressible Navier–Stokes equations in toroidal
coordinates

This appendix presents the incompressible Navier–Stokes equations linearised about the
steady state Q = (U, P)T and expressed in toroidal coordinates. The perturbation fields
are indicated by (u′, p′)T = (u′s, u′r, u′θ , p′)T.

For the s-momentum,

∂u′s
∂t
+
[
− 1

r2 Re
∂2

∂θ2 +
2δ cos(θ) Uθ

δr sin(θ)+ 1
+ ∂Ur

∂r
+ 3

r
Ur + 1

r
∂Uθ

∂θ
− 2Ur

r(δr sin(θ)+ 1)

+ δ2

Re (δr sin(θ)+ 1)2 +
(

Ur + 1
r Re (δr sin(θ)+ 1)

− 2
r Re

)
∂

∂r

+
(

Uθ

r
− δ cos(θ)

r Re (δr sin(θ)+ 1)

)
∂

∂θ
− 2

Re (δr sin(θ)+ 1)2
∂2

∂s2 −
1

Re
∂2

∂r2

+ 2Us

δr sin(θ)+ 1
∂

∂s

]
u′s +

[
1

r Re

(
3

(δr sin(θ)+ 1)2 −
4

δr sin(θ)+ 1

)
∂

∂s
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+ ∂Us

∂r
− 2Us

r(δr sin(θ)+ 1)
+ 3

r
Us − 1

Re (δr sin(θ)+ 1)

∂2

∂s ∂r
+ Us

∂

∂r

]
u′r

+
[

2δ cos(θ) Us

δr sin(θ)+ 1
+ 1

r
∂Us

∂θ
− 1

r Re (δr sin(θ)+ 1)

∂2

∂s ∂θ

− 3δ cos(θ)

Re (δr sin(θ)+ 1)2
∂

∂s
+ Us

r
∂

∂θ

]
u′θ +

1
δr sin(θ)+ 1

∂p′

∂s
= 0. (A1a)

For the r-momentum,

∂u′r
∂t
+
[(

Ur

δr sin(θ)+ 1
+ 3

r Re (δr sin(θ)+ 1)
− 3

r Re (δr sin(θ)+ 1)2

)
∂

∂s

+ 2Us

r(δr sin(θ)+ 1)
− 2

r
Us − 1

Re (δr sin(θ)+ 1)

∂2

∂s ∂r

]
u′s

+
[

1
r2 Re (δr sin(θ)+ 1)2

(
2+ r Re (δr sin(θ)+ 1)

(
(δr sin(θ)+ 1)

(
2r

∂Ur

∂r

+ ∂Uθ

∂θ

)
+ (4 δr sin(θ)+ 2)Ur + δr cos(θ) Uθ

)
+ 4 δr sin(θ) (δr sin(θ)+ 1)

)

+
(

2Ur + 2
r Re (δr sin(θ)+ 1)

− 4
r Re

)
∂

∂r
− 1

r2 Re
∂2

∂θ2 +
Us

δr sin(θ)+ 1
∂

∂s

+
(

Uθ

r
− δ cos(θ)

r Re (δr sin(θ)+ 1)

)
∂

∂θ
− 1

Re (δr sin(θ)+ 1)2
∂2

∂s2 −
2

Re
∂2

∂r2

]
u′r

+
[(

1
r

∂Ur

∂θ
+ δ cos(θ) (r Re Ur + 3)

r Re (δr sin(θ)+ 1)
− 2

r
Uθ − 2δ cos(θ)

r Re (δr sin(θ)+ 1)2

)

+
(

Ur

r
+ 3

r2 Re

)
∂

∂θ
− δ cos(θ)

Re (δr sin(θ)+ 1)

∂

∂r
− 1

r Re
∂2

∂r ∂θ

]
u′θ +

∂p′

∂r
= 0. (A1b)

For the θ -momentum,

∂u′θ
∂t
+
[(

Uθ

δr sin(θ)+ 1
+ 3δ cos(θ)

Re (δr sin(θ)+ 1)2

)
∂

∂s

− 1
r Re (δr sin(θ)+ 1)

∂2

∂s ∂θ
− 2δ cos(θ) Us

δr sin(θ)+ 1

]
u′s

+
[

1
r2 Re

(
1

δr sin(θ)+ 1
− 4

)
∂

∂θ
+ ∂Uθ

∂r
− Uθ

r(δr sin(θ)+ 1)
+ 3

r
Uθ

− 2δ cos(θ)

r Re (δr sin(θ)+ 1)2 −
1

r Re
∂2

∂r ∂θ
+ Uθ

∂

∂r

]
u′r

+
[

2δ cos(θ) Uθ

δr sin(θ)+ 1
+ 1

r

(
r

∂Ur

∂r
+ 3Ur + 2

∂Uθ

∂θ

)
− Ur

r(δr sin(θ)+ 1)

+ 2δ2

Re (δr sin(θ)+ 1)2 +
1

r2 Re

(
3

δr sin(θ)+ 1
− 2

(δr sin(θ)+ 1)2

)
− 2

r2 Re
∂2

∂θ2
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+
(

Ur + 1
r Re (δr sin(θ)+ 1)

− 2
r Re

)
∂

∂r
+
(

2
r

Uθ − 2δ cos(θ)

r Re (δr sin(θ)+ 1)

)
∂

∂θ

− 1
Re (δr sin(θ)+ 1)2

∂2

∂s2 −
1

Re
∂2

∂r2 +
Us

δr sin(θ)+ 1
∂

∂s

]
u′θ +

1
r

∂p′

∂θ
= 0. (A1c)

The incompressibility constraint is[
r

∂

∂s

]
u′s +

[
(2δr sin(θ)+ 1)+ r(δr sin(θ)+ 1)

∂

∂r

]
u′r

+
[
δr cos(θ)+ (δr sin(θ)+ 1)

∂

∂θ

]
u′θ = 0. (A1d)
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