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Associated Mathieu Functions.

By Dr E. L. INCB,

(Received 17th February 1923. Read 11th May 192S.)

§ 1. Definition of the Functions.
The periodic solutions of the linear differential equation

s l n z

which reduce to Mathieu functions when v — Q or 1, will be known
as the associated Mathieu functions. The significance of this
terminology will appear in the following section.

The differential equation is not new to analysis; it appears,
for example, in a paper by Max Abraham * on the problem of
damped wave motion in stated modes of vibration. The present
writer, in the course of other investigations,^ obtained the integral
equation

I*2""
(2) M(Z) = A.| ^"""""sin z sin su(s)ds,

Jo
whose solutions appear to be solutions also of (1). A recent paper
by M. P. Humbert, read before this Society, + gives this integral
equation, which is said to hold only when v is an integer, and is to
be replaced, when v is not an integer, by an integral relation
between two distinct solutions of (1). The purpose of this present
paper is to show that the integral equation holds for all real values
of v> - \, and that the limits of integration may be taken to be
0 and a-, which is a great advantage in that no branch point of
sin" s occurs within the range of integration.

* Math. Annalen, 52 (1899) pp. 81-112.
t Proc. B.8.E., 42 (1922) p. 47.
t Proctedingt, 40 (1922) pp. 28-29.
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§ 2. Identification of the Equation.

If equation (1) be reduced to its algebraic form by the sub-
stitution f = cosBz, it then has three regular singular points, viz.,
an elementary* singularity at £=0, a regular singularity with
exponent-difference v - £ at £=1, and an irregular singularity of
the first species at £ =oo . In the ordinary Mathieu equation, the
singularity at £ = 1 is elementary. If now the irregular singularity
at infinity be simplified, becoming a regular singularity, equation
(1) becomes the associated Gegenbauer equation, and Mathieu's
eqnation becomes the ordinary Gegenbauer equation. Thus
equation (1) bears the same relation to Mathieu's equation as the
associated bears to the ordinary Gegenbauer equation; f for this
reason it has been called the equation of the associated Mathieu
functions.

§ 3. The Four Types of Function.

It is known, from the general theory of equations whose
coefficients are periodic, that the two fundamental solutions, when
a has a pre-assigned value, are

u = sin" z U] (z)
and

u = sin * z M2 (z),

where ut (z) and M2 (Z) are uniform functions of z, but are not, in
general, periodic. For certain characteristic values of a, either
M, (z) or w2 (z), but not necessarily both, may be periodic. J

* I.e. a regular singularity with exponent-difference 4- It '8 to be
remembered that the coalescence of two elementary singularities produces in
general a regular singularity with arbitrary exponent-differenoe; the
ooalesoenoe of three elementary singularities generates an irregular aingularity
of the first speoies, and so on.

t When c = i the equation bears the same relation to Legendre's equation
as its general form bears to the associated Legendre equation.

t It hus bean proved by the present writer, Proc. Camb. Phil. Soc, 21
(1922) p. 117, that when v=0 or 1 the equation cannot have two periodic
solutions exoept for 8=0. It is shown in the present section that this is true
for all values of r.
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These periodic solutions, when they exist, are of four distinct
types:

I. M = sin* z Fo (n, v, z),

where a = (2n + 1 + v)"+/o(n, 6, v)

II. it = sin1 " "z^n , 1 - v, z),

where a = (2n + 2 - vf +/„ (n, 0,1- v).

I I I . u = sin" z F, (n, v, z),

where a = (2n + v)2+/e (n, 0, v)

IV. u = sin1 ~" z Fe (n, 1 - v, z),

where a = (in + 1 - vf +/e («, 0, 1 - v).

In each case n = 0, 1, 2, . . . ; Fo and .f, are respectively odd and
even functions of cos z, and f0 and fe vanish when 0 — 0. When
j/ = £, Types I. and II . and Types I I I . and IV. become identical.
Fo (n, v, z) and Fe (n, v, z) are uniform periodic solutions of

cP u du
(3) —— + 2v cot z — + (a - v- + 20 cos 2z) M = 0.

O2r as

The a corresponding to Type I. is obtained by equating to zero
the determinant

o-(v + l)2, -a + (v-3fi-0, -0 , 0
0 , a-(v + 3f-6, a + (v-5f + 0, -0
0 , 0 , a-(v + 5y-V, - a + (v-7Y+e, ...
o o , e , a-{v+iy-e, ...

and is clearly not unchanged when 1 - v is written for v except
when v = \. Similarly the a corresponding to Type I I I . is obtained
by equating to zero the determinant

a-v>-0, -a + (v-2f + 20, -0 0
0 , a-(v+2f- 0, - a + (v-if+0, -0 ,
0 , 0 , a-iv + lf-O. -a + (v-6f+0,
0 , 0 0 a

and is also unchanged by the substitution of 1 - v for v except
when v = £.
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If another periodic solution could coexist with one of Type I.,
it would be of Type IV., but the forms of the determinants show
that this is impossible unless 6 — 0 Similarly Types II . and III.
might coexist, but this also is impossible unless 0 = 0.

It is to be noted that, when v = 0 or 1, and 04=0,

K(n, 0, »)=ee^+1(z),
sin z Fo (n, 1, z) = se^+2 (z),

F,(n, 0, z) = ce2n(z),

sin z Fe(n, 1, z) = sein+1 (z).

When 0 = 0, the functions degenerate into the Gegenbauer
functions as follows:

Fc(n, v, Z) = CLH(COSZ),

Fe(n, v,z) = Cl (cos z),

sin1 ~2v zFa («, 1 - v, a) = #L+2 (cos z),

sin1 ~^" zFe(n, 1 - v, z) = #£,+, (cosz).

§ 4. 2%e Integral Equation.
It may easily be proved, that if u (z) be a solution of equation

(1), of Type I. or III., say

u (z) = sin" (z) F(z),
then the integral

y(z)= f
Jet

" sin" z sin" s u(s)ds

is a solution of (1) provided that

sin2" « {k sin s cos a; F(s) + F (s)} = 0,
for all values of z, when s = <x and s = p. This condition certainly
holds if <x = 0 and /? = w, provided v> - £, which is also a necessary
condition for the convergence of the integral.

If v be not integral, let sin" s denote the principal branch of
the function, i.e. that branch which is real and positive in the range
0<s<ir.

The integral y (z) is then not zero, and it clearly is a function
of Type I. or III . But since the equation cannot admit at the
same time two distinct solutions of those types, y(z) must be
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identified with w(z). Consequently the solutions of (1) of Types
I. and III . satisfy the integral equation

(5) M (z) = A. I «*<«"<«• sin* z sin" s u («) da,
Jo

provided v> - £.
Similarly, solutions of Types II. and IV. are solutions of the

integral equation
(5a) t*(z) = A I e*™"c°" sin1""z sin1""* «(«)&,

Jo
provided v<§.

I t is to be noted that if, in (4), u (a) be taken to be a solution
of Type II. or IV., /3 must be taken to be OL + 2JT, and then y(z)
becomes identically zero.

§ 5. Notation.

Write

I- ceL+i (*) = sin" z K (z, n> ")

II- *«2»+2 (2) = s in1" " z Fo (z, n, 1 - v)

I I I . d 4 (z) = sin" z /", (z, TO, v)

IV. » C H (z) = s in 1 "" z .P. (z, n, 1 - •),

so that ce2n~^i (z) — seln+2 (z), ce^" * (z) — se^,+1 (z), and in particular,

ceL+i (z) = ce,n+1 (z) = «e^n+2 (z)

By considering the development of the nuclei of integral equa-
tions (5) and (5a), it is seen that the associated Mathi.eu functions
as above defined may be expressed in terms of ordinary Mathieu
functions in tbe following ways :

Sin 2^2 «r

= sin" ~ 1 z V «
r=0

^sin"z 2 ^rc

r=0
sin" ! z £ *V *eSr+1 (z),

r=0
and sein+1 (z) and s«2n+2 (z) may be similarly developed.
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§ 6. An Analogous Equation.
The equation

cos2 is

is satisfied by the solutions of the integral equations
ir

(7) u (z) = A T <S" •""•"" COS"Z COB'S U(S) ds,
Jir

provided /*> - £, and
«•

(7a) tt(«) = A r e*•""•<*• cos "zcos "*«(«) ds,
—I

provided

§ 7 7%e Associated Lami Functions.

These functions are the solutions of the equation *

( 8 )

which are of the forms

dnm z Ft (z) and tin1-™ z F2 (z),

when -Fj (z) and *̂s («) are uniform doubly-periodic functions of z.
The equation, in the algebraic form obtained by writing

f=«M3 z, has two elementary and two regular singularities; it
reduces, when m (m - 1) = 0, to an equation having three elementary
singularities and one regular singularity, that is, to the algebraic
form of Lame's equation.

The functions satisfy an integral equation of the form

(9) «(a:) = A 4>̂
Jo

where y = m> - ^ or y = l - n t > - ^ , and ^( /x) is the Legendre

function (I-/*2) ~*7 /"^ (/*), or the Gegenbauer function C"^ + ^ (/i).

* Hermite, Creite'a Journal, 89 (18S1) p. 18, (Euvres, 4 p. 18. A still
further generalisation of Lamp's equation is given by Darboux, Comptet
rendua 1882, and de Sparre, Ada Math. 4, (1883) pp. 106-140, 289-321.
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