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COMPOSITION FACTORS OF A CLASS OF INDUCED
REPRESENTATIONS OF CLASSICAL p-ADIC GROUPS

IVAN MATIC

Abstract. We study induced representations of the form d; X d2 x o, where
41, 02 are irreducible essentially square-integrable representations of general
linear group and o is a strongly positive discrete series of classical p-adic group,
which naturally appear in the nonunitary dual. For é; = &([v%p1, v"p1]) and
82 = 8([v°p2, v¥pa]) with a > 1 and ¢ > 1, we determine composition factors of
such induced representation.

81. Introduction

Let us denote by Gy, either symplectic or odd special orthogonal group of
rank n over a nonarchimedean local field F' of characteristic different than
two.

According to the Langlands classification, every irreducible admissible
representation of G, can be obtained as an irreducible subrepresentation of
the induced representation of the form

51X52X-~-X5]€>47'

where T is a tempered representation of some G,,/, while §; is an irreducible
essentially square-integrable representation of GL(n;, F'), fori =1,2, ..., k,
subject to certain constraints on the central exponents of representations ¢;
(we refer the reader to Section 2, where this is discussed in more detail for
the groups under consideration). By the results of [17], d; is of the form

(v pi, v pil),
for a;, b; € R be such that b; — a; € Z, and an irreducible cuspidal represen-
tation p; of GL(n,,, F).
It follows from a result of Harish-Chandra (as in [16, Proposition III1.4.1})
that a tempered representation of GG, embeds in an induced representation
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COMPOSITION FACTORS OF INDUCED REPRESENTATIONS 17

of the form &1 X - - X 6y x o, where 1, ..., are irreducible essentially
square-integrable representations of general linear groups, and o is an
irreducible square-integrable representation of G,,», n” < n'. Combining this
result with the Langlands classification and more recent classification of
the square-integrable unitary duals of classical groups over nonarchimedean
local fields, given in [12], one can deduce that every irreducible admissible
representation of GG, can be obtained as an irreducible subquotient of the
induced representation of the form

(1) 51X52X"'X5k”>408p7

for irreducible essentially square-integrable representations 1, do, . . ., g of
general linear groups and a strongly positive discrete series o, of G, for
some n" < n.

Consequently, strongly positive representations can be observed as the
basic building blocks in known construction of the nonunitary duals of classi-
cal groups over nonarchimedean local fields, and it is of particular interest to
obtain deeper insight into the explicit description of the composition series
of representations of the form (1). We note that an algebraic classification
of strongly positive discrete series of metaplectic groups, which also holds
in the case of classical groups, is given in [4], and some further properties
of strongly positive representations have been studied in [5], [6] and [10].

Composition factors of the generalized principal series §([v%p, 1°p]) x o
have been completely determined by Mui¢ in [13], in terms of the Moeglin—
Tadi¢ classification of discrete series. This classification relies on the Basic
assumption, which now follows from the recent work of Arthur [1] and [11,
Théoreme 3.1.1] (for more details on the Basic Assumption, we refer the
reader to [12, Section 2]). There are three essentially different cases which
appear in [13], and each of them has to be studied separately: a > 1, a <0
and a = %

In this paper, we go one step further by giving an explicit description of
the composition factors of the induced representation of the form

(2) 3([v*p1, 1)) x 8([1°p2, v?pa]) X oy,

where a > 1, ¢ > 1, and oy, is a strongly positive discrete series. An advan-
tage of the considered case is that every tempered subquotient of the induced
representation (2) is strongly positive, and our description presents a natural
continuation of the problem considered in [13].
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18 I. MATIC

We note that it is a direct consequence of the results of [13] and [9,
Proposition 3.2], that the representation §([v%p, v°p]) x o, is multiplicity
one, and can be of length one, two, three or four. On the other hand, our
results show that the induced representation (2) is again multiplicity one,
and can be of length one to eight, but not of length five.

The main role in our determination is played by the necessary and
sufficient conditions under which the induced representation of the form (2)
contains a strongly positive subquotient, which are given in [7] and based
on the description of Jacquet modules of discrete series of particular type,
given in [8]. Those results enable us to obtain candidates for irreducible
subquotients of the induced representation (2), calculating various Jacquet
modules of such induced representation. To determine whether an obtained
irreducible representation is contained in the composition series of (2), we
use sometimes rather involved arguments based on the combination of the
intertwining operators method and the Jacquet modules method.

Let us describe the contents of the paper in more detail.

Section 2 provides in details the main notation and ingredients needed in
this work. In Section 3, we recall some known results, which are used in the
paper. Also, in that section we prove some technical results which enable us
to determine all possible irreducible subquotients of the induced represen-
tation §([%p1, 0p1]) x 8([°p2, vepa]) X 0sp. Detailed analysis of the com-
position factors of the representation &([v%p1, 1°p1]) x 6([v°pa, v¥pa]) X T
in the case when &([v%p1, 10p1]) x 8([v°p2, v%ps]) is irreducible is provided
in Section 4. Description of the composition factors in the remaining case is
given in Section 5.

§2. Preliminaries

Let F' denote a nonarchimedean local field of characteristic different than
two. The groups we are considering are of the following form: we have a
tower of symplectic or (full) orthogonal groups G,, = G(V,,), which are the
groups of isometries of F-vector spaces V,, endowed with the nondegenerate
form which is skew-symmetric if the tower is symplectic and symmetric
otherwise. Here n stands for the split rank of the group G,,, n > 0.

The set of standard parabolic subgroups is fixed in a usual way, that is,
we fix a minimal F-parabolic subgroup in GG,, consisting of upper-triangular
matrixes in the usual matrix realization of the classical group. Then the Levi
factors of standard parabolic subgroups have the form M = GL(ny, F') X
-+ X GL(ng, F) x Gy, where GL(m, F') denotes a general linear group of
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rank m over F. If 0;,i=1,2,...,k, is a representation of GL(n;, F') and if
T a representation of G,,, then by 1 X - - - X §; X 7 we denote a normalized
parabolically induced representation of the group G,,, induced from the
representation by §; ® - - - ® d; ® 7 of the standard parabolic subgroup with
the Levi subgroup equal to GL(ni, F) x - -+ x GL(ng, F) x G,,. Here n
equals n1 +ng + - - -+ ng +m.

We denote by Irr(GL(n, F')) the set of all irreducible admissible repre-
sentations of GL(n, F'), and by Irr(G,,) we denote the set of all irreducible
admissible representations of G,,. Let R(GL(n, F')) denote the Grothendieck
group of admissible representations of finite length of GL(n, F)) and
define R(GL) = ®,>0R(GL(n, F')). Similarly, let R(G,) stand for the
Grothendieck group of admissible representations of finite length of GG, and
define R(G) = @n>oR(Gp).

We denote by v a composition of the determinant mapping with the
normalized absolute value on F. Let p denote an irreducible cuspidal
representation of GL(k, F'). By a segment of cuspidal representations, which
we denote by [p, v p], we mean the set {p, vp, ..., v p}. To each such seg-
ment we attach an irreducible essentially square-integrable representation
d([p, v™p]) of GL(m - k, F'), which is a unique irreducible subrepresentation
of vp x -+« x vp x p (here we use a well known notation introduced in [17]
for the normalized parabolic induction for the general linear groups with
the usual choice of the standard parabolic subgroups). For integers z, v,
x <y, we set [x,y] ={z € Z:x < z<y}. For irreducible essentially square-
integrable representation §, there is the unique e(8) € R such that v=¢(9)§ is
unitarizable.

In order to keep our results uniform, we put &([v%p, %p]) =1 (the
one-dimensional representation of the trivial group) if a=b—1 and
S([vp, vPp]) =0 if a < b — 1.

Throughout the paper we prefer to use the subrepresentation version
of the Langlands classification and write the nontempered representation
7 € Irr(Gy) as the unique irreducible (Langlands) subrepresentation of
the induced representation of the form 81 X §o X - -+ X § X 7, where 7 €
Irr(G,) is a tempered representation and di,da,...,d; are irreducible
essentially square-integrable representations such that e(d1) <e(d2) <--- <
e(dx) < 0. In this case, we write m = L(d1 X d2 X --- X 6 x 7). Also, for
simplicity of the notation, if 7 € Irr(G,,) is a tempered representation and
01,09, ...,0; are irreducible essentially square-integrable representations
such that e(d;) <0 for all i =1,2,...,k, we define L(dy,d2,...,0k,7) to
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be L(di; X i, X -+ X d;, ¥ T), where 0;,,d;,,...,0;, is a permutation of
01,62, ..., 0k such that e(d;,) <e(di,) <--- <e(d;,). We note that similar
notation has been used in [14].

Using Jacquet modules for the maximal standard parabolic subgroups of
GL(n, F') we can also define m*(m) = 3_)'_g s.s.(ry (7)) € R(GL) ® R(GL),
for an irreducible representation 7 of GL(n, F'), and then extend m* linearly
to the whole of R(GL). Here r(;)(m) denotes the normalized Jacquet module
of m with respect to the standard parabolic subgroup having Levi factor
equal to GL(k, F') x GL(n — k, F).

The following equation is frequently used in the paper:

b
m*(3([vp, v p)) = Y ([ p, vPpl) @ 6([v7p, v p]).

i=a—1

Note that the multiplicativity of m* implies

m* | T] 6(v* pj, v o))
j=1

n b;

=TI 3 sitps. v¥p5]) @ 6(1v%ps, v p)))

j=1 \ij=a;—1

For representation o € R(G,,), we denote by rp(c) the normalized Jacquet
module of o with respect to the parabolic subgroup P. Furthermore,
for 1<k<n we denote by ry) (o) the normalized Jacquet module of o
with respect to the parabolic subgroup Py having Levi subgroup equal
to GL(k, F') X Gj—g. We identify 7(,(0) with its semisimplification in
R(GL(k, F)) ® R(Gy—r) and consider

po)=1@0+ > ru(o) € R(GL) ® R(G).
k=1

We take a moment to state the crucial structural formula for our
calculations with Jacquet modules [15], which is a version of the Geometrical
lemma of Bernstein and Zelevinsky [2].

LEMMA 2.1. Let p € Irr(GL(m, F)) be a cuspidal representation and
k,1 € R such that k +1 € Z=g. Let o be an admissible representation of finite
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length of Gr. Write p*(0) =3_,_ . 7 ®c'. Then the following holds:

l l
WGt xo) = S S0 ST a5 ARl x ([, vhpl) x 7

i=—k—1 j=t 71,0’

® (v p, 17 p]) %1 0.

An irreducible representation o € R(G) is called strongly positive if for
every embedding

S S S
o=V P XU pg X X VR pp X Ocysp,

where p; € R(GL(n,,, F)), i=1,2,..., k, are cuspidal unitary representa-
tions and oeusp € R(G) is an irreducible cuspidal representation, we have
s; > 0 for each 1.

Obviously, every strongly positive representation is square-integrable.
Irreducible strongly positive representations are called strongly positive
discrete series.

Let us recall an inductive description of nonsupercuspidal strongly
positive discrete series, which has been obtained in [4]. We note that the
partial cuspidal support of an irreducible representation o € R(G,) is an
irreducible cuspidal representation oy, of some R(n'), n’ <n, such that
there exists a representation 7 of GL(n — n’/, F') such that o < 7 X ocyusp.

PROPOSITION 2.2.  Suppose that o € R(Gy) is an irreducible strongly
positive representation and let p € Irr(GL(m, F)) denote an irreducible
cuspidal representation such that some twist of p appears in the cuspidal
support of o. We denote by ocusp the partial cuspidal support of o. Then
there exist unique a,b € R such that a > 0,b>0, b — a € Z>g, and a unique
irreducible strongly positive representation o' without v®p in the cuspidal
support, with the property that o is a unique irreducible subrepresentation
of §([vep, v°p]) x o’. Furthermore, there is a nonnegative integer | such that
a+1l=s, where s >0 is such that v°p X 0cysp Teduces. If 1 =0 there are
no twists of p appearing in the cuspidal support of o' and if 1 >0 there
exist a unique b’ > b and a unique strongly positive discrete series o’ , which
contains neither v%p nor v p in its cuspidal support, such that o’ can be

written as a unique irreducible subrepresentation of §([v%p, V¥ p]) % o”.

We emphasize that if ¥*p appears in the cuspidal support of ¢ then p is
selfcontragredient and 2z € Z [11, 12].
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By the Mceeglin—Tadié¢ classification, strongly positive discrete series o
corresponds to the so-called admissible triple of alternated type. Admissible
triple corresponding to discrete series o is an ordered triple of the form
(Jord, ocusp, €), where Jord (the set Jordan blocks) is the set of pairs
(¢, p) where c is an integer of the appropriate parity and p an irreducible
cuspidal selfcontragredient representation of general linear group, ocysp is
the partial cuspidal support of o and € is a function defined on the subset
of Jord x Jord U Jord into {#1}. For irreducible cuspidal selfcontragredient
representation p of general linear group we define Jord, = {c: (¢, p) € Jord}
and for c € Jord, we write c_ for maximum of the set {¢’ € Jord,: ¢ < ¢}
if this set is nonempty. An admissible triple (Jord, ocysp,€) is called a
triple of alternated type if for every (c, p) € Jord such that c_ is defined
holds e((c_, p), (¢, p)) = —1. By definition of such triples, a strongly positive
discrete series is completely determined by its partial cuspidal support and
the set of Jordan blocks. Since all strongly positive discrete series which we
study in this paper share a common partial cuspidal support, we define only
the set of Jordan blocks when introducing them. Similar procedure has also
been summarized in [13, Proposition 1.2].

Through the paper we denote the set of Jordan blocks corresponding to
discrete series o by Jord(o) and set Jord,(c) = {c: (¢, p) € Jord(o)}.

If p1 = p2, we may assume b < d, since in Grothendieck group we have
01 X 02 X 0gp = 02 X 01 X 0gp. Also, if p1 = po and b = d, through the paper
we additionally assume a < c.

83. Some technical results

PROPOSITION 3.1. Suppose that w is an irreducible subquotient of
01 X 02 X 0gp and let m= L(§] x 85 x -+ - X 6. X T), where 61,05, ..., 0 are
irreducible essentially square-integrable representations such that e(d)) <0
for all i and e(d,_y) <e(d) holds for i=2,...,k, and T is a tempered
representation of G,r. Then k <2 and T is strongly positive.

Proof. From the cuspidal support of the induced representation d; x do x
Osp, using description of strongly positive discrete series and a > 1, ¢ > 1,
we deduce that 7 has to be strongly positive.

Let us assume, on the contrary, that there is an irreducible constituent 7
of 81 X 82 X ogp of the form L(§] x 05 X - - - x 0), x 7), with k > 3. We write
8 = o([v™ip}, v¥ipl]). Obviously, we have z; +y; <0 for i=1,2,...,k and
i+ i L Tip1 +Yir1 fore=1,2,... k—1.
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Frobenius reciprocity implies that 0] ® 05 ® --- ® 0, ® 7 is contained
in the Jacquet module of m with respect to the appropriate parabolic
subgroup. Since 7 is a subquotient of d1 x d2 X 0y, using transitivity of
Jacquet modules, we deduce that there is an irreducible representation 7
of Gy, such that p*(01 X d2 X 05p) > 8] @ 71. Using Lemma 2.1 twice, we
deduce that there are tgl), t(l) (1), sgl) such that ¢ — 1 < tgl) < sgl) < b,
c—1< tél) < sgl) < d and an irreducible constituent m ® o1 of p* (o) such
that

5 T, y1 ! <1> s(l)—i-l b
(v p1, v 1)) < 6([v™" pr,v™p]) x ([ “pr, v7pi])
X 6 o, v o)) X 8, vipr]) x

and

1 <3 o, vt pul) x S(15 pa, v o)) 2 o,
Definition of strongly positive discrete series implies that if v"*p appears in
cuspidal support of 7, then m > 0. Since 1 <0, from —a < -1, —c¢ < —1,
511 +1>1 and 321 4+ 1> 1, we deduce that sgl) =b, sg ) — d and 01 = o).
A1507 (yla p,l) € {(—(I, p~1)7 (_Ca p~2)}

Using transitivity of Jacquet modules again, we obtain that there is an
irreducible representation 7 of G, such that

% (1) (1)
wr(O([ o, ) x 8([V2 e, vpa)) X 0gp) = 05 @ 1o

In the same way as before, we obtain that there are tg ) and t(2) such that
M <t <, ) <8P < d and

G I @ 0
S([v™ ply, "2 pn]) S pr, v T ] X ([T o, v T ).

Furthermore, t( ) > > a and t( ) > ¢, since otherwise we would have yo =21 — 1
which implies 6(5’ ) > e(dh ), a contradlctlon.

Repeating the same procedure, we deduce that there are tg ) and t( ) such
that % <% <b, ) <t < d and

. ) B - @ g L @ -

(3) 8([v™ ps, v p5]) < O([v™" v o)) x 6([v " e, v T ).
Let us denote by ¢ an element of {1,2} such that zo = —t§2)
obviously unique.

. Such 7 is
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If yo= —tz(l) — 1, we have t§1) = t§-2) for j €{1,2}, j#i. Furthermore,
from e(d]) < e(dy) we get x1 = —t§1), that is, 1 = —t§2).

On the other hand, if yo = —tg-l) — 1 for j € {1,2}, j # i, we have tl(-l) =
t§2). Now e(07) < e(dh) implies zq = —tgl), that is, x1 = —tf).

From (3) we obtain y3 € {—tgz) -1, —téz) — 1}. Since {—tgg) -1, —téz) —
1} ={—z1 — 1, —z2 — 1}, there is some ' € {1, 2} such that e(d5) < e(d)),
which is impossible. This ends the proof. [

From the proof of the previous proposition we directly obtain the
following results, which are used throughout the paper to determine possible
irreducible subquotients of the induced representation d; X da X o).

PROPOSITION 3.2. Suppose that w is an irreducible subquotient of the
induced representation d1 X 02 X 0sp. Then one of the following holds:

(a) 7 is strongly positive.
(b) m= L(6([v*p, v¥p]) x T), where y <0, T is strongly positive, and there
are i and j, a —1<1<b, c—1<j<d such that

(v o1, v™p1)) x 6([v ™ pa, v™°pa)

(W™ o1, v p1]) x S([7 T pa, vPpa]) % oy

5(1v*p. Vg

<46
T
m = L(5([v"p, v¥p]) x 8([v*' o, vV p]) % 7), where y <0,y <0, z+y <
'+, T is strongly positive, and there are i and j, a —1<i1<b, c —
1< j5<d such that

([, v¥p)) @ 8([v* 0, ¥ p'])
m*(3([v " pr, v 1)) x 8([v 7 pa, v pa))

<
<O([W 1, vPp1]) x ([ pa, v pa]) X 0.

T

PROPOSITION 3.3. Suppose that there arei and j, a — 1 <i<b, c— 1<
Jj <d such that (i,7) # (a —1,¢ — 1) such that the induced representation
Sy, vPp1]) x ([ po, v¥ps]) X 0 contains a strongly positive irre-
ducible subquotient 1. All possible irreducible subquotients of d1 X d2 X ogp
arising from such choice of the ordered pair (i, j) are given as follows:

(8) L(([vp1, v 1)) % 7), if j = — 1
(b) LO([v 7, v=epa]) % 7), if i =a— 1;
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(©) LO(v o1, v m]), 8([v 7 pa, v p2]), 7), if i#a—1, j#c—1 and
the induced representation §([v " p1, v™%p1]) x §([v ™7 p2, v~ pa]) is irre-
ducible;

@ LG pr, vpr]), 8 Fpn, v pal)m)  and L pr, vpa)),
v Ip2, v %2l),T), if iFa—1, j#c—1 and the induced
representation §([v "' p1, v"%p1]) x 8([v 7 pa, v pa]) reduces.

Proof. Let us first consider the case j =c— 1. The case t=a — 1 can
be handled in the same way. Suppose that we are in the case (¢) of
the previous proposition. Then we have &([v%p, 1¥p]) @ 6([v* o', ¥ p]) <
m*(§([v~=p1, v~ %p1])). Using the formula for m*, we obtain ' = z — 1, which
is impossible. Thus, we are in the case (b) of the previous proposition and
5([v*p, v¥pl) = 6([v " p1, v~ p1)).

It remains to consider that case i # a — 1, j # ¢ — 1. Using multiplicativity
of m*, we deduce &([*p, 1¥p)) < 8([v=" p1, v%p1]) x 8([v 7 pa, vCp3]) for
i and j' such that a —1<i' <i,c— 1< <j. Ifi' #a—1and ' #c—1,
we have p; = po and union of segments [—i’, a] and [—j, ¢] is a segment.
From 8([ p, v p]) < 8([v—"p1, ="~ pa]) X 8([v 7 pa, 7'~ pa]), using = +
y<a' +1y, wegeti=1 orj=j'. Consequently, the induced representation
S([v=p1, v %1]) x 8([v 7 pa, v~ pa]) reduces and we obtain possible irre-
ducible subquotient of the form L(§([v=p1, v~ p1]), 6([v 7 p2, v %p2]), 7).
We note that in the case i =4’ and j = j’ we have either

L(S([v " pr, v pa]), (v p2, v %p2l), 7) = L(6([v "' pr, v~ p1]) 3 7)
L[ p1, v p]), 6([v 7 p2, v~ p2)), 7) = L(6([v 7 pa, v pa]) 7).

Now we discuss the case /=a —1. The case 7 =c—1 can be han-
dled in the same way. It follows that &([* p, v¥ p]) < 6([v~"p1, v~ %p1]) X
5([v 7 pa, v=7 "1 py]), and we have the following two possibilities:

e j/ = j, which provides possible irreducible subquotient
L(5([V_ip17 V_apl])v 5([1/_jp2, V_Cp2])’ 7—)7

e ;' <j,and z +y < 2’ + 9 now implies i = 5/ and a < c¢. Consequently, the
induced representation &([v%p1, v %p1]) x §([v 7 p2, v~ ¢pa]) reduces and
we again obtain possible irreducible subquotient

L((S([V_iplv V_cpl])7 5([V_jp27 V_apQ])7 7—)'
This ends the proof. 0
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We take a moment to recall some results from [13], which are frequently
used in the paper.

LEMMA 3.4. Let p denote a supercuspidal element of Irr(GL(n,, F')) and
a,beR such that a <b and 1 < a. Let oy € Irr(Gy,) stand for the strongly
positive discrete series. Then the induced representation §([v%p, 1°p]) X ogp
reduces if and only if p is selfcontragredient, [2a — 1, 2b — 1] N Jord,(osp) # 0
and 2b+ 1 ¢ Jord,(os,). If 6([v2p, vPp]) x 0, reduces, in R(G) we have

5([v%p, v*p]) X oy = L(3([v " p, v %)) 2 o) + L(S([v"p, v~ p]) x 0(})),

for x such that 2z + 1 = max(Jord,(osp) N [2a — 1, 2b — 1]) and strongly pos-
itive discrete series aé,lj) such that Jord(agll,)) = Jord(osp) \ {2z + 1, p)} U
{(2a — 1, p)}. In particular, the induced representation &([v%p, vV°p]) X s
contains an irreducible strongly positive subquotient if and only if p is
selfcontragredient and max([2a — 1,2b — 1) N Jord,(0sp)) = 2a — 1.

In the following two lemmas we recall necessary and sufficient conditions
under which the representation d; X d2 % 0, contains a strongly positive
discrete series, which have been obtained in [7].

LEMMA 3.5. The induced representation 61 X 02 X 0y, where p1 2 pa,
a>1,c21, and oy € Irr(Gy,) is a strongly positive discrete series, contains
a strongly positive irreducible subquotient if and only if p; is selfcontragredi-
ent for i=1,2, [2a —1,2b+ 1] N Jord,, (0sp) = {2a — 1} and [2c¢ —1,2d +
1] N Jord,, (osp) = {2c — 1}.

LEMMA 3.6. The induced representation §([v%p, v°p]) x §([v°p, v%p])
Osp, Where a>1, ¢>1, b<d, and oy €Irr(G,) is a strongly positive
discrete series, contains a strongly positive irreducible subquotient if and
only if p is selfcontragredient and one of the following holds:

(a) [2¢—1,2d+ 1] N Jord,(osp) = {2¢ — 1} and [2a —1,2b+ 1] N
Jord,(m) ={2a — 1}, for the wunique irreducible strongly positive
subquotient 7 of §([v°p, vip]) X Tgp.

(b) [2a —1,2b+ 1] N Jord,(osp) = {2a — 1} and [2¢—1,2d+ 1] N
Jord,(m) ={2c — 1}, for the wunique irreducible strongly positive
subquotient 7 of 5([v%p, VPp]) X 0gp.

(c) e=b+1,2a—1¢€Jord,(osp), 2d+ 1 & Jord,(osp) and if there is an
such that in Jord,(osp) holds (2x +1)-=2a — 1 then d < x.

https://doi.org/10.1017/nmj.2016.46 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.46

COMPOSITION FACTORS OF INDUCED REPRESENTATIONS 27

(d) e=b+1, 2a—1€Jord,(osp), 2d+ 1 & Jord,(osp), there is an x such
that in Jord,(osp) holds (2x+1)-=2a—1 and [2c¢—1,2d+1]N
Jord,(osp) = {22 + 1}.

Let us also note a consequence of previous two lemmas.

COROLLARY 3.7. Suppose that there are i and j, a —1 <1 <b and c —
1 < j <d, such that the induced representation

3([vp1, V') x 6([Vopa, 17 pa]) X T

contains a strongly positive irreducible subquotient nonisomorphic to ogp.
Then at least one of the induced representations 01 X osp and 62 X o4
reduces.

The following result is well known.

LEMMA 3.8. Let 01,09, 03 denote admissible representations of finite
length of Gy, such that o1 is irreducible subquotient of o3 and oo 1is
subquotient of os. If there is an irreducible representation m such that w
appears with multiplicity my in rp(o1), with multiplicity mo in rp(o2) and
with multiplicity ms in rp(os), for the appropriate parabolic subgroup P,
and 1 <mp < mo =ms, then o1 is an irreducible subquotient of os.

84. The case of irreducible §; x §,

In this section we determine the composition factors of the induced
representation 1 X da X 0y in the first series of subcases. Through this
section we assume that 01 x d9 is irreducible. We note that in the case
p1 # p2, the results follow immediately from [13] and [3]. We also note that
the hypotheses needed to obtain the results from [13] and [3] are more
restrictive.

For simplicity of the notation, if Jord, (os) N[2a —1,2b— 1] #0, let
2z + 1 =max(Jord,, (0sp) N [2a — 1, 2b — 1]). Also, if Jord,,(osp) N [2¢ — 1,
2d — 1] # 0, let 2y + 1 = max(Jord,, (osp) N [2¢ — 1, 2d — 1]).

The following proposition is well known:

PROPOSITION 4.1.  Suppose that both induced representations 61 X og)
and 02 X og, are irreducible. Then the induced representation d1 X d2 X ogp
1s irreducible.

In the following two propositions we deal with the case when exactly one
of the representations 91 x o5, and do X o5, reduces.
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PROPOSITION 4.2.  Suppose that the induced representation 61 X ogp
reduces and that the induced representation o X oy, is irreducible. Let
ng) stand for the strongly positive discrete series such that Jord(aé,lj)) =

Jord(osp) \ {(2z + 1, p1)} U{(20+ 1, p1)}. In R(G) we have
81 % 83 X 0gp = L(61, 02, 0p) + L(8([v " p1, v p1]), 62, o' 1),

Proof. To determine possible irreducible subquotients of 1 x d2 % o), we
use the approach introduced in Proposition 3.2, and determine all ¢ and j,
a—1<1<b, ¢c—1<j<dsuch that the induced representation

5[ o1, vPpr]) x 8([7 1 po, vpa]) % o

contains a strongly positive irreducible subquotient. Let us first prove that
j=d. If i = b, it follows directly from Lemma 3.4 that 6([7 T pg, v9pa]) X
osp is irreducible for j < d since d3 X o), is irreducible, and in this case
there are no strongly positive subquotients. Now, let ¢ < b. Irreducibility
of §([¥11pa, v¥pa]) % 04y, together with Lemma 3.4, show that situations
described in Lemma 3.5 and in Lemmas 3.6(a) and 3.6(b) cannot happen.
Assume that we are in the case of Lemma 3.6(c) or Lemma 3.6(d). Then
p1 =2 pa and, since b < d, j = band 2d + 1 & Jord,, (04p,). This forces c < b+ 1
and irreducibility of 6; x d2 gives ¢ < a. But, reducibility of 41 x o5, and
Lemma 3.4 show that d2 x o), reduces, a contradiction.

Consequently, j = d and it can be directly verified that 5([" ! py, vp1])
op contains a strongly positive subquotient only if i € {b, x}, for = such that
2z 4+ 1 =max(Jord,, (os) N [2a — 1, 2b — 1]).

Since 61 x 2 is irreducible, Proposition 3.3 implies that ¢ = b and provides
the irreducible subquotient L(<51, 52, Osp) Of 01 X 92 X Ogp.

It remains to examine the case i=x. If xt=a—1, we are in the
case of Proposition 3.3(a), which provides the irreducible representation

(52 X o*( )) If x > a, Proposition 3.3 provides the irreducible representation
L(S([v="p1, v p1]), 82, 013))-

It remains to prove that the obtained irreducible subquotient is contained
in §1 xd xog If z=0a—-1, L((5~2 X ogé)) is a subrepresentation of (5~2 X
agp), which is contained in 5; X 01 Xog. If z>a, 5; X 0([v™"p1, v %)) is
irreducible since §1 X d9 is irreducible. Thus,

52 % 8([v " pr, v pa]) 3 0h) 2 8([v " pr, v 1)) x 8 x4 o1l
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and this induced representation has the unique irreducible subrepresentation
LS([v=p1, v=p1]), 02, 053)). Since 6y x L(5([v==p1, v—%p1]) % 03)) is also
a subrepresentation of dg X d([v ™" p1, v %p1]) X ag,), we have
L((S([y_xpl’ V_apl])v 5~27 nglp)) — 5; A L(é([lj—xpla V_aplb A ngl)))
< 5~2 X 01 X Ogp.

The equality 52 X 01 X 0gp = 01 X 02 X 04 gives the desired conclusion.

It is well known that L((i, 5~2, osp) is contained with multiplicity one in
01 X 02 X 0gp. Also, it is not hard to see that, if x =a — 1, 3; ® Ugo) appears
in p*(81 % 02 X 0gp) with multiplicity one, so L(6s ® ag,)) is contained in
01 X 02 X 04, with multiplicity one. Similarly, if z > a — 1, it follows directly
from Lemma 2.1 that p*(d1 X d2 X 0gp) contains the irreducible constituent

([v=*p1, v %1]) X (5~2 ® ngl)) with multiplicity one. This ends the proof. []

PROPOSITION 4.3.  Suppose that the induced representation 6z X o4
reduces and that the induced representation 61 X o, is irreducible. Let
(1) (1)) _

osp stand for the strongly positive discrete series such that Jord(osp

Jord(osp) \ {(2y + 1, p2)} U{(2d + 1, p2)}. In R(G) we have

81 X 82 X 0y = L(61, 02, o) + L(81, 6([v Y p2, v %p2]), ol1).

Proof. Again we start the determination of possible irreducible subquo-
tients of 41 X d2 X 0 by determining all ¢ and j,a —1<i<b,c—-1<j<d
such that the induced representation

(4) 3([V" o1, ) x ([ 2, vpa]) 3 o

contains a strongly positive irreducible subquotient. If p; 22 p2, in the same
way as in the proof of the previous proposition we get i=»5. Let us
now consider the case p; = po. Using irreducibility of 01 x oy, together
with Lemma 3.4, we obtain that cases Lemmas 3.6(a), 3.6(b) and 3.6(c)
do not appear. The case Lemma 3.6(d) appears if b<d, j=0b, 20+ 1€
Jord,, (ogp) and 2i + 1 = max(Jord,, (0sp) N [2a — 1,2b — 1]) (we note that
2d + 1 ¢ Jord,, (0sp) since 0o X 0y, reduces and irreducibility of d; % o)
implies 2b+ 1 € Jord,, (osp)). We denote the corresponding irreducible
strongly positive subquotient of §([v**1p1, vPp1]) x 6(["F pa, v¥pa]) X 0y
by a%,. Obviously, Jord(oyg,) = Jord(osp) \ {(2i + 1, p1)} U{(2d + 1, p2)}.

Since b < d and ¢ < b+ 1, irreducibility of d; x d2 gives ¢ < a. We study
two possibilities separately.
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e i=a— 1. Now we are in the case of Proposition 3.2(b) and we obtain
a candidate L(6([v"pa, v™°ps]) % 07,) for an irreducible constituent of
851 X 83 X 0. Obviously, L(6([v=p2, v™¢p2]) x o¢,) is a subrepresentation
of 6([v"pa, v™pa]) oy, and

5([v"pa, v pa]) % 0l = 6([v°pa, V0pa]) X 0%y,

since, by Lemma 3.4, 2b41¢ Jord,,(os,). Thus, it follows that
1 (L(6([v~p2, v4pa]) x 0l,)) = 6([v°p2, v p2]) ® o, Consequently,  if
L(8([v="pa, v™°p2]) » 0},) is an irreducible subquotient of §; X 0z X op,
then p*(6y x 82 1 o) contains §([v°p2, 10p2]) ® o, We analyze the last
inequality using Lemma 2.1. There are a — 1 <11 < j1 <b, c—1<i9 <
Jj2 < d and an irreducible constituent 6 ® m; of p*(ogp) such that

5([vpa, V0pal) < 6([v"pr, v pal) X 8(W o1, vPpi])
X 8([v™"2pa, v pa]) X 8([72 pa, vpo]) x 6

and

oy <[V pr, 7 pa]) X ([ o, 172 po]) 3 .
We see at once that i1 =a—1, is=c—1, jo=d. From c¢<a and [6,
Theorem 4.6] we deduce that j; =a—1 and § = §([v°p2, v* 1pa]). [6,
Theorem 4.6] also gives that m is strongly positive discrete series such
that 2b + 1 € Jord,, (m1). Consequently, og, < §([°p2, v%ps]) x 7y, which
is impossible since the induced representation &([vps, v9pa]) x 71 does
not contain irreducible strongly positive subquotient by Lemma 3.4.

e i >a— 1. Since union of the segments [—i, —a] and [—b, —c| is not a
segment, we are in the case of Proposition 3.3(c) and we obtain a candidate
L(§([v= p1, v™p1]), 6([v b p2, v™¢p2]), o) for an irreducible subquotient
of 51 X (52 X Ogp.

In the same way as in the previously considered case we obtain
that the irreducible representation &([v°p2, v°pa]) ® §([v"p1, v %p1]) ®
oy, is contained in the Jacquet module of the irreducible represen-
tation L(6([v~"p1,vp1]), 6([v"1pa, v °p2]), 0l,) with respect to the
appropriate parabolic subgroup. Thus, if the irreducible representation
L(§([v~"p1, vp1]), 6([v b p2, v¢p2]), 0h,) is an irreducible subquotient
of 1 X d2 X 0gp, using Lemma 2.1 and transitivity of Jacquet modules,
we deduce that there are i1, ji1, %2, jo such that a —1<i; < j1 <b,
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¢ — 1<y < jo <d, and an irreducible constituent ¢ ® m; of p*(osp) such
that

5([vpa, V0pal) < 8([v " pr, v pa]) X 8([17 oy, P i)
X 8([v™"2pa, v pa]) X 6([72 pa, v po]) x 6

and

(v~ pr, v 1)) @ o,
< (S pr, v o) x 62 pa, 172 pa]) ).

It is not hard to deduce that i1 =a — 1, ia =c— 1, jo =d. Also, by [6,
Theorem 4.6], either m = o4, or 6 = 6([V°p2, v ps]) for 2t + 1 = min{2z +
1 € Jord,,(0gp) : ¢ < z}. Since ¢ < a and 2i + 1 = max(Jord,, (o) N [2a —
1, 2b —1]), it follows ¢ <.

If c<a, then & =§([v°ps, vipo]) and j; =t. From t <i we get 20+ 1€
Jord,, (). It follows that 6([v~"p1, v *p1]) ® o, is an irreducible con-
stituent of p*(§([v%p1, vip1]) x 8([v°p2, vepa]) x m1). Using the structural
formula for u* again, we see that there are 3, js, i4, j4 such that a — 1 <
13 <j3<t, c —1<i4 <jsy <d, and an irreducible constituent ¢’ ® mo of
w*(m1) such that

§([v ' pr, v 1)) < 8([v " p1, v 1)) x 6([73F p1, vl 1))
X 8([v " pa, v pa]) X 8([V* pa, v7pa]) x &

and
o4y <[V pr, v pa]) x ([ pa, 17 po]) 31 o

Since a >0 and c < a, it directly follows that js=¢t, is=c—1, ju=d
and mo Zm;. If t <4, it follows that the irreducible representation
L(§([v=p1, v %p1]), 8([v 1 pa, v~ pa)), 04p) is not a subquotient of d1 x
d2 X ogp. Otherwise, we have i3 =t and agp < ([vp2, vepa]) x w1, which is
impossible because it is a consequence of Lemma 3.4 that §([1°p2, v%ps])
71 does not contain an irreducible strongly positive subquotient.

If c=a and § = §([v°pa, v pa]), then we again have 6([v"p1, v %1]) ®
oly < pF(0([p1, Vip1]) x 6([V°pa, v¥pa]) x 1). In the same way as in the
case ¢ <a, we obtain that o}, is contained either in §([°pa, v%ps]) ¥
m1 (this can happen only if ¢=14) or in the induced representation
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§([vep1, vip1]) x 6([v™F pa, v¥ps]) x 1, but neither of these induced rep-
resentations contains an irreducible strongly positive subquotient, by
Lemmas 3.4 and 3.6.

If c=a and m =04, then ji=a—1 and 0([v""p1, v %p1]) ® 0, <
w* (6([v°p2, v¥pa]) % 0gp). Following the same procedure as before we
obtain oy, < §([" 1 pa, vepa]) X 0y, which is impossible since Lemma 3.4
shows that the induced representation &([v°pa, v%ps]) x 71 does not con-
tain an irreducible strongly positive subquotient.

Consequently, we have proved that in (4) we must have i =b. Now the
rest of the proof follows the same lines as in the proof of Proposition 4.2. []

In the rest of this section we determine composition factors of §; x do X
0sp When 01 x 02 is irreducible and both representations d; x o, and da X
osp reduce. In this case, a description of the composition factors of 61 x da x
osp is divided in a sequence of lemmas.

LEMMA 4.4. Suppose that p1 % pa or p1 = p2 and x < y. Let Ug,) denote

the strongly positive discrete series such that Jord(agzl,)) = Jord(ogp) \ {(22 +
Lp)U{(20+1, p1)}, Ug,) denote the strongly positive discrete series such
that Jord(agg)) = Jord(osp) \ {2y + 1, p2)} U{(2d + 1, p2)} and ng) denote
the strongly positive discrete series such that Jord(agg)) = Jord(ogp) \ {(22 +
1,p1), Qu+1,p2)} U{(2b4+ 1, p1), (2d + 1, p2)}. In R(G) we have

81 % 62 X 05y = L(81, 62, 05p) + L(3([v " p1, v~ p1)), 02, o))

+ L(31, ([ V2, v pa]), 0f2)

+ L(S(v "1, v p1l), S([v Y pa, v p2]), o).

Proof. It can be directly seen that
S o1, v p]) X 87 pa, v pa)) X o

contains a strongly positive discrete series for ¢ and j such that a — 1 <i < b
c—1<j5<d if and only if (i,j) € {(b,d), (z,d), (b,y), (z,y)}. If (i,7)=
(z,y) and (x,y)=(a—1,b—1), we are in the case of Proposition 3.2(a)
and 01 X 02 X 0y, contains an irreducible strongly positive subquotient.
If (i,5) € {(a—1,t1), (t2,c— 1)}, for t1 #c—1 and t3 #a — 1, we are in
the case Proposition 3.2(b), and in all other cases we are in the case of
Proposition 3.2(c).

I
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Using our assumptions on d; and ds, together with Proposition 3.3,
we deduce that each of four possibilities for (i, j) provides one candidate
for the irreducible subquotient of d1 X d2 X 0y, and all obtained can-
didates are mutually nonisomorphic. To show that the obtained candi-
date 7 is an irreducible subquotient of d; x d2 X 0y, which appears with
multiplicity one, we discuss only the case x>a—1, y>b—1 and 7=
L(6([v~"p1, v %p1]), 6([v ™Y p2, v~ pa)), Ggf,)). Other cases can be handled in
an analogous way. We have

7 <3([v"p1, v 1)) x ([ Ypa, v pal) x o)

and
ol3) = 6([v o1, v o)) x 8([VH pa, 1vpa]) 3 0,

and it can be easily seen that both representations 7 and 6; x d2 x o), are
contained in the induced representation

7 = 8([pr, 1)) % (" o, ]
X 8([°pa, V¥ pal) x 8([VF pa, v7pa]) % .

Furthermore, Frobenius reciprocity shows that

5([v"p1, v p1]) @ 6([v"H p1, 10p1))
® 8([v Y p2, v pa]) @ S([VY T p2, vp2]) @ 0y

appears in the Jacquet module of m with respect to the appropriate
parabolic subgroup, and structural formula can be used to obtain that
the same irreducible representation appears with multiplicity one in the
Jacquet module of §; x d2 x o), with respect to the appropriate parabolic
subgroup and in the Jacquet modules of 7’ with respect to the appropriate
parabolic subgroup. Lemma 3.8 shows that 7 is an irreducible subquotient
of 01 x 02 X 0, and we have also proved that it appears with multiplicity
one. [

In the rest of this section we suppose p; = ps and, for simplicity of the
notation, we write p instead of p; and ps.

LEMMA 4.5. Suppose that b=d and let o§,1) denote the strongly posi-

tive discrete series such that Jord(ag}g)) = Jord(osp) \ {(2z 4+ 1, p)} U {(2b+
1L,p)}. Ifa=c, in R(G) we have

01 X 02 X Ogp = L(gl, 5;, Osp) + L(gl, ([v*p, v %)), ag,)).
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If a # ¢, we can assume a < c. Then in R(G) we have
81 X 82 X 05y = L(01, 82, o) + L(8([v~"p, v ™)), 62, o}))
+