A GENERALIZED FOURIER TRANSFORMATION FOR $L_1(G)$ -MODULES

TENG-SUN LIU, ARNOUD C. M. VAN ROOIJ and JU-KWEI WANG

(Received 9 November 1982)

Communicated by G. H. Price

Abstract

Let G be a compact abelian group with dual \hat{G} and let K be a Banach $L_1(G)$ -module. We introduce the notion of character convolution transformation of K which reduces to ordinary Fourier or Fourier-Stieltjes transformation when K is one of the spaces $L_p(G)$, M(G). We show that the question of what maps $\hat{G} \to K$ extend to multipliers of K is a question of asking for descriptions of the character convolution transforms. In this setting some results of Helson-Edward and Schoenberg-Eberlein find generalizations, as do some classical results, including the inversion formula and the Parseval relation. We then apply these results to transformation groups, obtaining a variant of a theorem of Bochner and an extension of a theorem of Ryan.

1980 Mathematics subject classification (Amer. Math. Soc.): 42 A 20, 43 A 25.

Introduction

Let G be a compact abelian group.

As is well-known, $L_1(G)$ is a commutative Banach algebra under convolution. A Banach $L_1(G)$ -module K (see [4; 32.14]) is a Banach space K that is also a module over the ring $L_1(G)$, such that (if * denotes the module multiplication)

$$f * \alpha x = \alpha f * x = \alpha (f * x)$$
 $(\alpha \in \mathbb{C}; f \in L_1(G); x \in K)$

and

 $||f * x|| \le ||f|| ||x||$ $(f \in L_1(G); x \in K).$

Under convolution, $L_p(G)$ $(1 \le p \le \infty)$, C(G) and M(G) are Banach $L_1(G)$ -modules. More examples are given in [4; Section 32], [1; Section 4] and in Section 3 of this paper.

© 1984 Australian Mathematical Society 0263-6115/84 \$A2.00 + 0.00

We are going to occupy ourselves with the following two problems, that turn out to be closely related. Let K be a Banach module over $L_1(G)$.

(α) Introduce an analog of the Fourier-Stieltjes transformation that reduces to the ordinary Fourier or Fourier-Stieltjes transformation if K is one of the spaces $L_p(G)$, M(G).

 (β) A multiplier of K is a continuous module homomorphism $L_1(G) \to K$. (See [5].) Consider the dual group \hat{G} of G as a subset of $L_1(G)$. As \hat{G} spans a dense linear subspace of $L_1(G)$, a map $\hat{G} \to K$ has at most one continuous linear extension $L_1(G) \to K$. What maps $\hat{G} \to K$ extend to multipliers of K?

For $K = L_1(G)$ the relation between (α) and (β) is easy to describe: by Wendel's characterization of the multipliers of $L_1(G)$ [4; 35.5] one sees that a map $\phi: \hat{G} \to L_1(G)$ extends to a multiplier if and only if there exists a $\mu \in M(G)$ such that $\phi(\gamma) = \hat{\mu}(\gamma)\gamma$ for all $\gamma \in \hat{G}$.

1

Our notations are mostly those used by E. Hewitt and K. A. Ross in [4].

Throughout the paper, G is a compact abelian group whose dual group is denoted \hat{G} , and K is a Banach $L_1(G)$ -module. Both convolution $L_1(G) \times L_1(G) \rightarrow L_1(G)$ and module multiplication $L_1(G) \times K \rightarrow K$ are indicated by *. The Haar integral of $f \in L_1(G)$ are written |f(s) ds.

K is called *order-free* if for every $x \in K$, $x \neq 0$ there exists an $f \in L_1(G)$, $f * x \neq 0$. The *trigonometric polynomials* (that is, the linear combinations of characters) form a dense linear subspace of $L_1(G)$. It follows that K is order-free if and only if for every $x \in K$, $x \neq 0$ there exists a $\gamma \in \hat{G}$ such that $\gamma * x \neq 0$.

By [4; 32.22] the products f * x ($f \in L_1(G)$; $x \in K$) form a closed linear subspace K_{abs} of K. This K_{abs} is a Banach $L_1(G)$ -submodule of K. As $L_1(G)$ has an approximate identity K_{abs} is order-free. In particular, if $x, y \in K_{abs}$ and if $\gamma * x = \gamma * y$ for all $\gamma \in \hat{G}$, then x = y.

K is said to be *absolutely continuous* if $K = K_{abs}$. Examples: $L_p(G)$ $(1 \le p \le \infty)$ and C(G) are absolutely continuous [4; 32.20 and 32.31]; $L_{\infty}(G)$ is not [4; 20.16]; neither is M(G) [4; 19.18].

For $f \in L_1(G)$ define $f^* \in L_1(G)$ by $f^*(s) = f(s^{-1})$ $(s \in G)$. We make the conjugate space K^* of K into a Banach $L_1(G)$ -module by defining

$$(x, f * h) = (f^* * x, h) \quad (f \in L_1(G); x \in K; h \in K^*).$$

(We might just as well have taken f * x instead of $f^* * x$. However, $f^* * x$ is more appropriate in the more general situation where one does not confine ones attention to compact abelian group G.)

If by a similar formula one puts a module structure on K^{**} , the natural map $K \rightarrow K^{**}$ is a module homomorphism.

For $h \in K^*$ we have $L_1(G) * h = \{0\}$ if and only if h vanishes on K_{abs} . Hence, K^* is order-free if and only if K is absolutely continuous.

The continuous linear module homomorphisms $L_1(G) \to K$ are called the *multipliers* of K; they form a Banach space Mult K. Every $x \in K$ induces a $T_x \in Mult K$ by

$$T_x f = f * x \qquad (f \in L_1(G)).$$

This $T: K \to Multi K$ is injective if and only if K is order-free. In particular, the restriction of T to K_{abs} is injective (it is also an isometry; see [3; 5.1(iv)]).

1.1 LEMMA. For
$$\gamma \in \hat{G}$$
, define $K_{\gamma} = \gamma * K (= \{\gamma * x | x \in K\})$. Then
 $K_{\gamma} = \{x \in K | \gamma * x = x\}$
 $= \{x \in K | f * x = \hat{f}(\gamma)x \text{ for every } f \in L_1(G)\}.$

 K_{γ} is closed linear subspace of K. The map $x \mapsto \gamma * x$ is a continuous idempotent map of K onto K_{γ} . If $\beta \in \hat{G}$, $\beta \neq \gamma$, then $\beta * K_{\gamma} = \{0\}$. Further,

$$K_{\rm abs} = {\rm clo} \sum_{\gamma \in \hat{G}} K_{\gamma}.$$

PROOF. We only prove the last sentence; the proof of the rest is simple. Obviously $\gamma * K \subset K_{abs}$ for all $\gamma \in \hat{G}$, so $K_{abs} \supset \operatorname{clo} \Sigma\{K_{\gamma} | \gamma \in \hat{G}\}$. Conversely, \hat{G} spans a dense linear subspace of $L_1(G)$; hence if $x \in K$, then $\{\gamma * x | \gamma \in \hat{G}\}$ spans a dense linear subspace of $L_1(G) * x$. It follows that $\operatorname{clo} \Sigma_{\gamma} K_{\gamma} \supset K_{abs}$.

For Hilbert spaces we have a more detailed knowledge:

1.2 THEOREM. Let K be a Hilbert space; let \langle , \rangle be its inner product. Then

$$\langle f * x, y \rangle = \langle x, \tilde{f}^* * y \rangle$$
 $(x, y \in K; f \in L_1(G)).$

If β , γ are distinct, then $K_{\beta} \perp K_{\gamma}$. For each γ , the map $x \mapsto \gamma * x$ is the orthogonal projection of K onto K_{γ} . For every $x \in K$ the sum $\sum_{\gamma \in \hat{G}} \gamma * x$ converges in the sense of the norm. The map $x \mapsto \sum \gamma * x$ is the orthogonal projection of K onto K_{abs} . Its kernel is

$$\{x \in K | L_1(G) * x = \{0\}\}.$$

PROOF. Take $\gamma \in \hat{G}$, put $Px = x - \gamma * x$ for $x \in K$. Then $P = P^2$ and $||I - P|| \le 1$. Let $P(K)^{\perp} = \{x | x \perp P(K)\}$. If $x \in P(K)^{\perp}$, then $x \perp Px$, so

$$||x||^{2} + ||Px||^{2} = ||x - Px||^{2} \le ||x||^{2}.$$

[3]

Hence, $P(K)^{\perp} \subset P^{-1}(0)$. Conversely, every $x \in P^{-1}(0)$ can be written as x = y + zwhere $y \in P(K)$, $z \in P(K)^{\perp}$. (Notice that $P(K) = (I - P)^{-1}(0)$ is closed.) Then $z \in P^{-1}(0)$, so $y = x - z \in P^{-1}(0)$. But $y \in P(K)$ and $P = P^2$: it follows that y = 0 and $x = z \in P(K)^{\perp}$. Therefore, $P(K)^{\perp} = P^{-1}(0)$. Consequently, P is an orthogonal projection. Then so is the map $x \mapsto \gamma * x$. We see that

$$\langle f * x, y \rangle = \langle x, \overline{f}^* * y \rangle \quad (x, y \in K)$$

if $f \in \hat{G}$. The same formula holds, by linearity, for all trigonometric functions f, and, by continuity, for all $f \in L_1(G)$. The rest is easy.

Note. The formula

$$T_f x = f * x \qquad (f \in L_1(G); x \in K)$$

yields a correspondence between the module structures * on K and the representations T of $L_1(G)$ in K for which $||T_f|| \le ||f|| (f \in L_1(G))$. By the above theorem, every such representation is a *-representation.

1.3 LEMMA. Let K be a Banach $L_1(G)$ -module. For a map T: $L_1(G) \rightarrow K$ the following conditions are equivalent.

- (i) $T \in Mult K$.
- (ii) T is linear and continuous; $T\gamma \in K_{\gamma}$ for every $\gamma \in \hat{G}$.
- (iii) T(f * g) = f * Tg for all $f, g \in L_1(G)$.

PROOF. (i) \Rightarrow (iii) is obvious.

(ii) \Rightarrow (i). For $\gamma \in \hat{G}$ we have $\gamma * T\gamma = T\gamma = T(\gamma * \gamma)$. If $\beta, \gamma \in \hat{G}$ are distinct, then $\beta * T\gamma = 0 = T(\beta * \gamma)$. Hence, f * Tg = T(f * g) if $f, g \in L_1(G)$ are trigonometric polynomials. These forming a dense subspace of $L_1(G)$ we find f * Tg = T(f * g) for all $f, g \in L_1(G)$.

(iii) \Rightarrow (ii). (See [9].) Clearly T maps $L_1(G)_{abs}$ into K_{abs} . But $L_1(G)_{abs} = L_1(G)$ [4; 32.30], so the range of T lies in K_{abs} . For all $f, g \in L_1(G), f * Tg = T(f * g) = T(g * f) = g * Tf$. If $g_1, g_2 \in L_1(G)$ and $c_1, c_2 \in \mathbb{C}$, then for all $f \in L_1(G)$

$$f * [c_1Tg_1 + c_2Tg_2] = c_1f * Tg_1 + c_2f * Tg_2$$

= $c_1g_1 * Tf + c_2g_2 * Tf = (c_1g_1 + c_2g_2) * Tf$
= $f * T(c_1g_1 + c_2g_2).$

As $c_1Tg_1 + c_2Tg_2 - T(c_1g_1 + c_2g_2) \in K_{abs}$ and K_{abs} is order-free, it follows that $c_1Tg_1 + c_2Tg_2 = T(c_1g_1 + c_2g_2)$. Thus, *T* is linear. The continuity of *T* is proved with the aid of the Closed Graph Theorem. Let f_1, f_2, \ldots be a sequence in $L_1(G)$ such that $\lim f_n = 0$ while $\lim Tf_n$ exists in *K*. Then $\lim Tf_n \in K_{abs}$, and for all $g \in L_1(G)$, $g * \lim Tf_n = \lim g * Tf_n = \lim f_n * Tg = 0$. Hence, $\lim Tf_n = 0$ and *T* is continuous. Finally, for $\gamma \in \hat{G}$ one has $T\gamma = T(\gamma * \gamma) = \gamma * T\gamma \in K_{\gamma}$.

The implication (ii) \Rightarrow (i) gives the situation a new perspective. Apparently, a map $\phi: \hat{G} \rightarrow K$ extends to a multiplier if and only if $\phi \in \prod_{\gamma} K_{\gamma}$ and ϕ admits a continuous linear extension $L_1(G) \rightarrow K$. The question remains: what $\phi \in \prod_{\gamma} K_{\gamma}$ do admit such an extension?

2

For $T \in$ Mult K we denote by \tilde{T} the restriction of T to \hat{G} . T is determined by \tilde{T} , since the characters of G span a dense linear subspace of $L_1(G)$.

Every $x \in K$ determines a multiplier T_x : $f \mapsto f * x$. Instead of \tilde{T}_x we write \tilde{x} ; thus,

$$\tilde{x}_{\gamma} = \tilde{x}(\gamma) = \gamma * x \qquad (\gamma \in \hat{G}; x \in K).$$

If $K = L_1(G)$, then $\tilde{x}_{\gamma} = \hat{x}(\gamma)\gamma$, so \tilde{x} actually is the Fourier "series" of x. For arbitrary modules K we call \tilde{x} the character convolution transform of x.

We know by Wendel's theorem [4; 35.5] that Mult $L_1(G)$ may be identified with M(G). If $T \in \text{Mult } L_1(G)$ corresponds to $\mu \in M(G)$, then $\tilde{T}(\gamma) = \hat{\mu}(\gamma)\gamma$. Thus, the map $T \mapsto \tilde{T}$ can be viewed as a generalization of the Fourier-Stieltjes transformation.

We see now how our problems (α) and (β) converge: the character convolution transformation is an answer to (α), and (β) asks for descriptions of character convolution transforms.

A few simple observations:

2.1 LEMMA. For $x \in K$,

 $\tilde{x} = 0$ if and only if $L_1(G) * x = \{0\}$.

In particular, if $x, y \in K_{abs}$ and $\tilde{x} = \tilde{y}$, then x = y.

2.2 LEMMA. We have the relations

$$(Tf)^{\tilde{}} = \hat{f}\tilde{T} \qquad (f \in L_1(G); T \in Mult K)$$

and

$$(f * x)^{\tilde{}} = \hat{f}\tilde{x} \qquad (f \in L_1(G); x \in K).$$

The following extension of the Helson-Edwards Theorem [7; 3.8.1] holds.

2.3 THEOREM. $\phi \in \prod_{\gamma} K_{\gamma}$ can be extended to a multiplier of K if and only if $\hat{f}\phi \in \tilde{K}$ for every $f \in L_1(G)$. (We put $\tilde{K} = \{\tilde{x} | x \in K\}$.)

PROOF. If $T \in \text{Mult } K$ and $\phi = \tilde{T}$, then for every $f \in L_1(G)$ we have $\hat{f}\phi = \hat{f}\tilde{T} = (Tf) \in \tilde{K}$. Conversely, suppose $\phi \in \prod_{\gamma} K_{\gamma}$ and $\hat{f}\phi \in \tilde{K}$ for all $f \in L_1(G)$. Every $f \in L_1(G)$ can be written as $f = f_1 * f_2$ with certain $f_1, f_2 \in L_1(G)$; then $\hat{f}\phi = \hat{f}_1(\hat{f}_2\phi) \in \hat{f}_1\tilde{K} = (f_1 * K) \subset (K_{abs})$. By Lemma 2.1, for every $f \in L_1(G)$ there is a unique $Tf \in K_{abs}$ such that $\hat{f}\phi = (Tf)$. If $f, g \in L_1(G)$, then $(f * Tg) = \hat{f}(Tg) = \hat{f}g\phi = (f * g) \phi = (T(f * g))$, so f * Tg = T(f * g). By Lemma 1.3 T is a multiplier of K. Further, $(T\gamma) = \hat{\gamma}\phi = (\phi_{\gamma})$, so $T\gamma = \phi_{\gamma}$ for every $\gamma \in \hat{G}$.

Another characterization displays a certain analogy with the Schoenberg-Ebelein Theorem [4; 33.20], [7; 1.9.1].

2.4 THEOREM. $\phi \in \prod_{\gamma} K_{\gamma}$ can be extended to a multiplier of K if and only if there exists a constant c such that

(*)
$$\left\|\sum_{i=1}^{n} c_{i} \phi_{\gamma_{i}}\right\| \leq c \left\|\sum_{i=1}^{n} c_{i} \gamma_{i}\right\|_{1}$$

for every trigonometric polynomial $\sum c_i \gamma_i$ on G.

PROOF. If $T \in \text{Mult } K$ and $\phi = \tilde{T}$, then for every trigonometric polynomial $\sum c_i \gamma_i$ we have

$$\left\|\sum c_i \phi_{\gamma_i}\right\| = \left\|\sum c_i T(\gamma_i)\right\| = \left\|T\left(\sum c_i \gamma_i\right)\right\| \le \|T\| \left\|\sum c_i \gamma_i\right\|_1$$

Conversely, if $\phi \in \prod_{\gamma} K_{\gamma}$ and if there exists a constant c such that (*) holds for every trigonometric polynomial, then (as the trigonometric polynomials are dense in $L_1(G)$) we have a continuous linear $T: L_1(G) \to K$ such that $T(\sum_i \gamma_i) = \sum_i \phi_{\gamma_i}$ for all $\sum_i c_i \gamma_i$. In particular, $T\gamma = \phi_{\gamma}$ for $\gamma \in \hat{G}$. Then $T \in Mult K$ by the implication (ii) \to (i) of Lemma 1.3.

Note. A better analogy with the Schoenberg-Eberlein Theorem would be obtained if in (*) we could replace the L_1 -norm by the L_{∞} -norm. This change, however, would make the theorem false, as one sees from the example K = C(G), $\phi_{\gamma} = \gamma$.

The following theorem, and also 2.9, are inversion theorems, stating that certain elements of a module are the sums of their character convolution transforms, as many functions of $L_1(G)$ are the sums of their Fourier series. F denotes the directed set of all finite subsets of \hat{G} .

2.5 THEOREM. Let $\phi \in \prod_{\gamma \in \Lambda} K_{\gamma}$ be so that the net $(\sum_{\gamma \in \Lambda} \phi_{\gamma})_{\Lambda \in F}$ is bounded. Then ϕ can be extended to a multiplier T of K. For all $f \in L_1(G)$ we have

$$Tf = \sum_{\gamma \in \hat{G}} f * \phi_{\gamma}.$$

PROOF. for $\Delta \in F$ put $\phi_{\Delta} = \sum_{\gamma \in \Delta} \phi_{\gamma}$. Let $c = \sup_{\Delta \in F} ||\phi_{\Delta}||$. If $\sum c_i \gamma_i$ is a trigonometric polynomial, then for $\Delta = \{\gamma_1, \ldots, \gamma_n\}$ we have

$$\left\|\sum c_i \phi_{\gamma_i}\right\| = \left\|\sum c_i \gamma_i * \phi_{\Delta}\right\| \le c \left\|\sum c_i \gamma_i\right\|_1$$

so ϕ is extendable to a multiplier T. Furthermore, if $\sum c_i \gamma_i$ is a trigonometric polynomial, then for $\Delta \supset \{\gamma_1, \ldots, \gamma_n\}$ we have

$$T(\sum c_i \gamma_i) = \sum c_i \phi_{\gamma_i} = \sum c_i \gamma_i * \phi_{\Delta}.$$

If $g \in L_1(G)$ and $\varepsilon > 0$, there is a trigonometric polynomial $f \in L_1(G)$ such that $||f - g||_1 < \varepsilon$; there is a $\Delta_0 \in F$ such that $Tf = f * \phi_{\Delta}$ for $\Delta \supset \Delta_0$. Then, for $\Delta \supset \Delta_0$,

$$||Tg - g * \phi_{\Delta}|| \leq ||T(g - f)|| + ||(f - g) * \phi_{\Delta}|| \leq \varepsilon(||T|| + c)$$

Hence, $Tg = \lim_{\Delta \in F} g * \phi_{\Delta} = \lim_{\Delta \in F} \sum_{\gamma \in \Delta} g * \phi_{\gamma}$.

The following is another variant of the Schoenberg-Eberlein criterion.

2.6 THEOREM. The following conditions on $\phi \in \prod_{\gamma} (K^*)_{\gamma}$ are equivalent: (i) $\phi \in (K^*)^{\tilde{}}$.

(ii) ϕ can be extended to a multiplier of K^* .

(iii) There exists a constant c such that for every positive integer n and for all $\gamma_1, \ldots, \gamma_n \in \hat{G}$ and $x_1, \ldots, x_n \in K$,

$$\left|\sum_{i=1}^{n} \left(x_{i}, \phi_{\overline{\gamma}_{i}}\right)\right| \leq c \left\|\sum \gamma_{i} * x_{i}\right\|.$$

PROOF. (i) \Rightarrow (ii). If $h \in K^*$ and $\phi = \tilde{h}$, then $f \mapsto f * h$ is a multiplier of K^* that is an extension of ϕ .

(ii) \Rightarrow (iii). Let $\phi = \tilde{T}$, $T \in$ Mult K*. We identify $L_1(G)^*$ with $L_{\infty}(G)$. It is not difficult to verify that the module operation on $L_1(G)^*$ corresponds to the module operation on $L_{\infty}(G)$. In particular, for $f \in L_1(G)$ and $h \in L_{\infty}(G)$,

$$(f, h) = (f^* * h)(e),$$

e denoting the unit element of G. Now T induces a continuous linear S: $K \to L_{\infty}(G)$ by

$$(f, Sx) = (x, Tf) \qquad (f \in L_1(G); x \in K).$$

For $f, g \in L_1(G)$ and $x \in K$.

$$(f, g * Sx) = (g^* * f, Sx) = (x, T(g^* * f))$$
$$= (x, g^* * Tf) = (g * x, Tf) = (f, S(g * x))$$

so that g * Sx = S(g * x). Now take $\gamma_1, \ldots, \gamma_n \in \hat{G}$ and $x_1, \ldots, x_n \in K$.

$$\begin{aligned} \left| \sum (x_i, \phi_{\overline{\gamma}_i}) \right| &= \left| \sum (x_i, T\overline{\gamma}_i) \right| = \left| \sum (\overline{\gamma}_i, Sx_i) \right| \\ &= \left| \sum (\gamma_i * Sx_i)(e) \right| \leq \left\| \sum \gamma_i * Sx_i \right\| \\ &= \left\| S \left(\sum \gamma_i * x_i \right) \right\| \leq \left\| S \right\| \left\| \sum \gamma_i * x_i \right\|. \end{aligned}$$

(iii) \Rightarrow (i). By the Hahn-Banach Theorem there exists an $h \in K^*$ such that

$$\left(\sum \gamma_i * x_i, h\right) = \sum \left(x_i, \phi_{\overline{\gamma}_i}\right)$$

for all γ_i and x_i . In particular, for every $\gamma \in \hat{G}$ and $x \in K$, $(x, \bar{\gamma} * h) = (\gamma * x, h) = (x, \phi_{\bar{\gamma}})$. Hence $\bar{\gamma} * h = \phi_{\bar{\gamma}}$ for all γ , and $\tilde{h} = \phi$.

2.7 COROLLARY. For every $T \in Mult K^*$ there exists an $h \in K^*$ such that $Tf = f * h \ (f \in L_1(G)).$

PROOF. For every T there is an h for which $\tilde{T} = \tilde{h}$. Then Tf = f * h if f is any trigonometric polynomial; hence, if $f \in L_1(G)$.

For absolutely continuous K this result was proved in [3; 5.2]. For Hilbert spaces we obtain from 2.7 and 1.2:

2.8 COROLLARY. If K is a Hilbert space, then $\phi \in \prod_{\gamma} K_{\gamma}$ can be extended to a multiplier of K if and only if $\sum \|\phi_{\gamma}\|^2 < \infty$.

2.9 THEOREM. Let K be absolutely continuous. Let $\phi \in \prod_{\gamma \in \Delta} \phi_{\gamma}$ be so that the net $(\sum_{\gamma \in \Delta} \phi_{\gamma})_{\Delta \in F}$ is bounded. Then this net is w*-convergent. If h is its w*-limit then $\phi = \tilde{h}$ and

$$(x,h) = \sum_{\gamma \in \hat{G}} \left(\tilde{x}_{\gamma}, \tilde{h}_{\bar{\gamma}} \right) \quad (x \in K).$$

Note. Apparently, here we have analogs of the inversion formula and the Parseval relation from the theory of Fourier transformation.

PROOF. ϕ can be extended to a multiplier T of K^* , and $Tf = \sum f * \phi_{\gamma}$ for all $f \in L_1(G)$. By 2.7 there is an $h \in K^*$ such that Tf = f * h for all f. Now every $x \in K$ can be written as f * y for certain $f \in L_1(G)$ and $y \in K$. Then

$$(x, h) = (y, f^* * h) = (y, Tf^*) = (y, \Sigma f^* * \phi_{\gamma})$$
$$= \sum (y, f^* * \phi_{\gamma}) = \sum (x, \phi_{\gamma}).$$

Hence,

$$h = w^*-\lim_{\Delta \in F} \sum_{\gamma \in \Delta} \phi_{\gamma}.$$

For
$$\gamma \in \hat{G}$$
, $\phi_{\gamma} = T\gamma = \gamma * h$; so $\phi = h$. Further, for $x \in K$,
 $(x, h) = \sum (x, \phi_{\overline{\gamma}}) = \sum (x, \overline{\gamma} * \phi_{\overline{\gamma}})$
 $= \sum (\gamma * x, \phi_{\overline{\gamma}}) = \sum (\tilde{x}_{\gamma}, \tilde{h}_{\overline{\gamma}}).$

3

A linear module homomorphism is simply called a homomorphism.

In this section G is a compact abelian group of homeomorphisms of a locally compact Hausdorff space X, such that the mapping $(s, x) \mapsto sx$ $(s \in G; x \in X)$ is jointly continuous. We denote by C(G), $C_0(X)$, $C_{00}(X)$ the spaces of all continuous functions on G, all continuous fuctions on X vanishing at infinity, and all continuous functions on X with compact supports, respectively. The formula

$$(f * k)(x) = \int f(s)k(s^{-1}x) ds \quad (k \in C_0(X); x \in X)$$

turns $C_0(X)$ into an absolutely continuous Banach $L_1(G)$ -module. (For details, see [6].) We identify $C_0(X)^*$ with the Banach space M(X) of all bounded Radon measures on X, writing (k, μ) instead of $\int k d\mu$ $(k \in C_0(X), \mu \in M(X))$. The induced module composition on M(X) is given by

$$(f * \mu)(Y) = \int f(s)\mu(s^{-1}Y) \, ds$$

where $f \in L_1(G)$, $\mu \in M(X)$, $Y \subset X$, Y a Borel set.

3.1 THEOREM. Let $T: C(G) \to M(X)$ be a homomorphism. Assume that $Tf \ge 0$ whenever $f \in C(G)$ and $f \ge 0$. (Such a homomorphism T is called positive.) Then there exists a $\mu \in M(X), \mu \ge 0$ such that

$$Tf = f * \mu$$
 $(f \in C(G)).$

Thus, T can be extended to an element of Mult M(X).

PROOF. If $\nu \in M(X)$, $\nu \ge 0$, then

$$\|\nu\| = \nu(X) = \int \nu(s^{-1}X) \, ds = (1 * \nu)(X) = \|1 * \nu\|.$$

Thus, if $f \in C(X)$, $f \ge 0$, then $||Tf|| = ||1 * Tf|| = ||T(f) * 1|| = ||f * T1|| \le ||f||_1 ||T1||$. For an arbitrary $f \in C(G)$ we can write $f = f_1 - f_2 + if_3 - if_4$ where

[9]

 $f_j \in C(G)$ and $0 \le f_j \le |f|$ for each *j*. It follows that $||Tf|| \le 4||f||_1 ||T1||$. Therefore *T* has a unique continuous linear extension $T_1: L_1(G) \to M(X)$. By continuity, $T_1 \in Mult \ M(X)$. According to Corollary 2.7 there exists a $\mu \in M(X)$ such that $T_1 f = f * \mu \ (f \in L^1(G))$. To prove $\mu \ge 0$ take $j \in C_0(X)$, $j \ge 0$ and let $\{u_i\}$ be an approximate identity of $L^1(G)$ such that $u_i \in C(G)$ and $u_i \ge 0$ for each *i*. By the absolute continuity of $C_0(X)$, j can be written as f * j' where $f \in L_1(G)$, $j' \in C_0(X)$. Then $(j, \mu) = (f * j', \mu) = \lim(u_i * f * j', \mu) = \lim(f * j', u_i^* * \mu) = \lim(j, T(u_i^*)) \ge 0$. Thus $\mu \ge 0$.

For multipliers of M(X) we can extend Bochner's Theorem [4; 33.3], [7; 1.4.3]. A function $\phi: \hat{G} \to M(X)$ is said to be *positive definite* if

$$\sum_{i,j=1}^{n} c_i \bar{c}_j \phi\left(\gamma_i \gamma_j^{-1}\right) \ge 0$$

for all positive integers n, all complex numbers c_1, \ldots, c_n and $\gamma_1, \ldots, \gamma_n \in \hat{G}$.

3.2 THEOREM. Let $\phi \in \prod_{\gamma} M(X)_{\gamma}$. Then ϕ is positive definite if and only if there exists $\mu \in M(X)$, $\mu \ge 0$ such that $\phi = \tilde{\mu}$.

PROOF. Let $\mu \in M(X)$, $\mu \ge 0$; $c_1, \ldots, c_n \in \mathbb{C}$; $\gamma_1, \ldots, \gamma_n \in \hat{G}$. Take $k \in C_0(X)$, $k \ge 0$. For every $x \in X$,

$$0 \leq \int \left| \sum_{i} c_{i} \overline{\gamma}_{i}(s) \right|^{2} k(s^{-1}x) dx = \sum_{i,j} c_{i} \overline{c}_{j} \int \overline{\gamma_{i}(s)} \gamma_{j}(s) k(s^{-1}x) ds$$
$$= \sum_{i,j} c_{i} \overline{c}_{j} (\overline{\gamma}_{i} \gamma_{j} * k)(x).$$

Hence

$$0 \leq \sum_{i,j} c_i \bar{c}_j (\bar{\gamma}_i \gamma_j * k, \mu) = \sum_{i,j} c_i \bar{c}_j (k, (\bar{\gamma}_i \gamma_j)^* * \mu)$$
$$= \left(k, \sum_{i,j} c_i \bar{c}_j \bar{\mu} (\gamma_i \gamma_j^{-1})\right)$$

and $\sum_{i,j} c_i \bar{c}_j \tilde{\mu}(\gamma_i \gamma_j^{-1}) \ge 0$.

Conversely assume ϕ to be positive definite. For every $k \in C_0(X)$, $k \ge 0$, the scalar valued function $\gamma \mapsto (k, \phi(\gamma^*))$ is positive definite. By Bochner's Theorem [4; 33.3] for such k there exists a unique $\mu_k \in M(G)$ such that $(k, \phi(\gamma^*)) = \hat{\mu}_k(\gamma)$, $(\gamma \in \hat{G})$, and we have $\mu_k \ge 0$. The map $k \mapsto \mu_k$ can be extended to a linear positive, hence continuous, $U: C_0(X) \to M(G)$. Then

$$(k, \phi(\gamma^*)) = (Uk)^{(\gamma)} \quad (k \in C_0(X), \gamma \in \hat{G}).$$

It is easy to see that $(U(f * k))^{\hat{}} = \hat{f}(Uk)^{\hat{}} = (f * Uk)^{\hat{}}$ for all $f \in L^{1}(G), k \in C_{0}(X)$. Thus U is a homomorphism. U in turn induces a positive homomorphism $T: C(G) \to M(X)$ by

$$(k,Tf) = (f,Uk) \qquad (f \in C(G), k \in C_0(X)).$$

Applying Theorem (3.1) we obtain a $\mu \in M(X)$, $\mu \ge 0$ such that $Tf = f * \mu$ for all $f \in C(G)$. In particular, $(k, \gamma * \mu) = (k, T\gamma) = (\gamma, Uk) = (Uk)^{\circ}(\gamma^*) = (k, \phi(\gamma))$ for all $k \in C_0(X)$ and $\gamma \in \hat{G}$. It follows that $\phi = \tilde{\mu}$.

We specialize further and assume the existence of a positive Radon measure m on X that is invariant under the action of G. Then every $L_p(m)$ $(1 \le p \le \infty)$ can be made into a group algebra module by

$$(f * k)(x) = \int f(s)k(s^{-1}x) dx \qquad (f \in L_1(G), k \in L_p(m))$$

for locally almost all $x \in X$ (see [1]). For $p < \infty$, $L_p(m)$ is absolutely continuous. The natural linear maps $L_1(m) \to M(X)$, $L_p(m) \to L_q(m)^*$ $(p^{-1} + q^{-1} = 1)$ are isometric homomorphisms. We identify $L_p(m)$ and $L_q(m)^*$ $(p > 1, p^{-1} + q^{-1} = 1)$.

R. Ryan [8] characterizes those Fourier-Stieltjes transforms of measures on G that actually are Fourier transforms of elements of $L_1(G) \cap L_p(G)$. His theorem can be extended in the following way.

3.3 THEOREM. Let $1 , <math>p^{-1} + q^{-1} = 1$. Let $E = \{k \in C_{00}(X) | \tilde{k_{\gamma}} \neq 0$ for only finitely many $\gamma \in \hat{G}\}$. Let $\mu \in M(X)$ and assume that there exists a number c such that

$$\left|\sum_{\gamma \in \hat{G}} \left(\tilde{k}_{\gamma}, \tilde{\mu}_{\bar{\gamma}} \right) \right| \leq c \|k\|_{q}$$

for all $k \in E$. Then there exists a $g \in L_1(m) \cap L_p(m)$ such that $\mu = gm$ (that is, $\mu(A) = \int_A g \, dm$ for all Borel sets $A \subset X$).

PROOF. If $k \in C_{00}(X)$ and $\beta \in \hat{G}$, then

$$(\boldsymbol{\beta} \ast \boldsymbol{k}, \boldsymbol{\mu}) = \sum_{\boldsymbol{\gamma} \in \hat{\boldsymbol{G}}} (\boldsymbol{\beta} \ast \boldsymbol{k}, \boldsymbol{\bar{\gamma}} \ast \boldsymbol{\mu}) = \sum_{\boldsymbol{\gamma} \in \hat{\boldsymbol{G}}} (\boldsymbol{\beta} \ast \boldsymbol{k}, \boldsymbol{\tilde{\mu}}_{\boldsymbol{\bar{\gamma}}}).$$

The elements of E are finite sums $\sum \beta_i * k_i$. Hence

$$(k,\mu)=\sum_{\gamma\in\hat{G}}(k,\tilde{\mu}_{\tilde{\gamma}}) \qquad (k\in E).$$

By the isomorphism between $L_p(m)^*$ and $L_p(m)$ there is a $g \in L_p(m)$ such that

$$(k,\mu)=(k,g)$$
 $(k\in E).$

If we can prove that $g \in L_1(m)$, then μ and gm are bounded regular measures and $(k, \mu) = (k, gm)$ for all k in a dense subspace of $C_0(X)$; then $(k, \mu) = (k, gm)$ for all $k \in C_0(X)$ and $\mu = gm$.

Take $k \in C_{00}(X)$; let S be the support of k. For $A \subset X$ let ξ_A be the characteristic function of A. For every positive integer n let f_n be a trigonometric polynomial on G such that $||f_n||_1 \leq 1$ and $||f_n * k - k||_1 \leq 2^{-n}$. Then $\lim f_n * k = k$, a.e. and $f_n * k \in E$. Further, $||f_n * k||_{\infty} \leq ||f_n||_1 ||k||_{\infty} \leq ||k||_{\infty}$, and $f_n * k = 0$ outside the compact set GS. Thus, $\lim (f_n * k)g = kg$ a.e., and $|(f_n * k)g| \leq ||k||_{\infty}$ $||g|\xi_{GS}$. As $g\xi_{GS} \in L_1(m)$ it follows by the Lebesgue Dominated Convergence Theorem that

$$\left| \int kg \, dm \right| = \lim_{n \to \infty} \left| \int (f_n * k)g \, dm \right|$$
$$= \lim_{n \to \infty} |(f_n * k, \mu)| \leq \sup_{n \to \infty} ||f_n * k||_{\infty} ||\mu||.$$

Thus,

$$\left|\int kg\,dm\right| \leq \|\mu\| \|k\|_{\infty} \qquad (k \in C_{00}(X)).$$

Now let $C \subset X$ be compact. Let U be an open set containing C and of finite *m*-measure. Let h be a measurable function, $|h(x)| \le 1$ for all x, such that $hg = |g|\xi_C$ and h = 0 off C. For each positive integer n choose $k_n \in C_{00}(X)$, $||k_n - h||_1 \le 2^{-n}$, $||k_n||_{\infty} \le 1$, $k_n = 0$ outside U. By another application of the Lebesgue theorem (note that $g\xi_U \in L_1(m)$) we get

$$\int_{C} |g| dm = \int |g| \xi_{C} dm = \int hg dm$$
$$= \lim_{n} \int k_{n}g dm \leq ||\mu|| \sup_{n} ||k_{n}|| = ||\mu||$$

As this is true for all compact C, it follows that $g \in L_1(m)$.

References

- S. L. Gulick, T. S. Liu and A. C. M. van Rooij, 'Group algebra modules, II,' Canad. J. Math. 19 (1967), 151-173.
- [2] S. L. Gulick, T. S. Liu and A. C. M. van Rooij, 'Group algebra modules, III,' Trans. Amer. Math. Soc. 152 (1970), 561-579.
- [3] S. L. Gulick, T. S. Liu and A. C. M. van Rooij, 'Group algebra modules, IV,' Trans. Amer. Math. Soc. 152 (1970), 581-596.

A generalized Fourier transformation

- [4] E. Hewitt and K. A. Ross, Abstract harmonic analysis I-II (Springer Verlag, Berlin, 1963, 1970).
- [5] R. Larsen, *The multiplier problem* (Lecture Notes in Mathematics, 105, Springer Verlag, Berlin, 1969).
- [6] T.-S. Liu, A. C. M. van Rooij and J.-K. Wang, 'Group representations in Banach spaces: orbits and almost-periodicity,' *Studies and essays presented to Yu-Why Chen on his* 60th Birthday April 1, 1970, pp. 243-254 (Mathematical Research Center, National Taiwan University, Taipei, Taiwan, China, 1970).
- [7] W. Rudin, Fourier analysis on groups (Interscience, New York, 1962).
- [8] R. Ryan, 'Fourier transforms of certain classes of integrable functions,' Trans. Amer. Math. Soc. 105 (1962), 102-111.
- [9] J.-K. Wang, 'Multipliers of commutative Banach algebras,' Pacific J. Math. 11 (1961), 1131-1149.

University of Massachusetts Amherst, Massachusetts 01003 U.S.A. Catholic University Nijmegen The Netherlands

[13]