
NOTE ON THE STRUCTURE OF GRAPHS 

G.A. Dirac 

(received October 10, 1961) 

1» Introduction- This paper is concerned with 
undirected graphs which may be infinite and may contain 
multiple edges. The Axiom of Choice is assumed. The t e rms 
path, infinite path and circuit a re used in the same sense as 
Weg, unendlicher Weg and Kreis , respectively, a re used in 
D. Konig1 s book [ l ] . The valency of a ver tex is the number 
of edges incident with it. The length of a path is the number 
of edges in it. 

The following theorem is a generalization of the well 
known fact that if a ver tex of a graph is not a cut -ver tex 
(Artikulation [2]) and has valency > 2, then the graph contains 
at least one circuit to which the ver tex belongs. 

THEOREM A. If the ver tex _a of a graph is not a 
cut -ver tex and has valency > Ze , where € is an integer, 
then the graph contains e c i rcui ts each of which passes 
through at, no two of which have an edge in common, and 
any two of which have at most one ver tex besides a in common. 

A simple example is furnished by a graph consisting of 
the two ver t ices a and b joined by 2c edges. 

2. Disentangling pair ings . JLet | be a graph and let V 
denote a set containing an even number of ver t ices belonging to 
| . A parti t ion of V into (mutually disjoint) pa i r s will be 
called a disentangling pairing of V with respect to f̂  if [""* 
contains a set of paths with the proper t ies that corresponding 
to each pair of the partition there is a path of the set having 
the two ver t ices of the pair as its two end-ver t ices , and no 
two paths of the set have more than one ver tex in common. 
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THEOREM B. If P is a connected graph and V is a 
set containing an even number of the ver t i ces of | then there 
exists a disentangling pairing of V with respect to \ . 

Proof. Let | v | =2v . Corresponding to an arbitrary-
partit ion P of V into v pa i r s , [ contains a set of v 
paths such that corresponding to each pair of P there is a 
path of the set having the two ver t i ces of the pair as its end-
ve r t i ce s ; for I is connected, and among all such sets of 
paths there exists at least one set having the property that the 
sum of the lengths of the v paths in it is minimal . Let L{P) 
denote this minimal sum. Among all possible part i t ions of V 
into pa i rs one may be selected, P say, with the property 
that L(P ) is minimal . Let {v v T } , . . . , {v v ! } be 

o 1 1 v v 
the v pa i r s of P and r , . * . , r be v paths contained in 

0 1 v 
\ such that r has v. and v. ' as its end-ver t ices for 
1 i l l 

i = 1, . . . , v and the sum of the lengths of the v paths is 
L(P ). o 

No two of r , . . . , r have more than one ve r t ex in 
1 v 

common. Proof: suppose on the contrary that e. g. , r and 

r have more than one ve r t ex in common. Going along r 

from v to v ! let x be the first and y the last ve r tex of 
C* ù ~~~" 

r encountered, x ^ y because r and r have more than 
1 ' — ~ 1 2 

one ve r t ex in common. It may be assumed without loss of 
generality that going along r from v to v ! , x is 

encountered before y\ The convention will be adopted that if 
r is a path and m and n a r e ve r t i ces of r then r [m,n ] 
denotes that path contained in r which has m and n as i ts 
two end-ver t ices if m 4 n, and r [m,n] denotes m if m - n ; 
|| r || denotes the length of r. In this notation let 
r v + l = r i [ V x ] W r 2 [ v 2 ' x ] a n d r v + 2 = r 2 [ v 2 , , y ] W r i [ v i ' ' y ] -
r and r ^ a re paths contained in \ having v , v^ 

v+1 v+2 ^ l B 1 2 
and v ' , v T respectively as their end-ver t i ces , and 

ll% + J I + l l \ + 2 l l = l i r i" + l l r 2 l | - | l^ [ x '^ l | - | l r 2 [ x ' y ] l l < l l r i l l + l l r 2 l l -
So if P denotes the part i t ion obtained from P by replacing 
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the two p a i r s { v >v ! } and { v , v ! } by the two p a i r s 
1 1 ù ci, 

{ v , v } and { v ' v ' } then L ( P J < L ( P ), which 
1 2 1 2 1 o 

c o n t r a d i c t s the m i n i m a l i t y of L ( P ). Th i s c o n t r a d i c t i o n 
o 

p r o v e s tha t no two of r , . . . , r have m o r e than one v e r t e x 
1 v 

in c o m m o n . 

P i s t h e r e f o r e a d i sen tang l ing p a i r i n g of V with 

r e s p e c t to | . T h i s p r o v e s T h e o r e m B . 

3. P r o o f of T h e o r e m A by induct ion o v e r € . The 
t h e o r e m is obvious ly t r u e for € = 1 b e c a u s e a i s not a cu t -
v e r t e x . A s s u m e tha t the t h e o r e m i s t r u e for 1 ^ € < 6, and 
suppose tha t the v e r t e x _a i s not a c u t - v e r t e x of the g raph f\^ . 
Le t E be a se t of 26 e d g e s of /^ e a c h of which i s inc iden t 
wi th a. 

If t h e r e a r e two edges in E, e . and e say, connec t ing 

a_ wi th the s a m e v e r t e x of ^ , ID say, then by the induct ion 
h y p o t h e s i s / \ - e ~ e (the g raph obta ined f r o m ^ by de le t ing 

e and e ) con t a in s a se t of 6 - 1 c i r c u i t s wi th the p r o p e r t i e s 

s t a ted in T h e o r e m A. T h e s e c i r c u i t s and the c i r c u i t 
a u b w e , ' ^ ' e ^ t o g e t h e r cons t i tu t e a set of ô c i r c u i t s wi th 

1 2 
the r e q u i r e d p r o p e r t i e s . 

Suppose tha t no two edges of E connec t a with the s a m e 
v e r t e x of ^ . Then a_ i s jo ined by edges to a set of 26 
v e r t i c e s ; l e t V denote t h i s se t . /^ - a (the g r a p h obta ined 
f rom ^ by de le t ing a and al l edges inc ident with a) i s 
connec ted s ince a i s not a c u t - v e r t e x of /^ . By T h e o r e m B 
t h e r e e x i s t s a d i sen tang l ing p a i r i n g of V with r e s p e c t to ^ - a. 
Le t r , . . . , r denote the c o r r e s p o n d i n g p a t h s . F o r 

1 o 
i = 1, 2, . . . , ô le t C. denote the c i r c u i t ob ta ined by jo in ing a. 

to the two e n d - v e r t i c e s of r . ; c l e a r l y C. C ^ . Any two of 

C , . . . , C r have a t m o s t one v e r t e x b e s i d e s a in c o m m o n 
1 6 — 

and no two of C , . . . , C have an edge in c o m m o n ; for any 

two of r , . . . , r have a t m o s t one v e r t e x in c o m m o n and no 
1 ô 
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two of r , . . . , r end in the same ver tex . C . . . . , C^ 
1 6 1 6 

therefore satisfy the conditions of Theorem A. Theorem A is 
thus true for € =6 if it is t rue for 1 < € < 6, and it is t rue 
for € = 1. Therefore the theorem is t rue for all finite € . 
Note: Theorem A clearly remains t rue if loops a r e counted 
as c i rcui ts . 

4. Ver t ices with infinite valency. A theorem will be 
established from which the analogue of Theorem A for infinite 
€ follows obviously. It is convenient to distinguish two special 
type of graphs. An 2^ -fence is the union of an infinite path r 

and an enumerable set of mutually disjoint paths r , r , r , . . . 
X ù Ù 

such that for each i > 1, r n r , consis ts of one of the end-
— l 

ver t ices of r ; the other end-ver tex of r is called an end-
i i 

ve r tex of the ^ -fence. A \ -penci l , where X. is an integer 

> 3 or an infinite power, is the union of \ distinct paths such 
that one ver tex, called the focus, is end-ver tex of all the paths 
and any two of the paths have the focus and nothing else in 
common; the other end-ver t ices of the paths a re called end-
ver t i ces of the X-pencil. 

THEOREM C. If the ve r t ex a. of the graph ^ is not a 
cut -ver tex of [^ and has valency > € , where € is an infinite 
power, then if 6 > ><S ei ther a is joined to some ver tex by 

at least e edges or a is joined to every end-ver tex of an 
€-pencil contained in A-a; and if € = *6 then ei ther at least 

L^ o 
one of the a l ternat ives just mentioned holds, or a is joined to 
infinitely many ve r t i ces of an infinite path contained in / \ -a , 
or else j . is joined to every end-ver tex of an ^ -fence containe 
in / \ -a . 

The analogue of Theorem A for infinite € clear ly follows 
from Theorem C. 

Theorem C follows from 

THEOREM D. Let | be an infinite connected graph and 
V an infinite subset of the set of ve r t i ces of |~~\ If V is 
enumerable |~~* ei ther contains a |V | -pencil whose end-ver t ices 
all belong to V or an infinite path containing infinitely many 
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ver t ices belonging to V or a n \ -fence whose end-ver t ices 

all belong to V; if V is not enumerable then | contains a 
| V (-pencil whose end-vert ices all belong to V. 

Proof of Theorem D. By transfinite induction or Zorn' s 
Lemma it can be shown that | contains a connected subgraph 
| ! to which all the ver t ices of V belong and which is such that 
any proper subgraph of f"1 * either does not contain all the 
ver t i ces of V or is disconnected; [""*! = |~~* possibly. 

j y does not contain a circuit . . . . (1) 

For if | ' ! contained a circuit then deleting any one edge 
of the circuit would leave a connected graph containing all the 
ver t ices of V. 

Every edge of | ! belongs to some path whose end-
ver t ices belong to V. . . . (2) 

Because if an edge did not have this property then the 
graph obtained by deleting it from | ' would consist of two 
connected components by (1), and one of the two connected 
components would contain no ver tex belonging to V; this 
would contradict the minimal property of | T . 

Corresponding to any two distinct ver t ices of ( * there 
is a unique path contained in | ! which has them as its end-
ve r t i ces . . . .(3) 

i . . 

For | ! is connected and contains no circuit . The 
length of the path will be called the distance between the two 
ver t ices in | ' . 

If b is any ver tex of | * incident with at least three 
edges of J""7 T then [""*! contains a pencil which has b as 
focus, which contains every edge of | ! incident with b 
and whose end-ver t ices al l belong to V. . . . (4) 

This follows from (1) and (2). 

Suppose that V is enumerable. If some ver tex of | ! 

is incident with infinitely many edges of | !., then | ! contains 
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a I V| -pencil whose end-ver t ices all belong to V, by (4). If no 
ver tex of | ! is incident with infinitely many edges of | ' then 
by a theorem of D. Kônig [3] each ver tex of [ *! is the end-
ver tex of some infinite path contained in J ' . Let r denote 
an infinite path contained in j ' with the ve r t ex c as end-
ver tex . There a r e two a l ternat ives : ei ther r contains infinitely 
many ver t ices belonging to V or it does not. If r does not 
contain an infinite number of ve r t i ces belonging to V then, by 
the minimal property of | ' , r contains an infinite number of 
ver t ices having valency > 3 in [ , ; let these be denoted by 
c , c . c , . . . in o rder along r starting from c, and for 

1 2 3 — 
i = 1, 2, 3, . . . let e. be an edge incident with c. and not 

l l 

belonging to r. By (2) for each i > 1 there is at least one path 
contained in P1* which has c. as one end-ver tex, contains e., 

1 i i 

and has a ver tex belonging to V as i ts other end-ver tex; let 
such a path be denoted by r. . By (1) r w r w r w r KJ . . . is 

l 1 2 3 

an 7>C -fence whose end-ver t ices all belong to V. This proves 

Theorem D for enumerable V. 
If V is not enumerable then \ x contains a ve r t ex 

incident with JVJ edges of P x . (By (4) no ver tex of | 'T is 
incident with more than | v | edges of p ! . ) For suppose that 
every ver tex of [ ! has valency < |V | . Let a denote an 

a rb i t ra r i ly chosen ver tex of | * and for i = 1, 2, 3, . . . let 
A. denote the set of those ve r t i ces of I i} which a re at a 

l ' 

distance i_ from a in | ' . Since the product of two powers 

each smal ler than | v | is smal ler than | v | we have that 
I A. |<|VJ for i = 1, 2, 3, . . . and | A , v^ A0 w A0 w . . . I < ^ Iv l 

I 1 ' 1 2 3 ' o 1 

|VJ , which is a contradiction. Hence f1 ! contains a ve r t ex 
incident with | v | edges of | ! . 

It follows from (4) that f"* * contains a | v | -pencil whose 
end-ver t ices all belong to V. This completes the proof of 
Theorem D. 

Proof of Theorem C. Let V denote the set of those 
ver t i ces of ^ which a r e joined to a. Ei ther there exists a 
ve r tex joined to £ by at leas t € edges, or else | v | > € . 
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If JVJ > € then Theorem C follows from Theorem D applied to 
A-a. 

Note. If £ is a cut-ver tex of ^ but /\ -a has fewer 
than € connected components then the asser t ion of Theorem C 
is still t rue , because at least one of the connected components 
of ^ - a has the property that at least € edges connect a. with it. 
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