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Abstract

We analyze fractional powers H", a > 0, of the generators H of uniformly bounded locally
equicontinuous semigroups 5. The H" are denned as the ath derivative Sa of the Dirac measure
S evaluated on S. We demonstrate that the Ha are closed operators with the natural properties
of fractional powers, for example, HaH0 = Ha+P fora, p > 0, and (Ha)P = H"? for 1 > a > 0
and p > 0. We establish that Ha can be evaluated by the Balakrishnan-Lions-Peetre algorithm

dt(i-s,rx

where m is an integer larger than a, cam is a suitable constant, and the limit exists in the
appropriate topology if, and only if, x € D(Ha). Finally we prove that Ha is the fractional
derivative of 5 in the sense

Hax= lim((I-S,)/t)ax
r—0+

where the limit again exists if, and only if, x e D(Ha).

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 47 A 99.

1. Introduction

The operator D of differentiation acts through multiplication by -iX in
Fourier space, where X is the Fourier variable. Hence, for a > 0, one
can define the fractional power Da of differentiation as multiplication by
{-iX)a. But multiplication by (-iX)a corresponds to convolution of the in-
verse Fourier transform with a distribution Sa, the fractional derivative of
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the Dirac measure 8. Hence Da can be interpreted as the distribution Sa eval-
uated on the group St = exp{-tD} of translations, that is, as the operator
Ss" with action

(Ss,,f)(x) = I dySa(y)(Syf)(x)

= I dy6°(y)f(x - y)

The aim of this paper is to analyze fractional powers of generators of uni-
formly bounded equicontinuous semigroups by an analogous method. Specif-
ically if S, = exp{-tH} is a uniformly bounded strongly continuous semi-
group acting on the Banach spaces %? then we define Ha by

Hax = li
i

where D(Ha) consists of those x e %? such that the strong limit, over an
appropriate net of test functions r\, exists. This method of defining Ha has
several advantages. It is quite intuitive and agrees with the standard method
of defining fractional derivatives. It readily extends to generators of a large
class of equicontinuous semigroups which induces strongly continuous or
weakly* continuous semigroups. It leads to easy proofs of basic properties
such as multiplicativity, that is, HaH^ = Ha+P. It differs, however, from
the traditional methods of defining fractional powers by integral algorithms.
Nevertheless one of our principal conclusions is that it gives the same results
as the traditional theory.

The standard theory of fractional powers of generators originated with
the early work of Bochner [5] and Phillips [17] on convolution semigroups
but then developed along quite different lines than those sketched above.
Balakrishran [2] defined the fractional powers Ha, 0 < a < 1, by the formula

««.„_ Q f°°dt(I-St)^
r(l-a)J0 t /«

with D(Ha) taken to be the set of JC € 3? for which the integral converges.
Similar or equivalent definitions were independently proposed by Kato [10],
Nelson [15], and Krasnoselskii and Sobolevskii [12]. Somewhat later Lions
and Peetre [14] proved that if a is a positive integer then

Ca.m Jo t V*

where m is an integer strictly larger than a and

dt{\ -e-')
am Jo t r
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Subsequently this algorithm has been used as the definition of Ha for all
a > 0. Many other authors contributed to the study of fractional powers
of generators through the above integral algorithms or alternative algorithms
using powers of the resolvent of H, and summaries of the subject from var-
ious aspects, at various stages of its development, with extensive references
and applications, can be found in the books of Yosida [22], Friedman [9],
Krasnoselskii et al [13], Triebel [20], Tanabe [19], and Pazy [16]. A com-
prehensive description of the subject is also given in the series of papers by
Komatsu [11]. Most of this work concerns generators of strongly continu-
ous semigroups, or operators with strongly continuous resolvent families, but
Berens, Butzer, Westphal [3] and Komatsu [11] have also derived results in
the case of weak* continuity. Our methods have the advantage of unifying
these two cases, and extending the results in several ways.

The starting point of our investigation is Schwartz' definition [18] of the
operator 5P associated with a tempered distribution (p evaluated on an equi-
continuous semigroup S. There are various possible formulations of the
semigroup theory but we have chosen to follow that of Arveson [1]. This
theory is outlined in Section 2 where a number of preliminary equicontinuity
properties are discussed. In Section 3, following Schwartz [18], we define S9

as a limit over a net of test functions tj of the bounded operators

= r
Jo

A number of elementary properties of the S?, their products, and the map
<p i-» S9 are also derived. Then in Section 4 we discuss the Fourier theory of
various special measures and distributions, for example the distributions 5a.
After these preliminaries we begin the analysis of the fractional powers Ha,
a > 0, of the semigroup generator H, in Section 5.

If 5, = exp{-tH} then Ha is defined as Ss°- Starting from this definition
the integral algorithm (*) corresponds to an approximation

(**) Hax = Ss«x-\imS9a^x

where the (pa,e are bounded measures on [0, oo). Specifically <pa,E is the Fourier
transform of the function

and (**) is a reflection of the fact that 9>Q£ * rj —> 8a * r\ in L\ (0, oo) for each
test function rj with compact support. This is only one of many possible L\-
approximants to Sa which lead to a representation of Ha by regularization
with S.
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Finally, in Section 6, we use this freedom of approximation to establish a
different characterization of Ha. We prove that the fractional power Ha can
be identified as the fractional derivative of the semigroup S, that is

(( -St)/t)
ax

with convergence if, and only if, JC € D(Ha).

2. Continuous semigroups

Let 3? denote a Banach space with norm || • || and y a norm-closed subspace
of the dual 3f* of 3f. Further let a {2?',&) be the locally convex topology
on 3? induced by the functional in y . We assume

2. the a{3f, y )-closed convex hull of every cr(J^,y)-compact set in 3f is
a(3?, y)-compact,

3. the <r(y, J^-closed convex hull of every <?(y, J^)-compact set in y is
crty.J^-compact.

These conditions are satisfied if y = <f *, or if 3f has a predual Sf* and
y = 3?» (see [1] or Chapter 3 of [6]), and they appear to be the minimum
requirements for the development of a satisfactory theory of integration for
semigroups continuous with respect to the <7(J",y)-topology. We note that
Arveson (private communication) has established that conditions 2 and 3 are
not a consequence of condition 1 and the fact that y is norm-closed.

Next we define a <7(Jf,y)-continuous semigroup to be a semigroup S =
{S,}t>o of bounded linear operators on 3? such that

1. t G R+ •-> S,x G 3? is a(^,y)-continuous for all x G 3f, that is,
t H-> f(S,x) is continuous for all x G 3? and / e / .

2. ^ e / ^ ^ e f is a(<T,y) - a{3? ,& )-continuous for all f > 0,
that is, / o 5", G y for all f > 0 and / e y .

There are two basic properties of a <r(^,y)-continuous semigroup 5.
First there exist an M > 1 and <y > 0 such that

115,11 <Me°"

for all / > 0. In particular S is called a uniformly bounded semigroup if such
bounds hold with co = 0. Second if /z is a complex measure on R+ satisfying
fS° d\p\(t)eat < oo then

= f
Jo
f dn{t)S,x
o

defines a bounded a(3f,^) - er(^,y)-continuous operator 5^ on 3f.
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Now that if r\ e CQQ (R+), the infinitely-often differentiable functions with
compact support in (0, oo), we also write

= J dtn(t)S,
for the associated bounded operator. Then the set %?Te%{S) of regularized
elements is denned by

3fre%{S) = {Sr,x;xe^, tj e C^(R+)}.

Next we introduce the ( c r ^ . ^ ^ g e n e r a t o r of S as the a{3?, J?")-right
derivative of 5 at the origin. Explicitly D{H) consists of those JC e 8? for
which there exists a y e / with the property f{y) = lim,_>0+ / ( ( / - St)x)/t
for all / 6 &~. Then the action of H is given by Hx = y.

Note that the semigroup property of 5 automatically implies StD(H) C
D{H) and HStx = S,Hx for all x 6 D(H). Moreover one has the identity

-St)x= f
Jo

dsSsHx

for all x e D(H) and t > 0. The basic properties of the generator H and its
powers Hn are summarized in the next two propositions.

PROPOSITION 2.1. Let S be a o{8?,£?~)-continuous semigroup with genera-
tor H. Then

1. the operators Hn,n= 1,2,. . . . are o{3?, &~) - a(2?, ^-closed,
2. the regularized elements 3fK%{S) form a a{8?, ^)-dense common core of

the H".

PROOF. 1. Assume Xj e D{H) and Xj —* x, HXJ -* y, in the a{3?,&")-
topology. Then it follows from the <r(^,^')-continuity of S and the identity
(*) that

(/ - S,)x = f dsSsy.
Jo

But this immediately implies that x G D(H) and Hx = y, that is, H is
o{3?, &) - a{Sf, ^)-closed. Now we proceed by induction. Suppose//"1,
m — 1,2,... ,n - I, are o(%?,&~) - a{Sf,^")-closed operators. Then if x €
D{Hn) it follows that SsH"-lx 6 D{H) and since H is closed

rt

ds(t-s)"-lSsH
n-lxeD(H).

rt
I

Jo
Moreover

ft — r)
Tn^Ty. SsHx = (-ini-St)x+
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by a straightforward calculation. Considering this identity for n - 1 distinct
values t\, t2,...,tn-i, one concludes by linear algebra that each Hmx, m =
1 , 2 , . . . , « - 1 , can be expressed as a linear combination of x and H"x. Thus
if Xj 6 D(Hn) and Xj -> x, HnXj - • y, in the a(^,^)-topology then each
HmXj is o(3?, ^-convergent. But the operators Hm, m = 1,2,..., n - 1, are
a(Mf,S?)-a{Sf,^-closed by assumption and hence Hmxi -> Hmx. Finally
one has the identities

(I-Sl)H"-lxj= f dsS5H"Xj
Jo

and in the a(Sf,^)-\\m\X one obtains

(I-St)H"-lx= [' dsSsy
J[
Jo

because of the foregoing argument. It follows immediately that x e D(H")
and Hnx = y. Thus H" is a {£',9') - cr(^,^')-closed and the proof is
complete by induction

2. If y = Snx e SfTe%{S) then y e D{H) and Hy = Sn>x. Then by iteration
y e D{H") and Hny = S^x. Now replacing r\ by r\m where r\m(t) = mTf(mt)
one has S,,mx = f dtri(t)St/mx. Therefore SVmx -» / dtrj(t)x in the o{%',9')-
toplogy as m —>• oo. Moreover if x e D(Hn) then

HnSnmx = SnmHnx - J dtn(t)x.

This establishes that %?K%(S) is a a(%?', J?")-dense subspace of X and that it is
a core for each H".

The next proposition gives the basic properties of the resolvent of the
generator.

PROPOSITION 2.2. Let S be a o(%? ,9~)-continuous semigroup with gener-
ator H satisfying \\St\\ < Me0", t > 0. It follows that if Ren > co then
pi € r(—H) the resolvent set of —H, that is, the inverse operator (fil + H)~l

exists as a bounded a(3?',9) — o(%?',9)-continuous operator. Moreover

(Hi + H)~nx = J

PROOF. First define the bounded o{%?',&~) - crO^7, ̂ -continuous opera-
tors Rn(ti) o n J ^ b y

Then an elementary calculation establishes that Rn(n)x e D(H) for any
x G Sf and (fil + H)Rn(n)x = Rn-i(fi)x. Similarly if x G D(H) then
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one calculates that Rn{[i)(fil + H)x = Rn-i(n)x. It follows immediately that
/?,(//) = (nl + / / ) - ' and Rn((i) = {fil + H)-lRn-i(li) = {id + H)~".

The Mackey topology T ( J * \ y ) is also essential in the subsequent discus-
sion. This topology is defined by the family of seminorms

x G Sf ^ pK{x) = sup | / (x) |

where K ranges over the a (3?, y )-compact subsets of y . Usually the Mackey
topology is defined in terms of the convex, compact, circled, subset of y but
this is equivalent to the foregoing definition because we are assuming that the
cr(^,y)-closed convex hull of a o{3?,&)-compact set is again a{3?,&)-
compact. The T(Js7,y)-topology on Sf is in fact the finest locally convex
topology such that all T(J*\y)-continuous functional lie in y . In particular
any ff(^7,y)-dense convex subset is x(Sf ,y)-dense. The r(^,y)-topology
is particularly simple if y = %?*. The unit ball of %"• is ff(^*,^)-compact,
by the Alaoglu-Bourbaki theorem and hence the T(J^,^*)-topology is equal
to the norm topology.

Next we define a family { Ta} of bounded operators on %? to be (x{Sf, y ) - )
equicontinuous if for each compact subset K c y there exist a compact
subset K' such that

PK(Tax) < p'K(x)

for all x € Sf and for all a. In particular the semigroup 5 is equicontinuous
if the family {S,}r>o satisfies this property. More generally S is defined to be
locally (T(^,y)-)equicontinuous if the family {St},e[QJo] is equicontinuous
for each to e [0, oo), or, equivalently, for to = 1.

PROPOSITION 2.3. Let S be a a(3f ,SF)-continuous semigroup with
a\8?, ^-generator H. If S is locally z(%?, ^)-equicontinuous then it is
x(2?.^-continuous and the z(Sf,^-generator of S is equal to H, that is,
for each x e D(H)

lim (/ - S,)x/t = Hx

where the limit is in the x(Sf ,y)-topology.

PROOF. If x e D(H) then

f(Ssx - Stx) = f drf(SrHx)
Js

and hence pK(Ssx-S,x) < pK>{Hx)\t-s\ for 0 < t, s < 1. Now for x e D{H)
and y e 8? one has

- S,y) < pK(Ssx - S),x) + pK(Ss(y - x)) + pK(St(y - x))
<pKI(Hx)\s-t\
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forO<s,t<l. But D(H) is a o{$?, ^>dense subspace of 2f and hence it
is x{2f ,Sr)-dense. Consequently this estimate implies T(JP, .^-continuity.

Finally if x e D(H) then

-Sl)x/t -'-i:
But the x(a?', ^")-limit of the right hand side exists as t —> 0+ because of the
x{2?, .^-continuity of S and hence the x(2f, ^yixmxX of the left hand side
also exists.

There are two important examples in which local equicontinuity of a
c r ^ , .^-continuous semigroup 5 is automatic. If & = 3?* or if 8? has
a predual ^ and & = X..

First, if & — ^ * then the r(J!7,^")-topology and the norm topology are
equal and local equicontinuity of the a{3? ,3?*)-con\.imioxis semigroup S fol-
lows from the bounds \\St\\ < Mexp{cot}.

Second, if &~ — 3?+ then the dual semigroup S* = {S*},>o formed by
the duals (adjoints) S; on 3ft of the operators S, on Mf form a a{^,,2fy
continuous semigroup. But a{Sf»,3f)-con\ir\\xiXy is equivalent to strong con-
tinuity and hence {t,f) e [0,1] x 3f9 i-» S* f e ^ is jointly continuous on
bounded subsets of J^. Therefore S is locally T(^,^)-equicontinuous by
duality. A more general result of this type is given by the following proposi-
tion

PROPOSITION 2.4. Let S be a a{Sf ,^)-continuous semigroup. Then the
following conditions are equivalent:

1. S is locally x{8?',&~)-equicontinuous.
2. For each a{9r ,Sf)-compact subset K the set

U S*K

0<l<\

is o{&, Sf)-precompact.
3. The map (t, f) e [0,1 ] x^" •-> S*f e & is jointly continuous on bounded

subsets of9~.

REMARK 2.5. The implications 1 o 2 <= 3 are valid for any family S of
bounded ^ ( j ^ , .^-continuous operators. The semigroup property is irrele-
vant. The equivalence 1 <$• 2 follows by duality and the implication 3 =>• 2 is
straightforward.

PROOF. In the light of the foregoing remark it suffices to prove 1 => 3.
Assume tn -> t, 0 < tn < 1, /„ -»• 0 in the o(&~, Js')-topology, and ||/n|| < 1.

We must show that S*nfn is o{& ,%?)-comzr%en\ to zero or, equivalently,
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7I-.OOM(S,n - S,)x)) = 0 for all « / . Now let K denote the a{3r',<
compact set {/„}„> 1 U {0} and choose K' such that PK(SSX) < PK'(X) for
all 0 < s < 1 and all x e 3f. Next remark that the domain D(H) of the
generator H of S is a(^,^")-dense and hence T(^',^")-dense. Thus given
x G 3f and e > 0 one may choose y e D(H) such that PK'(X - y) < e/2.
Therefore \fn{Ss(x - y))\ < e/2 for all 0 < s < 1 and all n > 1. Consequently

\M{S,m - S,)x))\ < \fn((Stn - S,)y))\ + e

< j dsfn(SsHy) +e

<\t-tn\\\Hy\\+e.

The desired conclusion follows immediately.
Next we use this characterization of local equicontinuity to examine equi-

continuity of families {5^} where ft are measures on R+.

PROPOSITION 2.6. Let S be a uniformly bounded a(3f .^-continuous semi-
group which is locally x(3f ,^)-equicontinuous. Further let JV be a norm
bounded set of finite measures on R+ such that

uniformly for [i e JV.
It follows that the family {S^fi eyf} is %(%?,^)-equicontinuous.

PROOF. It follows from the assumption (*) that there exists a continuous,
positive, decreasing function p on R+ which tends to zero at infinity such
that

B = sup

Let G, = p{t)S, if 0 < t < oo and G, = 0 if t = oo. Then (t,f) •-> G*tf is
jointly continuous on bounded subsets of <?" for t e [0, oo]. (It is continuous
for finite / by Proposition 2.4 and continuous at infinity because ||G(|| —* 0 as
t —* oo.) Hence {Gt;t e [0,oo]} is equicontinuous by Remark 2.5. Thus for
any ff(^, ^-compact set K' such that P/<(p(t)S,x) < p'K(x) for all t e [0, oo)
and all x e 3f. Therefore

PK(SMX) < j d\n\(t)p(t)-lpK(p(t)SlX) < BpK,{x)

for all ft e N and x e 3?, as desired.
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COROLLARY 2.7. Let S be a uniformly bounded a{Sf, ^-continuous semi-
group which is locally x{%?', &~)-equicontinuous. If ft is a finite measure on R+
then Sft is x{%?, ^-continuous.

PROOF. If the set JV in Proposition 2.6 is finite the uniformity condition
(*) is irrelevant and the family {S^ji eJ^} is equicontinuous.

We conclude this section with some remarks about open questions con-
cerning the foregoing framework.

First, it is conceivable that local equicontinuity of a o(3?, ^-continuous
semigroup follows automatically from the assumed properties of y . We
have argued, in the discussion prior to Proposition 2.4, that this is the case
if f? — Sf* or if !F = %?*. But equicontinuity is not automatic. Translations
on Loo(R) are locally equicontinuous but not equicontinuous with respect to
the o^LocL^-topology, that is, the weak*-topology. Nevertheless the dual
group, translations on Z-i(R), is equicontinuous.

Second, if local equicontinuity is not automatic it is still possible that it is
a self-dual property, that is the cr(J*\J?")-continuous semigroup 5 = {St}t>o
is locally equicontinuous if, and only if, the dual semigroup S* = {S*}t>o is
locally equicontinuous. Right and left translations on Li(R+) and Loo(R+)
show that equicontinuity of a semigroup does not imply equicontinuity of
the dual semigroup but the situation for local equicontinuity is unclear.

(The properties of Li(R) and Loo(R) alluded to above rely upon an ap-
propriate characterization of weakly compact sets in L\. The required char-
acterization follows from Theorem V.6.1 and Exercise IV. 13.54 of [8]. The
solution of the exercise follows easily from Theorem IV.8.9 and Corollary
IV.8.11.)

3. Distributions and semigroups

Throughout this section the o-(^, .^-continuous semigroup S = {St}t>o
is assumed to be uniformly bounded, that is, ||S,|| < M for some M > 1 and
all t > 0. In this case one can associate with each bounded measure n on R+
the bounded e r ^ , .^-continuous operator S^ by

= f d/i(t)S,x.

Now, following Schwartz [18], we extend this definition to a large class of
distributions supported on R+.

Let <p denote a tempered distribution with support in R+. Then <p is defined
to be R+-summable if tp * r\ e £i(R+) for each n e C§Q(R+), the infinitely

https://doi.org/10.1017/S1446788700030950 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030950


/•O

= /

Jo

[11] Fractional powers of generators 483

often-differentiable functions with compact support in (0, oo), where <p * r\
denotes the usual convolution product. Thus if q> is R+-summable one can
define the bounded operators S^ by

/•OO

/ dt{(p*n){t)Stx, x e / .
o

Next let F denote the filter with base formed by the nc e CQQ (R+) such that
the support of ne is contained in (0, e), ne > 0, and 1 - e < / dtr\E{t) < 1 + e.
Then we define S9 by

D(S9) = \ x; o{3?,3r)-\im S^xexists \
{ F J

and

for x e D{S9).
Alternately if r\ € C^(R+), rj>O,f dtr](t) = 1, and one sets t]n(t) = nrj(nt)

then one can define an operator S$ by a similar process;

D(S$) = \x;o{%?,&)-X\m S^Anx exists 1
I n—>oo )

and

for x e D(S£). Clearly S9 C S$ but in fact the two operators are equal. This
is part of the following basic result.

PROPOSITION 3.1. Let S be a uniformly bounded o{%?, ̂ -continuous semi-
group and (p on R+-summable distribution. Then

1. S9 is a 0(8?,9~) - a{Sf. ^-closed operator,
2. arKt{S) is a a(a?.Fydense core ofSv,

PROOF. 1. Assume x, e D{S9), and Xj —> x, S9Xj —> y in the o(%
topology. Then for n e F one has SnXj e D(S,p) and S9S^Xj = S^
S9tt,x because Sv»n is a bounded o{3?', ^")-continuous operator. But S
= SqSyXj -* S,,y. Therefore 5p*,x = S^y. Finally

= y

and one concludes that x e D(5?) and S9x = y.
2. The proof is identical to the proof of part 2 of Proposition 2.1.

https://doi.org/10.1017/S1446788700030950 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030950


484 Oscar E. Lanford III and Derek W. Robinson [12]

3. Clearly S9 c Sn
9. But if x € D(S?) and £ e F then

Thus Snnx eD(S9). But

and

-\\ra S9Snnx = a{af,^)-\im 5f»,.Jc = Sfx.
)n)oo

Since 5P is a{Sf,9') - c r (^ ,^-c losed this establishes that x € D{S9) and
S,,JC = S$x. Thus 5 P = 5 ; .

Next we consider products of the Sy.

PROPOSITION 3.2. Let S bea uniformly bounded a{%?.^-continuous semi-
group and (p\, q>2 two R+-summable distributions such that <p\ * q>2 is R+-
summable. Then

but ifD{S9l) 2 D(S9,,fl) then

In particular one has equality whenever S92 is bounded.

PROOF. Let tji, n2 G F then

for all x e r Thus if x e D(S92) then

Hence x e D(S9l*f2) if, and only if, S92x 6 D(SPl) and then

This establishes that S9l*92 extends S9lS92. It also establishes that ifD(S9,*92)
c D(SP2) then D(5f,, f2) c Z)(f,5f2). Thus SPl.92 = ^ , 5 f 2 .

Next we consider continuity properties of the map <p i-> 5P. These proper-
ties are more delicate because the S9 are generally unbounded. Nevertheless
^reg(5') is a common core for all the S9 and one has the following weak result.
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PROPOSITION 3.3. Let S be a uniformly bounded o{%? ,^y continuous semi-
group and tpj, <p, R+-summable distributions such that (pn is L\-con\ergent to
q>*rjfor each n € Cffi(R+). IfS° is defined by

D(S°) = I x;a{Sf,^>lim S9j exists >

and

for x e D{S°) then 5° is a[8?',&) - o{2? .^ydosable and its closure
equals Sf.

PROOF. If x e Z)(5°) and n € Q£(R+) then

SnS9jx =

Here we have used the fact that L\ -convergence of <pn to q> * n implies
<r(<^,^)-convergence of S9j*,,x to S9*,,x. But now one deduces that

Since, however,

and Sv is closed this establishes that 5° C Sv. In particular, S® is closable.
But ^?eg(5) c D(S°) and 3fKg{S) is a core of S9. Therefore 5« = Sv.

REMARK 3.4. It suffices for Proposition 3.3 that <pj * n is L \ -convergent to
<p * n for one non-zero tj e C§Q(R+). The proof is very similar but one takes
a limit in the manner used to prove the last part of Proposition 3.1.

REMARK 3.5. The weakness of Proposition 3.3 is that 5° is not necessarily
closed. If it is known for other reasons to be closed then of course S® = S9.

Finally we note that the foregoing results are essentially due to Schwartz
[18]. But Schwartz considers the class of distributions which are finite sums
of derivatives of finite measures. This class has the advantage of being auto-
matically closed under convolution.

4. Fourier transforms

In this section we establish our notation for Fourier transforms and prove
a number of results about transforms of particular distributions.
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If n e S"(R) we define its Fourier transform ff by

fj(X) = (2*)"1 r dte-iXtt\{t),
J — oo

and if p is a tempered distribution we define its Fourier transform 0 by the
formal relation

j dtr,(t)<p(t) = J dXfj(X)0)X),

or, even more formally, by

'°° dteat<p(t).

With these conventions the Fourier transform of a distribution <p with sup-
port in the positive half-line [0, oo) is analytic in the upper half-plane, and the
Fourier transform of the convolution product of two tempered distributions—
where defined—is the product of the Fourier transforms, without any extra
factors of 2n.

Next for any positive integer n the «th derivative of the Dirac measure S,
which will be denote by S", has Fourier transform X i-> (-iX)n. More generally
if a is any real number larger than - 1 we define the distribution Sa to be the
inverse Fourier transform of X H-> (-iX)a. Here, and in the sequel, the branch
of a fractional power is defined as follows. If z is a nonzero complex number
then za means exp{a log z} where the imaginary part of log z is chosen to be
in (-n, n]. Thus the logarithm, and non-integral powers, are cut along the
negative real axis, and (-iz)a is continuous on the closed upper half-plane.

The following result is well known.

PROPOSITION 4.1. The distribution Sa has support in [0, oo) and on (0, oo)
it is equal to

Sin ita 1
n ta+i

PROOF. By the definition of da, f dttj(t)Sa(t) = J dXfj(X)(-X)a and our
choice of zQ makes (-X)a analytic in the upper half-plane. If n has support
in (-oo, 0) then fj is also analytic in the upper half-plane and a straightforward
application of the Cauchy Integral Theorem gives / dXfj(X)(iX)a = 0. Hence
the support of da is contained in [0, oo).
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If, on the other hand, n has support in (0, oo), we can deform the contour
of integration to the negative imaginary axis; then

f <tt^(A)(-iA)° = (-/) I dfifj(-iji)fia(e-ina - eiKa)
J-oo JO

r°
/

n Jo Jo

- a - l

as desired.

COROLLARY 4.2. 1. For a > 0, the distribution 5a can be written as the
sum of a distribution of compact support and an integrable function,

2. Ifne 5(R) then {n * Sa){t) = Od^l1-") for large t. In particular
n*Sa€Li(R)fora>0.

PROOF. Let ^ be a C°°-function of compact support equal to 1 in a neigh-
bourhood of the origin. Then £da is a distribution of compact support and
(1 - £)da is an infinitely-differentiable function with support in (0, oo) and
equal to a constant multiple of t~l~a for sufficiently large t. IF n e ^(R) then
n * &a e S*{R) and

In the rest of the section our aim is to prove the integrability of the inverse
Fourier transforms of some special simple functions. We begin with two
essentially standard results of this nature.

PROPOSITION 4.3. Let a > 0. Then the Fourier transform of the distribu-
tion t •-> d(t)ta-le-', where 0(0 = 0 for t < 0 and 0{t) = 1 for t > 0, is
P(a)(l - iX)~a. In particular (1 - U)~a is the Fourier transform of an inte-
grable function.

PROOF. For any r\ €

dtta-le-'n(t)=/

Jo /O J-oo
/•OO /-00

= / dkr\{X) I dtf-^e-V-W.
J-oo Jo
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Now changing variables in the second integral from t to s — (I - ik)t and
using the Cauchy Integral Theorem to move the contour of integration back
to the positive real axis one finds

f dtta-xe-({-iX)t = (1 - ik)-a f
Jo Jo

PROPOSITION 4.4. Ifa>0 then k •-> (-ik/(l - ik))a - 1 is the Fourier
transform of an integrable function.

PROOF. One has (-iX/(l - ik))a —1 = (1 — 1/(1 — ik))a - 1 = Q/(1 - ik) +
R(k). But the first term is the Fourier transform of an integrable function
by Proposition 4.3 and the remainder term by a straightforward argument.
(The remainder and its derivatives are of order k~2 at infinity.)

The last integrability result is the most delicate. It is the basis of our
discussion of fractional derivatives in Section 6.

PROPOSITION 4.5. If a > 0 then k i-> ((1 -ea)/(-ik))a is the Fourier trans-
form of an integrable function.

PROOF. The proof is divided into three cases.
Case 1. a = 1. Then A —•• (1 - e'x)/{-ik) is the Fourier transform of the

characteristic function of the interval (0,1).

Case 2. a > 1. Define ga by ga(k) = ((1 - ea)/(-ik))a. Then ga is
integrable and hence its inverse Fourier transform ga is a continuous function.
Moreover ga is continuously differentiable, and its derivative g'a is integrable,
and it is twice continuously except at the points 2nj, j = ±1, ± 2 , . . . , where
the second derivative g" has integrable singularities; g" is globally integrable.
It follows readily that the pointwise second derivative of ga, defined almost
everywhere, coincides with its second derivative in the sense of distributions.
Since this second derivative is an integrable function, ga(t) = 0(t2) at infinity
and hence ga is integrable.

Case 3. 0 < a < 1. It follows from the binomial theorem that (1 - ea)a =
J2%ocJeaj where |c,| = O(j~l~a). Since the Cj are absolutely summable, the
series

((1 -ea)l{-ik))a = JTc
j=0

converges in the sense of distributions. By Proposition 4.1, k H-> (-ik)~a

is a constant multiple of the Fourier transform of 8(t)ta~l. Absorbing the
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constant factor into the c, we obtain the representation

For any fixed t there are only finitely many non-zero terms in this sum so ga

is certainly a locally integrable function. We have to show that it is globally
integrable, that is, that the series

rk + \
(•) k ~ / dt\ga{t)\

Jk
is summable.

We start by noting that ga+\ - ga* g\, that is,

ga+i{t)= dsga(t-s) = dsga(s).
Jo Jt-i

Thus by Case 2 above

rk+\
/ dtga(t) = O(k~2).

Jk

In order to deduce from this that the series (*) is summable we are going to
argue that ga does not vary too much on (k,k + 1) for large k. From the
above representation of ga we first find for k < t < k + 1 that

7=0

We will estimate the term with j — k and the remainder separately. Thus
we write h(t) = E,to' cj(t - j)a~x. Then h'(t) = (a - 1) E ^ o cAl ~ JT~2

and so |A'(0l < (1 - o ) E ^ o ' \ci\(k - j)a~2 for k<t<k+I. Let ik, denote
the integer part of k/2, and split the sum into a sum from 0 to k\ and a sum
from kx + 1 to k - 1; then

J2 \ci\(k ~ J)a~2 - (2/k)2~a H \cj\ ^ constant x ka~2,
j=0 7=0

and

k-\

\Cj\{k - j)a~2 < constant x A;1"" J2 {k - j)

< constant x

k-\ k-\
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Thus \h'(t)\ <ckl~P where /? is the smaller of a and 1-aandc is independent
of k. Now

\ga{t) - h(k + I)| < \ga(t) - h(t)\ + \h(t) - h(k + i)|
<\ck\(t-kr-i+ck-i-p

for k < t < k + 1. Hence
rk+l

/ dtga(t) - h(k + -.
Jk

Since, however, /*+ l dtga(t) = O(k~2) one finds \h(k + ±)| = 0{k~{-P).
Thus writing

\ga{t)\ < \h(k + I) | + \ck\(t - k)a~l + ck-'-t*

one obtains f£+1 dt\ga{t)\ = 0{k~x~p) as desired.

5. Fractional powers

Throughout this section 5" denotes a uniformly bounded locally equicon-
tinuous o^J57, .^-continuous semigroup with generator H. For a > 0 we
define the fractional power Ha of H to be equal to the operator Ss«. Thus
Ha is a a{Sf, &) - a(^', ^")-closed operator and ^ ( 5 ) is a o{8?, ^")-dense
core of / / a , by Proposition 3.1. Our aim is to first prove that Ha defined
in this way has the elementary properties of a fractional power, for example
HaHP = Ha+fi, and second to establish that Ha coincides with the fractional
power of H as defined by other means.

We begin by noting that I + H generates the semigroup Se — {e~'St}t>o
which has boundedness and continuity properties similar to those of S.
Hence we can define (/ + H)a as the operator S|Q. Alternatively if we denote
the tempered distribution 11-> e~'Sa(t) by ya then

Now by the definition of 8a, and a standard fact about Fourier transforms,
the Fourier transform of ya is (1 — ik)a. Next we use ra to denote the inverse
Fourier transform of (1 - iA)~a. Then by Proposition 4.3, ra(t) is a constant
multiple of ta~1e~t, and in particular it is an integrable function. Thus
defining Ra — Sra we conclude that Ra is a bounded a^J*, ^-continuous
operator on 3?.

THEOREM 5.1 (a) (/ + H)a - R~l in the strict algebraic sense, that is, Ra

and (I + H)a both have kernel {0} and D((I + H)a) = R{Ra), the range ofRa.
(b) D(Ha) = D((I + H)a).
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PROOF, (a) One has ya * ra = S and hence Ra(I + H)ax = x, for all
x e D{{I+H)a), and {I+H)aRax = x, for all x e X, by Proposition 3.2. This
implies that both Ra and (I+H)a have kernel {0} and (I+Ha) => .R"1. B u t t h e

range of R~l is all of 3? so any proper extension of R~x must have nontrivial
kernel. Since (/ + H)a has trivial kernel one concludes that (/ + H)a = R~'.

(b) Let n denote the inverse Fourier transform of (-iX/(l - iX))a. Then
H is a finite measure by Proposition 4.4. Since fi * ya = 5a it follows from
Proposition 3.2 that S^I+H^x = Hax for all x e D((I+H)a). In particular
D((I + H)a) C D{H)a. To obtain the opposite inclusion we use the following
lemma.

LEMMA 5.2. There exist finite measures r\ and r2 such that

PROOF. Using the binomial theorem we write

where n is any integer such that n > a. We then take

and

r2(A) = (1 - iA)° -

Then f\{X) is the Fourier transform of a finite measure by Proposition 4.3.
But from the above expression f2(X) = O(\X\~n~l+a) for large X and hence it
is integrable at infinity as are all its derivatives. It is also analytic everywhere
on the real axis except at the origin, where it can be written locally as the
sum of two terms the first of which is analytic and the second of which is a
product of an analytic function by {-iX)a. Hence by Corollary 4.2.2 r2(X) is
the Fourier transform of a finite measure.

Now we return to the proof of Theorem 5.1.
Using Lemma 5.2 we have ya - r2 = r\ * da and again by Proposition 3.2

D{Sri.s<.) 2 D(SS") = D{Ha). But on the other hand D(Sya-r2) = D(Syn) =
D({I + H)a). Therefore D((I + H)a D D(Ha) which combined with the
earlier conclusion gives equality of the two domains.

Next we prove that the Ha have the basic properties of fractional powers.
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THEOREM 5.3. a. If a, p>0 then HaH^ = Ha+P.
b. If a — n is a positive integer than Ha is equal to the n-fold product ofH.

PROOF, a. Since Sa*dP = 8a+P it suffices by Proposition 3.2 to prove that
D{Ha+P) C D{Hfi). But D(Ha+P) is equal to the range of Ra+P by Theorem
5.1. Moreover since ra+p = ra*rfi it follows that Ra+p — RpRa, by another
application of Proposition 3.2, and hence the range of Rp contains the range
of Ra+/I. Thus D{HP) 2 D(Ha+P).

b. It follows from Proposition 5.1 that Ss< is a cr(^>,^")-cr(^',^")-closed
operator and %?rei{S) is a a(^,^")-dense core. Similarly by Proposition 2.1
H is a o^.F) - (7(«r, ̂ ")-closed operator and ST^S) is a a^
core. But if x = S^y e ^?eg(S) then

= Ss..ny = I dtn'(t)Sty = HSny.

Thus Sgi — H on SfKi{S) and consequently by Sg> = H. But by part a one
has Ss>Ss' = Ss'*$> so Sg^s1 = H2. By iteration of this argument one obtains
the desired result for all integer n > 1.

Next we turn to the problem of identifying the fractional power Ha as
defined above with the traditional definitions (see, for example, [22, Section
IX. 11]). We first emphasize, however, that our definition of the generator
H of the semigroup S1 corresponds to the formal relation St = exp{-tH}.
Other authors, for example Yosida [22], adopt a convention which replaces
H by -H and is consistent with the relation St = exp{tH}. This can lead to
confusion in comparisons with the literature.

The original notion of fractional power of a semigroup generator is due
to Bochner [5] who observed that if 0 < a < 1 then there exists a family of
positive functions {fif}i>o on R+ such that

dspfWe-**, A > 0.

The nf form a convolution semigroup (see, for details of such semigroups,
[4]), for example,

and the bounded c r ^ , ^-continuous operators

S? = Sv = f°° ds/if(s)Sa
Jo

form a er(^, ^-continuous semigroup Sa. The generator Ha of this semi-
group is a natural candidate for the ath power of H and in fact it is equal to
Ha as defined above. This equality is a simple consequence of Proposition
3.3.
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In order to obtain the identification Ha = Ha we introduce {(p"}t>o as the
family of R+-summable measures

then by definition Ha is the o(J£:',&~)—0(l&',&~)-closed operator with domain

D(Ha) = \x G X;cr(<r,^)-lim S^x exists!
I (—0+ ' J

and with action

rx, xeD(Ha).

But it is easily checked that tpf * n is L\ -convergent to Sa * r\ for a nonzero
r\ € C£J(R+) as t -+ 0+; in fact, for all r\ G Q£(R+). This can be established
either by explicit estimation or by observing that

(t, n) ^ tf(ri) = J

defines a strongly continuous contraction semigroup on Co(R+) whose gener-
ator acts by convolution with Sa (see, for example, [4]). Therefore Ha = 5°,,
in the notation of Proposition 3.3, as a result of this proposition and Remark
3.4. But this implies 5$. is o(2?,&') - o{%*,&~)-closed and hence

Ha = Si = Ha

by Proposition 3.3.
Our next result is a strengthening of Proposition 3.3 which allows us to

obtain other characterizations of Ha.

THEOREM 5.4. Let S be a uniformly bounded, locally i{3?, £F)-equicontin-
uous, a(8?, ^-continuous semigroup with generator H. Further let q>j be
a bounded net of finite measures on [0, oo) with the property that q>j * n is
L\-convergent to Sa * n for each rj e CQQ{R+). Next for a > 0 define Wa by
Wa{t) = d{t)ta-le-', t > 0, and assume

1. {(pj * Wa) is bounded in Li(R+),
2. lim^oo X00 dt\(<pj * Wa)(t)\ = 0 uniformly in j .
Then the following conditions are equivalent for x € X;
1. x G D(Ha),
2. S9jx is a\3?.^-convergent,
3. S9jx is x(Sf, ^-convergent,

and if these conditions are satisfied then

Hax = o{ar,9')-\im S9jx = T{2?,9r)-\im SfJx.
j j
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PROOF. 3 => 2 is evident and 2 => 1 by Proposition 3.3.
1 => 3. First remark that D(Ha) = D((I + H)a) = R((I + H)-a) and

since (/ + H)~a is a constant multiple of SV,, it suffices to prove x(%?,&~)-
convergence of S9lSw,,x for all x € 3?. But S9jSwnSn = S9j»wa*ri for all r\ e
CQO (R+) and since q>n is L]-convergent to Sa*t] for each ?/ e C§§(R+) it follows
immediately that S9jSw,,x is T ( ^ \ ^-convergent to HaSwnx for all JC e
J?eg(^)- But ^Teg(s) is CT(J",^")-dense and hence t(^,^")-dense. Moreover
SVjSwn = S<pj*wn by Proposition 3.2 and {S9j*wa} is an equicontinuous family
by Proposition 2.6, and conditions 1 and 2 on the q>j. Therefore S9jSwax is
T(JT, .^-convergent to HaSw,,x for all x e <^ by a standard 3e-argument,
as used to prove Proposition 2.3.

REMARK 5.5. If {S,}t>0 is equicontinuous, condition 2 on the q>j is not
necessary.

In the sequel we give two applications of Theorem 5.4 which both arise
from a special type of approximating measure. Hence as a preliminary we
prove the following.

PROPOSITION 5.6. Let y/ be a finite measure on R+ with Fourier transform
y/ satisfying y/(0) = 1 and let £j > 0 be a net converging to zero. For a > 0
define q>j as the bounded net of finite measures with Fourier transforms

Then q>j satisfies all the hypotheses of Theorem 5.4.

PROOF. Let y/j denote the inverse Fourier transform of X i-> y/(ejX). Then
q>j = y/j * tj is L\-convergent to 8a * n for each r\ e C^(R+) if y/j * £ is
L\ -convergent to ^ for each infinitely-often differentiable £ e Li(R+). But

r ds\{y/j * Ms) - {(j)i = r ds
Jo Jo Jo

because y/ has total integral one. The desired convergence then follows from
the Lebesgue dominated convergence theorem.

Next, to obtain the boundedness properties of the q>j, we note that y>j *
Wa — y/j * Xa where Xa = S + Ya and Ya is the inverse Fourier transform of
(-iX/(l- iX))k - 1. But then Ya is an integrable function by Proposition 4.5.
conditions 1 and 2 of Theorem 5.4 follow immediately.

As a first application of these application results we derive the character-
ization of Ha by the integral transform described in the introduction. The
last necessary step for this characterization is the following.
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PROPOSITION 5.7. Let a > 0 and m an integer strictly greater than a. Then
there is an integrable function y/ajn such that

f°° dt(\ -ea')m

(*) / T 1 =Aa&.m(aA)
Je ' '

for all e > 0 and all X in the upper half-plane.

PROOF. The left-hand side of (*) is analytic in the upper half-plane, and
the integral can be regarded as a contour integral along the positive real
axis from e to oo. Take X in the upper half plane, and change variable of
integration from t Xo s = Xt. This gives:

at)m f ds{\-eis)mf°° dt(l-eat) f <fc i

I, ' ^ ~ Jy(e.X)~'h(e,X)

where y(e,X) is the contour running from eX to oo along the ray from the
origin through X. Because the integrand is well behaved in the upper half-
plane, it follows from the Cauchy Integral Theorem that

. m

f 4l
Jy(e.X) s

{l-eis)'

depends only on the starting point eX of the contour of integration and not
on e and X separately. In other words, we can write

ds{\-eis)m . . ,.
s s

with y/a,m analytic in the upper half-plane. It remains to be proved that y/a,m
is the Fourier transform of an integrable function.

Introduce x by

Since % is integrable it is the Fourier transform of a continuous function %•
In fact since X >->• x(^)(l + |<M)e is integrable for sufficiently small positive e, it
follows that x is actually Holder continuous. Moreover, it is easily checked
from the definition that <j/a m(X) —» 0 as X —> oo, so / ^ x(X) dX — 0, that is,
*(0) = 0.

Finally % is a smooth function of A except at zero, where it can be written,
locally, as the product of Am~'~a by an analytic function. Hence, by Corollary
4.2, x(t) = O(\t\-m+a) at infinity.

Combining all those considerations, we see that t i-> ̂ (O/(~'O is a n in-
tegrable function whose Fourier transform has the same derivative in the
sense of distributions as ij/a,m(X). Thus, y/a,m(X) and the Fourier transform
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of t »-> x(t)/(-it) differ by a constant. Since they both vanish as X —* oo, this
constant must be 0, that is, ifta,m(X) is the Fourier transform of the integrable
function t >-* / (0/(~ '0-

Now combining Theorem 5.4 with Propositions 5.6 and 5.7 one draws the
following conclusion.

THEOREM 5.8. Let S be a uniformly bounded, locally x{Sf ,^)-equi-
continuous, a{%?.^-continuous semigroup with generator H. Further, for
a > 0, let m be an integer strictly greater than a.

Then the following conditions are equivalent, for x e %?;
1. xeD(Ha),
2. o(%?,gr)-\imf™ fiL=^imx exists,

£-•0+

3. i{%?, 9~Y lim /e°° y (/~5'^ x exists,
£—0+

' if these conditions are satisfied then
dt(I -S,)m . f°° dt (I - S,)m

«_0+ Je * ta X
 £U0+ lmJe t ta

= Ca,mHaX

where
_ r° dtq-e-T

*-a,m — I , 7Z
JO ' *

PROOF. This follows from the foregoing results because

where (pa,m,e is the inverse Fourier transform of

dt (1 - iXt)m

Finally we derive the formula (Ha)fi = HaP for 0 < a < 1 and /? > 0.

THEOREM 5.9. Let S be a uniformly bounded, locally x(3?,&~)-equi-
continuous, a {%?,&~)-continuous semigroup with generator H and let 0 <
a< 1.

It follows that
1. Ha generates a uniformly bounded, locally x(%?, &~)-equicontinuous,

a(3?.^-continuous semigroup Sa,
2. ifP>Q then

{Ha)p = HaP.
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PROOF. 1. We have already mentioned prior to Theorem 5.4 that Ha

generates a cr^.yj-continuous semigroup Sa where

= r
Joto

and the {nf}t>o form a convolution semigroup. This is basically Bochner's
observation. The /if can be identified as the inverse Fourier transforms of
the functions X >-> exp{-t(-iX)a} and their most important properties are

(1) H?{s)>0,

(2) / dsfi?(s) = 1,
Jo

The second and third properties are easily derived but the positivity property
is less obvious. It follows because X i-» Xa is a Bernstein function (see [22] or
[4]). Note that the <7(^\ .^-continuity of Sa then follows because

dstf(s)f(Sstll,,x).
0

Moreover if 0 < t < 1 then

/
ds/tf.(s) = I ds/i"(s) < I ds/i°(s)

Jrt-'l" Jr

because of properties (1) and (3) of the /if. Hence

lim I ds/if(s) = 0
r~*°° Jr

uniformly for t € (0,1] by properties (1) and (2). Therefore 5" = S^ is
locally equicontinuous by Proposition 2.6.

2. Since Ha generates Sa it follows from Theorem 5.8 that {Ha)p is
proportional to

dt{I-S?)'mI IMI \ I . •> — I

lim
f°° dt

e'"o+Je t ' t
where m is an integer strictly larger than ft and where the limit can be taken
either in the a(Sf ,9)-, or the x{%?,SF)-, topology. But since Sf - S^ and
/if is the inverse Fourier transform of X i-> txp{-t(-iX)"} it follows that

ro° dt (I - S?)m _f°°dt_\
Je t '

where <pa,p,m,e is the inverse Fourier transform of
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As in the proof of Proposition 5.7, by changing integration variable from t
to s = Xt{la, pa,p,m,e can be written as

with y/a,p,m analytic in the upper half-plane and

Then arguing as in Proposition 5.7 one deduces that ya,p,m is the Fourier
transform of an integrable function y/aip,m. Hence by Proposition 5.6 and
Theorem 5.5 one concludes that the o(3?,!F)-\im.i\ of S9nfmtx as e —• 0+
exists if, and only if, x e D(HaP) and then the limit is proportional to Ha&x.
This establishes that (Ha)P is proportional to H"P but it is easily concluded
that the factor of proportionality is one.

The foregoing results apply to the special cases of strongly continuous
and weakly* continuous semigroups and in both these cases the results can
be strengthened. We conclude this section with some comments on these
special cases.

Strong continuity of a semigroup S is equivalent to weak, or a{%? ,!F)-,
continuity. Thus to discuss strongly continuous semigroups we choose fF —
%?*. But the r(Jf, J"*)-topology coincides with the norm topology and equi-
continuity of S is equivalent to uniform boundedness. Hence Theorem 5.4,
combined with Remark 5.5, gives the following statement. Let S be a uni-
formly bounded, strongly continuous, semigroup with generator H. Further let
q>j be a bounded net of finite measures on [0, oo) with the property that g>j * q
is Li-convergent to Sa * n for each n e CQ§(R+) and {q>j *Wa) is bounded to
Li(R+), where a>0and Wa{t) = e(t)ta-le~', t > 0. Then

Hx = w. lim S9jx = s. lim S9jx

where the limits exist if, and only if,x€ D(Ha). In particular one may
choose the <pj in the manner of Propositions 5.6 and 5.7 and hence obtain
the analogue of Theorem 5.8,

/

oo jf IT S ) m f°° dt (I S ) m

— — x = s. lim / — — x
t ta «-o ye t ta

where the limits exist if, and only if, x € D{Ha). This last statement cor-
responds to the definition of Ha given by Balakrishnan [2] subsequently de-
veloped in [14], [3] and [11]. Our derivation is, however quite different to
the previous ones although the use of distribution theory has something in
common with the Lions-Peetre approach.

Next assume Sf has a predual ^ , set !F — JK, and consider a o^,^)-
continuous semigroup S, that is, a weak*-continuous semigroup. It follows
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from the discussion preceding Proposition 2.4 that S is locally equicontinu-
ous, but it is not necessarily equicontinuous even if it is uniformly bounded,
for example translations on L^ are not T(Loo.£i)-equicontinuous. Never-
theless, weak* compactness and duality arguments originating with DeLeeuw
[7] can be used to improve the foregoing results. Let S be a uniformly bounded
a{3f ,8?*)-continuous semigroup with generator H. Further let cpj be a bounded
net of finite measures on [0, oo) with the property that tpj * n is L\-con\ergent
to 5a * r\ for each r\ e C^(R+) and {fj * Wa) is bounded in Li(R+), where
a > 0 and Wa{t) = 0(O'Q~'<?"', t > 0. Then x e D{Ha) if, and only if
sup; ||5Pj.x|| < +oo and if these conditions are satisfied

Hax = v/*.\imSiPjx.

For example, x € D(Ha) if and only if there is a y such that x = Sw,,y and
then

supllS^.xH = s u p H ^ . ^ y l l < sup Up,- * Wa\\i • \\y\\.
j j j

Conversely if sup; ||5p>x|| < +oo then by weak*-compactness of the unit ball
there is a weak*-convergent subnet S9.,x, whose limit we denote by y. But
the adjoint semigroup S* is strongly continuous with generator H* and, by
definition, (//a)* = (H*)a. Now if z e D((H*)a) then

y

by the conclusion of the previous paragraph. Consequently x € D(Ha) and
y - Hax. Again one can make particular choices of fj and it follows as in
Theorem 5.8 that

dt{I -St)
m

with the limit existing if and only if x € D{Ha). This latter result was first
obtained by Berens, Butzer, Westphal [3] and independently by Komatsu
[11]. Note that it also follows from Proposition 5.6 and 5.7 that this last
result is also true with the weak*-limit replaced by the

6. Fractional derivatives

Again we consider a uniformly bounded, locally equicontinuous, o{%?',
continuous semigroup S with generator H. The aim of this section is to iden-
tify the fractional powers Ha of H as fractional derivatives of S. Explicitly
we establish that

Hax = lim ((/ - St)/t)
ax

t—>0+
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where the a(2?,9')-, or -c{2?,9')-, limit exists if, and only if, x e D(Ha).
There are a number of necessary preliminaries to the proof. First we must
define the fractional powers of (/ - St)/t.

Since (/ — S,)/t is norm bounded, for / > 0, one can define its exponential
by a uniformly convergent power series expansion. Then

Hence if ||5,|| < M for all t > 0, | |exp{-j(/ - S,)/t}\\ < M. Thus the
semigroups 5 •-> Ts — exp{-s(/ - St)/t} are uniformly bounded, and uni-
formly continuous. Therefore the fractional powers of their generators can
be defined as in Section 5.

The second step in the proof is to establish the existence of finite measures
H% on R+ such that the fractional powers have the representation

111 C \ / t \ a — <?

The basic result is a single operator expansion based on Theorem 5.8.

PROPOSITION 6.1. Let T be a bounded operator on the Banach space %?
with the property that \\Tn\\ < M for all n = 1,2,..., and some M < +oo
and let a > 0. // follows that (I - T) generates a uniformly bounded norm
continous semigroup and

IT T\a / • " ' / //cc~'~af7 0—s(l — T)\m
\i l ) — LQ m i uzz (i e )

Jo

n>0

where m > a is an integer,
rOO

Ca,m = I dSS ( 1 — e ) ,
Jo

and c° are the coefficients in the binomial expansion of x *-* (1 - x)a.

PROOF. First consider the semigroup 5 defined by the norm convergent
series

n>0

It follows immediately that S is norm continuous, ||5s|| < M for all s > 0,
and the generator of S is I - T. Therefore (/ - T)a is defined and

(/ - T)a = c~x
m f°° dss~l-a{I - e-

s{I-T))m

' Jo
by Theorem 5.8.
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Next we prove that

(/ -T)a = J2CJT"-
n>0

But it suffices to establish this for 0 < a < 1. The general case then follows by
a sequence of simple observations. First it is obvious for integral a. Second,
if a = m+P with m an integer and 0 < p < 1 then (I-T)a = (I-T)m(I-Ty
by Theorem 5.3. Third, one has

n>0

by straightforward calculation. Therefore we now assume 0 < a < 1. But
then

(/ - T)a = c~\ f dss-]-a(I - e~sesT)
' Jo

by the first part of the proof. Consequently

(/ - T)a = c~\ f°° dss-l-a((l - e~s)I + e~s(I - esT))
Jo

f dss-l-ae-s(I -esT).

Now substitution of the Taylor's series expansion of (I -esT) gives a series
expansion for (/ - T)a and the coefficients of this expansion are

c-\nn-a)/n\.

But for large enough n, for example, for n > a + 1, one finds

0<r(n-a)/n\<(e2/n)i+a

by an estimate of the Stirling type. Moreover | | rn | | < M. Hence the expan-
sion

(/ - 7y = / + ca.r
l £( r (« - a)/n\)T"

n>\

is norm convergent. But since this is valid for the operator T of multiplica-
tion by /, with |/| < 1. on C one must have CQ II~T(M — a)/n\ — c%. Hence

n>\

COROLLARY 6.2. Let fif denote the inverse Fourier transform of the function
H-( (1 -ea')/t)a. Then
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PROOF. It follows from Proposition 6.1, applied with T = S,, that

dsSs I £ ca
nS(s - nt)/t°

\n>o

But

-d(s-nt)/A =((l-ea')/tr.

J
The desired result on fractional derivatives now follows from the results

of Sections 4 and 5.

THEOREM 6.3. Let S be a uniformly bounded, locally x(3?,&~)-equi-
continuous, a(8?, ^-continuous semigroup with generator H. Let a > 0.

Then the following conditions are equivalent for x e %?;
1. xeD(Ha),

2. o(3?,9')-\imt^+({I -S,)/t)ax exists,

3. T(<r\<?>lim,_0+((/ -S,)/t)ax exists,
and if these conditions are satisfied then

- S,)/t)ax = T(JT,&•)-lim((/ - S,)/t)ax
( - • 0 + t—0+

= Hax.

PROOF. By Corollary 6.2 one has

where fif is the inverse Fourier transform of X i-> /if (A) = ((1 -e'x')/t)a. But
then ft (A) = (-iA)aij/{tX) where \j/{X) = ((1 - ea)/(-iX))a. Now it follows
from Proposition 4.5 that \j/ is the inverse Fourier transform of an integrable
function y/, and clearly ^(0) = 1. Therefore it follows from Proposition 5.6
that for each net tj > 0 converging to zero the finite measures <Pj - n". satisfy
the hypotheses of Theorem 5.4. The deisred result follows as an immediate
corollary of this latter theorem.

Finally we note that this result applies immediately to uniformly bounded,
strongly, or weakly*, continuous semigroups by the discussion at the end of
Section 5.
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