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HOW NOT TO PROVE THE ALON-TARSI
CONJECTURE

DOUGLAS S. STONES and IAN M. WANLESS

Abstract. The sign of a Latin square is −1 if it has an odd number of rows
and columns that are odd permutations; otherwise, it is +1. Let Le

n and Lo

n

be, respectively, the number of Latin squares of order n with sign +1 and −1.

The Alon-Tarsi conjecture asserts that Le

n �= Lo

n when n is even. Drisko showed

that Le

p+1 �≡ Lo

p+1 (mod p3) for prime p ≥ 3 and asked if similar congruences

hold for orders of the form pk + 1, p + 3, or pq + 1. In this article we show

that if t ≤ n, then Le

n+1 �≡ Lo

n+1 (mod t3) only if t = n and n is an odd prime,

thereby showing that Drisko’s method cannot be extended to encompass any

of the three suggested cases. We also extend exact computation to n ≤ 9, dis-
cuss asymptotics for Lo/Le, and propose a generalization of the Alon-Tarsi
conjecture.

§1. Introduction and basic properties

Alon and Tarsi are responsible for several fascinating conjectures. The
one we will refer to as the Alon-Tarsi conjecture asserts that for any even
order, the number of even Latin squares differs from the number of odd
Latin squares. This conjecture was made in [1, p. 132], where it was shown
to imply the even case of a conjecture attributed to Dinitz [6, p. 157]. The
Dinitz conjecture (Theorem 1.1) was subsequently proved by Galvin [7] and
Slivnik [20] (see also [3], [10], [13], [28]).

Theorem 1.1. Given any n2 sets Sij of cardinality n with 0 ≤ i, j ≤ n − 1,
there exists an n × n matrix (lij) with each lij ∈ Sij without repeated symbols
in any row or column.

This result can be interpreted in terms of partial Latin squares or list
colorings of complete bipartite graphs.
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2 D. S. STONES AND I. M. WANLESS

Huang and Rota [12] showed that the Alon-Tarsi conjecture is equiva-
lent to a certain conjecture for supersymmetric bracket algebras. They also
showed that this conjecture in turn implies a tantalizing conjecture now
commonly known as Rota’s basis conjecture, also referred to as Rota’s col-
orful conjecture (see [18]). (For further reading on the Alon-Tarsi conjecture,
see [1], [8], [12], [18].) This conjecture can be stated as follows.

Conjecture 1.2. Let B1,B2, . . . ,Bn be bases for an n-dimensional vec-
tor space (or, more generally, for a rank n matroid). Then each basis can
be linearly ordered, say, B1 = {b11, b12, . . . , b1n}, B2 = {b21, b22, . . . , b2n}, . . . ,

Bn = {bn1, bn2, . . . , bnn}, in such a way that each of the sets {b11, b21, . . . , bn1},
{b12, b22, . . . , bn2}, . . . , {b1n, b2n, . . . , bnn} is also a basis.

The aim of this paper is to prove a number of results about the parity
of Latin squares, including congruences that show that a method employed
by Drisko [4] for a partial solution has little hope of being extended. First
we must set up our definitions and notation.

A Latin square of order n is an n × n array L = (lij) of n symbols such
that each symbol occurs exactly once in each row and exactly once in each
column. We will take the symbol set of L to be Zn, matching the row and
column indices. A Latin square is normalized if the first row is (0,1, . . . , n −
1). A Latin square is reduced if the first row is (0,1, . . . , n − 1) and the
first column is (0,1, . . . , n − 1)T . A Latin square L = (lij) is unipotent if
l00 = l11 = · · · = l(n−1)(n−1).

Suppose that P is a property of Latin squares of order n. Let LP
n be

the number of Latin squares of order n that satisfy P . Let KP
n , RP

n , and
UP

n be, respectively, the number of normalized, reduced, and normalized
unipotent Latin squares of order n that satisfy P . Let TP

n be the number of
unipotent Latin squares of order n with the first column (0,1, . . . , n − 1)T

that satisfy P . If P is omitted, we can assume that P “is a Latin square”
(i.e., the trivial property). It follows that Rn = Un = Tn and that

(1.1) Ln = n!(n − 1)!Rn

for all n.
Let α be a permutation of Zn. If α can be produced by the composition

of an even number of transpositions, then α is called an even permutation;
otherwise, α is an odd permutation. Define the sign of α, denoted ε(α), as
+1 if α is an even permutation and −1 if α is an odd permutation.
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HOW NOT TO PROVE THE ALON-TARSI CONJECTURE 3

Given a Latin square L = (lij) of order n, we can identify the following
3n permutations of Zn. For all i ∈ Zn define σrow

i by σrow
i (j) = lij . For

all j ∈ Zn define σcol
j by σcol

j (i) = lij . For all � ∈ Zn define σsym
� such that

σsym
� (i) is equal to the j for which lij = �. We call εrow(L) :=

∏
i ε(σ

row
i ),

εcol(L) :=
∏

j ε(σcol
j ), and εsym(L) :=

∏
� ε(σsym

� ) the row-sign, column-sign,
and symbol-sign of L, respectively. The product ε(L) := εrow(L)εcol(L) is
called the sign of L.

A Latin square is called even or odd if ε(L) = +1 or ε(L) = −1, respec-
tively. A Latin square is called row-even or row-odd if εrow(L) = +1 or
εrow(L) = −1, respectively. A Latin square is called column-even or column-
odd if εcol(L) = +1 or εcol(L) = −1, respectively. A Latin square is called
symbol-even or symbol-odd if εsym(L) = +1 or εsym(L) = −1, respectively.
We define the following properties.

• e = “is an even Latin square”
• o = “is an odd Latin square”
• re = “is a row-even Latin square”
• ro = “is a row-odd Latin square”
• ce = “is a column-even Latin

square”

• co = “is a column-odd Latin
square”

• se = “is a symbol-even Latin
square”

• so = “is a symbol-odd Latin
square”

A theorem of Janssen [14, Theorem 3.2] (see also [25], [26]) states that,
for any Latin square L of order n,

(1.2) εrow(L)εcol(L)εsym(L) =

{
+1 if n ≡ 0 or 1 (mod 4),

−1 if n ≡ 2 or 3 (mod 4).

In particular, we can use (1.2) to find εsym(L) from εrow(L), εcol(L) and
the value of n (mod 4). We define the parity of a Latin square L to be the
ordered triplet

(1.3) πrowπcolπsym ∈ {
n≡0 or 1 mod 4︷ ︸︸ ︷

000,011,101,110,

n≡2 or 3 mod 4︷ ︸︸ ︷
111,100,010,001}

such that πx = 0 when εx(L) = +1 and πx = 1 when εx(L) = −1 for x ∈
{row, col, sym}. We call πrow, πcol, and πsym the row-parity, column-parity,
and symbol-parity of L, respectively. We will use Lπ

n and Rπ
n to denote,

respectively, the number of all Latin squares and the number of reduced
Latin squares of order n with given parity π = πrowπcolπsym. By considering
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4 D. S. STONES AND I. M. WANLESS

Table 1: Table of identities

If n ≡ 0 or 1 (mod 4)
Re

n = Rse

n = R000
n + R110

n

Ro

n = Rso

n = R011
n + R101

n

Ue

n = Rce

n = R000
n + R101

n

Uo

n = Rco

n = R011
n + R110

n

T e

n = Rre

n = R000
n + R011

n = Ue

n

T o

n = Rro

n = R101
n + R110

n = Uo

n

R111
n = R100

n = R010
n = R001

n = 0
R011

n = R101
n

R011
n = R101

n = R110
n when n is even

If n ≡ 2 or 3 (mod 4)
Re

n = Rso

n = R111
n + R001

n

Ro

n = Rse

n = R100
n + R010

n

Ue

n = Rco

n = R111
n + R010

n

Uo

n = Rce

n = R100
n + R001

n

T e

n = Rro

n = R111
n + R100

n = Ue

n

T o

n = Rre

n = R010
n + R001

n = Uo

n

R000
n = R011

n = R101
n = R110

n = 0
R100

n = R010
n

R100
n = R010

n = R001
n when n is even

the effect of matrix transposition, it can easily be seen that, for all n, Ue

n =
T e

n , Uo

n = T o

n , R100
n = R010

n , and R011
n = R101

n . Consequently, we can deduce
all but the last row of Table 1. The last row of Table 1 will be proved
separately in Lemma 1.8 but is appended for the sake of completeness.

In Section 2 we describe an algorithm which we used to compute the
values of Rπ

n for n ≤ 9 listed in Table 2.
Let In = Sn × Sn × Sn, where Sn is the symmetric group acting on Zn.

Then In acts on the set of Latin squares L = (lij) in the following way. For
each θ = (α,β, γ) ∈ In, we define θ(L) to be the Latin square formed from L

by permuting the rows according to α, permuting the columns according to
β, and permuting the symbols according to γ. To be precise, θ(L) = (l′

ij) is
the Latin square defined by l′

ij = γ(lα−1(i)β−1(j)) for all i, j ∈ Zn. Any θ ∈ In

is called an isotopism, and L and θ(L) are said to be isotopic. Isotopisms
of the form (α,α,α) are called isomorphisms. If θ(L) = L, then θ is said
to be an autotopism of L. The group of all autotopisms of L is called the
autotopism group of L, denoted Atp(L). If θ is an isomorphism and θ ∈
Atp(L), then θ is said to be an automorphism of L. The identity permutation
will be denoted ε. Any autotopism other than (ε, ε, ε) is nontrivial.

Let θ = (α,β, γ) ∈ In be an isotopism. By considering the action of θ on
each individual row and column, we find that

ε
(
θ(L)

)
= ε(L)εn(α)εn(β)ε2n(γ) = ε(L)εn(α)εn(β),

εrow

(
θ(L)

)
= εrow(L)εn(β)εn(γ),

(1.4)
εcol

(
θ(L)

)
= εcol(L)εn(α)εn(γ),

εsym

(
θ(L)

)
= εsym(L)εn(α)εn(β).
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T
ab

le
2:

R
π n

w
he

re
π

=
π

ro
w
π

co
lπ

sy
m

an
d

1
≤

n
≤

9

E
ve

n
La

ti
n

sq
ua

re
s

O
dd

La
ti
n

sq
ua

re
s

n
≡

0,
1

(m
od

4)
n

≡
2,

3
(m

od
4)

n
≡

0,
1

(m
od

4)
n

≡
2,

3
(m

od
4)

n
R

0
0
0

n
R

1
1
0

n
R

1
1
1

n
R

0
0
1

n
R

0
1
1

n
=

R
1
0
1

n
R

1
0
0

n
=

R
0
1
0

n

1
1

2
1

3
1

4
4

5
8

32
8

6
40

80
17

76
17

76
7

44
88

96
0

41
20

32
0

41
66

40
0

8
13

84
78

48
55

04
13

22
67

63
87

84
13

22
67

63
87

84
9

94
40

82
61

83
01

80
86

4
94

40
61

74
98

56
82

94
4

94
39

15
67

07
41

97
50

4
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6 D. S. STONES AND I. M. WANLESS

For example, (1.4) implies that θ preserves the parity of a Latin square if n is
even or if θ is an isomorphism. So, when n is even and P ∈ {e,o,re,ro,ce,

co, se, so} or P is any parity,

(1.5) LP
n = n!(n − 1)!RP

n = n!(n − 1)!UP
n .

Considering the effect of swapping two rows, columns, or symbols, we find
from (1.4) that for odd n ≥ 3,

(1.6) L000
n = L011

n = L101
n = L110

n and L111
n = L100

n = L010
n = L001

n ,

and hence

(1.7) Le

n = Lo

n =
1
2
Ln =

1
2
n!(n − 1)!Rn =

1
2
n!(n − 1)!Un.

We will see shortly that for odd n it is conjectured that Re

n �= Ro

n and
Ue

n �= Uo

n , even though Le

n = Lo

n when n ≥ 3. On the other hand, for even n,
(1.5) implies that

Re

n = Ro

n ⇐⇒ Ue

n = Uo

n ⇐⇒ Le

n = Lo

n.

We now introduce the following conjecture by Alon and Tarsi [1, p. 132]
and a theorem of Drisko [4], which motivate the results in Section 3.

Conjecture 1.3 (Alon-Tarsi conjecture). When n is even, Le

n �= Lo

n.

Theorem 1.4 (see Drisko [4]). If p is an odd prime, then Le

p+1 − Lo

p+1 ≡
(−1)(p+1)/2p2 (mod p3).

Theorem 1.4 proves a special case of the Alon-Tarsi conjecture. After
proving Theorem 1.4, Drisko [4, p. 34] made the following remark: “This
strongly suggests that the conjecture should hold for all even integers. How
might one prove the other cases? The general results and approach. . .could
still be applied. The most promising cases seem to be pk +1 . . .but one might
also try p + 3 or even pq + 1, where p �= q are odd primes.”

In Corollary 3.7, we will prove that Le

n+1 ≡ Lo

n+1 (mod t3) for all 1 ≤ t ≤
n except when t = n and n is an odd prime. This rules out an analogue of
Theorem 1.4 for many cases, including the three cases suggested by Drisko.

Huang and Rota [12] showed that the Alon-Tarsi conjecture is equivalent
to the following conjecture.

Conjecture 1.5. When n is even, Rre

n �= Rro

n .
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HOW NOT TO PROVE THE ALON-TARSI CONJECTURE 7

Actually, [12] considered the conjecture Lre

n �= Lro

n for even n, but this is
equivalent to Conjecture 1.5, given (1.5). Some values of Kre

n and Kro

n were
given in [9] for n ≤ 7 (of which Kre

4 is incorrect and the sign of Kre

7 − Kro

7

is missing; see also [29]). Table 3 lists Rre

n and Rro

n for n ≤ 9. Since row
permutations do not affect the row-sign of a Latin square, Rre

n = (n − 1)!Kre

n

and Rro

n = (n − 1)!Kro

n (also see [14], [15], [16] for further results on the row-
sign of Latin squares and Latin rectangles).

We also list the following related conjectures. The first conjecture was
made by Zappa [27], and the second was not found in the literature.

Conjecture 1.6. We have Ue

n �= Uo

n for n ≥ 1.

Conjecture 1.7. We have Re

n �= Ro

n for n ≥ 1.

For even n, (1.5) implies that

(1.8) Re

n − Ro

n =
1

n!(n − 1)!
(Le

n − Lo

n) = Ue

n − Uo

n .

However, for odd n, Ue

n − Uo

n and Re

n − Ro

n might be different. For example,
Tables 1 and 2 show that Re

7 − Ro

7 = 276480 �= 368640 = Ue

7 − Uo

7 and Re

9 −
Ro

9 = 31302667468800 �= 2086844497920 = Ue

9 − Uo

9 . Table 1 implies that
|Rre

n − Rro

n | = |Ue

n − Uo

n | for all n, so Conjecture 1.6 implies Conjecture 1.5.
In the following lemma, we prove the last row of Table 1 by exploiting

the other identities in that table.

Lemma 1.8. For even n, we have R011
n = R101

n = R110
n and R100

n = R010
n =

R001
n .

Proof. By (1.8), Re

n − Ro

n = Ue

n − Uo

n . If n ≡ 0 (mod 4), then R000
n +R110

n −
R011

n − R101
n = R000

n + R101
n − R011

n − R110
n . Hence, R101

n = R110
n . The result

follows since R011
n = R101

n and R111
n = R100

n = R010
n = R001

n = 0. We can prove
the claim for n ≡ 2 (mod 4) similarly.

Drisko [5] showed that Ue

p − Uo

p ≡ (−1)(p−1)/2 (mod p) for odd primes p.
Glynn [8] showed that Le

p−1 − Lo

p−1 ≡ (−1)(p−1)/2 (mod p) for odd primes p

(see also [22]). Glynn also showed that the main results of Zappa [27] are
unreliable, which has consequences for [5]. (Specifically, the claim in the
title of [5] was, in fact, not proved, since it is reliant on an invalid result by
Zappa. However, Drisko’s proof of Conjecture 1.6 for prime n in [5] remains
valid.) Marini and Pirillo (see [15], [27]) gave the values of Ue

n − Uo

n for
n ≤ 8. Note that Ue

9 − Uo

9 = Rre

9 − Rro

9 , which is given in Table 3.
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8 D. S. STONES AND I. M. WANLESS

To review, we know that the Alon-Tarsi conjecture and Conjectures 1.5,
1.6, and 1.7 are true when n = p ± 1 for some odd prime p and when n ≤ 9
(see Table 2). Additionally, Conjecture 1.6 holds when n is a prime. In
Section 4, we will give a conjecture that includes, as special cases, the Alon-
Tarsi conjecture and Conjectures 1.5, 1.6, and 1.7.

We conclude this section by introducing some lemmas that we will use
later in this paper. Let L be a Latin square. If M is a submatrix of L that
is also a Latin square, then M is called a subsquare of L.

Lemma 1.9. Let L be a Latin square of order n. If M is a subsquare of L

and M �= L, then the order of M is at most 	n/2
.

Lemma 1.10. Let L be a Latin square, and let θ = (α,β, γ) ∈ Atp(L).
Let M denote the submatrix formed by the intersection of the rows whose
indices are fixed by α and the columns whose indices are fixed by β. If M is
not empty, then it is a subsquare of L.

We will also make use of the following result from [25], which describes the
effect of cycle switching on the parity of a Latin square. A Latin rectangle
M is a matrix in which each symbol of M appears in every row of M

and no symbol is repeated within a column. A partial row switch of length
� consists of swapping the two rows of a 2 × � Latin rectangle within L.
A partial column switch of length � consists of swapping the two columns of
an � × 2 submatrix M within L, whose transpose MT is a Latin rectangle.

Lemma 1.11 ([25, Proposition 1]). Let L be a Latin square of parity
π = πrowπcolπsym.
• A partial row switch of length � toggles both πcol and πsym if and only if

� is odd, but leaves πrow unchanged.
• A partial column switch of length � toggles both πrow and πsym if and only

if � is odd, but leaves πcol unchanged.

§2. Computational results and asymptotics

In this section, we describe how we found the values of Rπ
n exactly for

n ≤ 9. Various combinations of these numbers were given for n ≤ 8 (e.g.,
by Janssen [14] and Zappa [26]), which we verify and extend. Table 2 lists
the results of our computations. These data motivate us to consider by how
much the nonzero values of Rπ

n can differ for a given n.
The set of all Latin squares isotopic to a given Latin square L is called

the isotopy class of L. We can partition the set of Latin squares into isotopy
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HOW NOT TO PROVE THE ALON-TARSI CONJECTURE 9

classes. The number of reduced Latin squares in the isotopy class containing
L is n!n/| Atp(L)| (see, e.g., [19]).

We begin with a set Ω consisting of one representative from each isotopy
class of Latin squares of order n. For L ∈ Ω, let I(L,π) be the number
of reduced Latin squares isotopic to L that have parity π = πrowπcolπsym.
Hence,

Rπ
n =

∑
L∈Ω

I(L,π).

For any given L ∈ Ω, we have
∑

π I(L,π) = n!n/| Atp(L)|. Using (1.2), we
know that I(L,π) �= 0 only if

(2.1) π ∈
{

{000,011,101,110} if n ≡ 0 or 1 (mod 4),

{111,100,010,001} if n ≡ 2 or 3 (mod 4).

In the case when n is even, isotopisms preserve the parity of a Latin
square. Therefore, I(L,π) = n!n/| Atp(L)| when π is the parity of L, and
I(L,π) = 0 otherwise. We consider the case of odd n in the following theo-
rem. For L ∈ Ω, let r = r(L) be the number of odd rows, that is, the number
of i such that ε(σrow

i ) = −1, and let c = c(L) be the number of odd columns,
that is, the number of j such that ε(σcol

j ) = −1. The row-parity of L is con-
gruent to r (mod 2), and the column-parity of L is congruent to c (mod 2).

Theorem 2.1. Suppose that n is odd. Then suppose also that L ∈ Ω. Let
μ = (n − 1)!/| Atp(L)|. If π satisfies (2.1), then

I(L,π) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(n − r)(n − c)μ if πrow ≡ r and πcol ≡ c (mod 2),

(n − r)cμ if πrow ≡ r and πcol �≡ c (mod 2),

r(n − c)μ if πrow �≡ r and πcol ≡ c (mod 2),

rcμ if πrow �≡ r and πcol �≡ c (mod 2).

Proof. From L = (lij) we can construct n!n, not necessarily distinct,
reduced Latin squares by the following steps.

(I) Pick i, j ∈ Zn.
(II) Pick γ ∈ Sn such that γ(lij) = 0.

(III) Pick α,β ∈ Sn, such that α(i) = 0 and β(j) = 0, and also such that
(α,β, γ)(L) is reduced.
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10 D. S. STONES AND I. M. WANLESS

The permutations α and β in step (III) are determined by L and the choices
made in steps (I) and (II). Furthermore, each of the n!n/| Atp(L)| reduced
Latin squares isotopic to L can be constructed by steps (I)–(III).

If θ and ϕ are isotopisms such that θ(L) = ϕ(L), then θϕ−1 is an auto-
topism of L. Hence, each reduced Latin square isotopic to L is generated
by steps (I)–(III) at most | Atp(L)| times. Since steps (I)–(III) generate
n!n reduced Latin squares, of which n!n/| Atp(L)| are distinct, we deduce
that each reduced Latin square isotopic to L is generated by steps (I)–(III)
exactly | Atp(L)| times.

Let θ = (α,β, γ) as defined by steps (I)–(III). Observe that θ = (γσcol
j ,

γσrow
i , γ). The row-parity of θ(L) is incongruent to r (mod 2) if and only if

−1 = ε(γ)nε(σrow
i )nε(γ)n = ε(σrow

i ). Similarly, the column-parity of θ(L) is
incongruent to c (mod 2) if and only if −1 = ε(γ)nε(σcol

j )nε(γ)n = ε(σcol
j ).

In particular, the row and column parities of θ(L) depend only on L and
the choice of i and j.

We conclude that steps (I)–(III) generate, for example, exactly (n − r)(n −
c)μ distinct reduced Latin squares with row-parity congruent to r (mod 2)
and column-parity congruent to c (mod 2). The other cases are similar.

The second author has used the algorithm described above to find the
values of Rπ

n given in Table 2, that is, for n ≤ 9. The first author indepen-
dently tested the algorithm for n ≤ 7. From Table 2 we can deduce the data
in Table 3 for Rro

n and Rre

n . We can also deduce from Table 2 that

(2.2) Rπ
n > 0

Table 3: Rre

n and Rro

n for 1 ≤ n ≤ 9

n Rre

n Rro

n Rre

n − Rro

n

1 1 0 1
2 0 1 −1
3 1 0 1
4 4 0 4
5 16 40 −24
6 3552 5856 −2304
7 8286720 8655360 −368640
8 270746124288 264535277568 6210846720
9 188799828904378368 188797742059880448 2086844497920
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HOW NOT TO PROVE THE ALON-TARSI CONJECTURE 11

whenever n ≥ 5 and π satisfies (2.1). For any n ≥ 10, we can build a reduced
Latin square of order n containing a reduced Latin subsquare of order 5. By
changing the subsquare, we can achieve four different parities, which must
give us the four options in (2.1).

It was suggested in [25] that there should be roughly the same number of
Latin squares of each possible parity. We now state a more specific formal
conjecture. In this conjecture, x ∼ y denotes that x and y are asymptotically
equal, in other words, x/y → 1 as n → ∞.

Conjecture 2.2. We have the following:

R000
n ∼ R011

n ∼ R101
n ∼ R110

n ∼ 1
4
Rn for n ≡ 0,1 (mod 4),

R111
n ∼ R100

n ∼ R010
n ∼ R001

n ∼ 1
4
Rn for n ≡ 2,3 (mod 4).

This conjecture implies that the number of even Latin squares is asymp-
totically equal to the number of odd Latin squares. As partial evidence for
this conjecture we can consider the row-parity of Latin rectangles. Row-
parity is defined for Latin rectangles analogously to how it was defined
for Latin squares. A k × n Latin rectangle is reduced if its first row is
(0,1, . . . , n − 1) and the first column is (0,1, . . . , k − 1)T . Let Lre

k,n, Lro

k,n,
Rre

k,n, and Rro

k,n be, respectively, the number of row-even, row-odd, reduced
row-even, and reduced row-odd k × n Latin rectangles.

Lemma 2.3. If 2 ≤ k ≤ o(n) as n → ∞, then Lre

k,n ∼ Lro

k,n and Rre

k,n ∼ Rro

k,n.

Proof. Starting from any reduced k × n Latin rectangle, we can obtain
a reduced Latin rectangle of the opposite row-parity by interchanging the
symbol x in the second position of the last row with some other symbol y to
its right in the last row. This works provided that y does not already appear
in the second column and x does not already appear in the column we are
moving it to. There are between n − 2k and n − k (inclusive) valid such
interchanges. Since the starting rectangle was arbitrary and interchanges
are reversible (i.e., whenever an interchange transforms rectangle L to L′,
then an interchange on the same positions transforms L′ to L), we have

n − 2k
n − k

≤
Rre

k,n

Rro

k,n

≤ n − k

n − 2k
,

from which it follows that Rre

k,n ∼ Rro

k,n. The same argument works to show
that Lre

k,n ∼ Lro

k,n.
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12 D. S. STONES AND I. M. WANLESS

A similar result was given by Chow [3, Theorem 4] in the case when
k ≤ (logn)3/2−ε. Chow also claimed that McKay improved the bound to
k = o(n), although a proof of this result was not given in [3]. Habsieger and
Janssen [9] conjectured that Rre

k,n �= Rro

k,n whenever 1 ≤ k ≤ n except when
(k,n) = (3,4). Actually, their conjecture was for normalized Latin rectangles
(where the first row is in order) but it can be shown to be equivalent to the
version just given. It is easy to show that Lre

k,n = Lro

k,n for odd k, while for
even k, the conjecture in [9] implies that Lre

k,n �= Lro

k,n whenever 2 ≤ k ≤ n.
Although it is easy to find heuristic arguments in favor of Conjecture 2.2

(e.g., in [25], and Lemma 2.3 above), a formal proof does not seem easy.
However, we can prove a weaker hypothesis on the supposition that n is
odd. For odd n ≥ 3, (1.6) implies that Lπ

n = Lπ′
n , provided that π and π′

satisfy (2.1). Our next aim is to show that the ratio Rπ
n/Rπ′

n , which we
believe tends to 1, is at least bounded. We need the following lemma, in
which we again use the notation that r = r(L) is the number of odd rows
and c = c(L) is the number of odd columns in a Latin square L of order
n = n(L). We say that almost all Latin squares satisfy a property P if
LP

n ∼ Ln as n → ∞.

Lemma 2.4. Almost all Latin squares satisfy n/63 ≤ r ≤ 62n/63 and
n/63 ≤ c ≤ 62n/63.

Proof. Let η be the smallest even integer greater than 31n/63. Let Hi be
the set of Latin squares of order n in which there are i odd rows and η − i

even rows among the first η rows. By [11, Lemma 3.1],

|Hi|
|Hη/2| ≤ 3η/2

(
η

i

)
/

(
η

η/2

)
= 3η/2 (η/2)!2

i!(η − i)!

for 0 ≤ i ≤ η, provided that n is sufficiently large. Thus, using Stirling’s
approximation, |Hi|/|Hη/2| = o(0.999n) whenever i < η/31 or i > 30η/31.
Hence, almost all Latin squares L satisfy n/63 ≤ r ≤ 62n/63, and similarly,
n/63 ≤ c ≤ 62n/63, by considering the transpose of L.

Theorem 2.5. If n is odd and sufficiently large, then Rπ
n/Rπ′

n < 4000 for
any two parities π and π′ satisfying (2.1).

Proof. As shown in [17], almost all Latin squares L have | Atp(L)| = 1.
Combined with Lemma 2.4 and Theorem 2.1, we find that almost all Latin
squares L satisfy n!n/632 ≤ I(L,π) ≤ n!n(62/63)2, provided that π satis-
fies (2.1) and that n is odd. The result follows since 622 = 3844 < 4000.
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HOW NOT TO PROVE THE ALON-TARSI CONJECTURE 13

We will now show that [2, Conjecture 6.1] implies Conjecture 2.2 for
odd n. A derangement is a permutation without fixed points. Let X =
(xij) denote a Latin square chosen uniformly at random from the Ln Latin
squares of order n. We can define a derangement ξ of Zn by x0j �→ x1j . It
was conjectured in [2] that ξ is distributed asymptotically uniformly among
derangements of Zn. In particular (see, e.g., [9]), ξ would be even (or odd)
with probability approaching 1/2. Now ε(σrow

1 (X)) = ε(σrow
0 (X))ε(ξ), so it

would follow that ε(σrow
0 (X)) = ε(σrow

1 (X)) with probability approaching
1/2. The same would hold for any other pair of rows and also for any
pair of columns. That can only be true if almost all Latin squares have
|r − n/2| ≤ o(n) and |c − n/2| ≤ o(n). Together with the argument used to
prove Theorem 2.5, it would follow that Rπ

n ∼ Rπ′
n and Lπ

n ∼ Lπ′
n for odd n.

That is, the conjecture in [2] implies Conjecture 2.2 for odd n.
For even n, (1.5) implies that Lπ

n = n!(n − 1)!Rπ
n for all parities π. Hence,

with n restricted to being even, if π and π′ are two parities that satisfy (2.1),
then Rπ

n ∼ Rπ′
n if and only if Lπ

n ∼ Lπ′
n .

§3. Congruences

The aim of this section is to find congruences satisfied by Re

n and Ro

n in
order to respond to Drisko’s comments in [4] as quoted in Section 1. We
begin by specializing the proof template in [23] to be applicable to Latin
squares of a given sign. Let C be the set of all reduced Latin squares of
order n. Consider a group G of isotopisms that acts on C. Suppose that G

acts on a set A where {L ∈ C : | Atp(L) ∩ G| > 1} ⊆ A ⊆ C. Unless otherwise
specified, we will assume that A = {L ∈ C : | Atp(L) ∩ G| > 1}.

We will require the extra condition that G is sign-preserving on C; that
is, ε(θ(L)) = ε(L) for all θ ∈ G and L ∈ C. For x ∈ {+1, −1}, we define
Cx = {L ∈ C : ε(L) = x} and Ax = {L ∈ A : ε(L) = x}. If G is sign-preserving
on C, then G acts separately on C+1 and C−1. Similarly, since A is closed
under the action of G, if G is sign-preserving on C, then G acts separately
on A+1 and A −1. It follows that |Cx| ≡ |Ax| (mod |G|) for x ∈ {+1, −1}.
This proves the following lemma.

Lemma 3.1. We have Re

n ≡ |A+1| (mod |G|) and Ro

n ≡ |A −1| (mod |G|).

To ensure that G is sign-preserving and acts on C, we choose G to consist
only of isomorphisms and insist that each (α,α,α) ∈ G has α(0) = 0. In fact,
with this restriction, G preserves parity and sign, by (1.4).

We illustrate the use of our proof template with the following result.
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14 D. S. STONES AND I. M. WANLESS

Theorem 3.2. Both Re

n and Ro

n are divisible by (�n/2� − 1)! for all n.
Moreover, Rπ

n is divisible by (�n/2� − 1)! for all parities π.

Proof. This proof uses the setup for Lemma 3.1. Let G be the group of
isomorphisms (α,α,α) such that α fixes each of the points 0,1, . . . , 	n/2
.
If θ = (α,α,α) ∈ G is a nontrivial automorphism of some L ∈ C, then the
rows and columns of L whose indices are fixed by α form a subsquare M

of order at least 	n/2
 + 1, by Lemma 1.10. Lemma 1.9 therefore implies
that M = L, but this contradicts that θ is nontrivial. Hence, A = {L ∈ C :
| Atp(L) ∩ G| > 1} = ∅, so |A+1| = |A −1| = 0. The result now follows from
Lemma 3.1.

Since isomorphisms preserve parity, the same argument implies the second
claim of the theorem.

Theorem 3.2 identifies that Re

n and Ro

n, despite being conjectured to be
different for all n, share a superexponential divisor as n → ∞. Theorem 3.2
also implies that (�n/2� − 1)! divides Rn, but this is no better than the
following theorem in [17].

Theorem 3.3 ([17, Theorem 4.1]). Let m = 	n/2
. Then m! divides Rn.
Moreover, if n is odd, then gcd(m!(m − 1)!Rm, (m + 1)!) divides Rn.

In fact, the proof of Theorem 3.2 is a modified version of the proof of
Theorem 3.3. The following theorem also incidentally gives a divisor for Rn,
which sometimes improves on Theorem 3.3 (see [21] for more about Rn).

Theorem 3.4. Let n and c be positive integers, and let p be a prime such
that n/2 > (c − 1)p and n ≥ cp + 3. Then

(i) gcd(pc, (n − cp − 1)!2Rn−cp) divides Re

n and Ro

n if cp is odd;
(ii) gcd(pc, (n − cp − 1)!2Re

n−cp, (n − cp − 1)!2Ro

n−cp) divides Re

n and Ro

n;
(iii) Re

n ≡ Ro

n (mod pc) if cp is odd.

Proof. This proof uses the setup for Lemma 3.1. Define αt to be the
p-cycle (1 + pt,2 + pt, . . . , p + pt). Let G be the group of isomorphisms gen-
erated by {(αt, αt, αt) : 0 ≤ t ≤ c − 1}, so |G| = pc.

Consider the structure of any L ∈ C that admits a nontrivial automor-
phism θ ∈ G. By Lemma 1.10, the rows and columns whose indices are
fixed by θ form a subsquare M of order at least n − cp. Furthermore, the
structure of G implies that the order of M is congruent to n (mod p).
Lemma 1.9 implies that the order of M is no more than n/2 = n − n/2 <

n − (c − 1)p, by assumption. Hence, the order of M must be exactly n − cp,
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HOW NOT TO PROVE THE ALON-TARSI CONJECTURE 15

and therefore, M must be formed by the rows and columns whose indices
are 0, cp+1, cp+2, . . . , n − 1. For any L ∈ C, let X be the submatrix formed
by the rows and columns whose indices are 0, cp + 1, cp + 2, . . . , n − 1. Let
A = {L ∈ C : X is a subsquare of L}.

We partition A into equivalence classes in the following way. Two Latin
squares L and L′ in A are equivalent if ε(L) = ε(L′) and L′ can be con-
structed from L by the following steps.
(a) Replace the subsquare X by any of the Rn−cp reduced Latin squares on

the same symbol set.
(b) Apply some permutation to the set of partial rows {(li1, li2, . . . , li(cp)) :

cp + 1 ≤ i ≤ n − 1}.
(c) Apply some permutation to the set of partial columns {(l1j , l2j , . . . ,

l(cp)j) : cp + 1 ≤ j ≤ n − 1}.
Different choices for steps (a)–(c) generate distinct Latin squares in A. Since
n ≥ cp + 3, the sets in (b) and (c) have cardinality at least 2.

To prove statement (i), suppose that cp is odd. We can choose arbitrarily
from Rn−cp reduced Latin squares in step (a) and from (n − cp − 1)! permu-
tations in step (b). After steps (a) and (b), to ensure that ε(L) = ε(L′), we
see from Lemma 1.11 that we can only choose from (1/2)(n − cp − 1)! permu-
tations in step (c). Hence, each equivalence class has cardinality (1/2)(n −
cp − 1)!2Rn−cp. The stated result follows, since p is odd.

The odd cp case of statement (ii) is true by statement (i). Now assume
that cp is even. In step (a) we must replace X by a subsquare of sign
ε(X), but the permutations in steps (b) and (c) may be chosen arbitrarily.
Hence, each equivalence class has cardinality (n − cp − 1)!2Re

n−cp or (n −
cp − 1)!2Ro

n−cp.
To prove statement (iii), equivalence on A is instead defined by switching

the pair of partial rows

(l(cp+1)1, l(cp+1)2, . . . , l(cp+1)(cp)) ↔ (l(cp+2)1, l(cp+2)2, . . . , l(cp+2)(cp)),

which both exist since n ≥ cp+3. Since cp is odd, this equivalence partitions
A into pairs {L,L′ }, in which ε(L) = −ε(L′). Hence, |A+1| = |A−1|.

Any divisor of both Re

n and Ro

n is also a divisor of Rn. In some instances,
Theorem 3.4 can imply a divisor for Rn that is not implied by Theorem 3.3.
Specifically, for some primes p there are finitely many values of n for which
we can now prove that pc divides Rn using Theorem 3.4, whereas Theo-
rem 3.3 proves only that pc−1 divides Rn. The first such examples are for
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16 D. S. STONES AND I. M. WANLESS

p = 3, where Theorem 3.4 implies that 32 divides R10 and 33 divides R15

and R16, whereas Theorem 3.3 shows only that 3 divides R10 and 32 divides
R15 and R16. In any case, to possibly improve on earlier results, we require
c in Theorem 3.4 to be as large as possible while satisfying n/2 > (c − 1)p,
and we need 	n/2
 < p2.

In Table 4 we tabulate the divisors for Rn, Re

n, and Ro

n given by Theo-
rems 3.2, 3.3, and 3.4, for 7 ≤ n ≤ 18, making use of the data in Table 2.
The shaded cells in Table 4 are when the divisor for Rn from Theorem 3.3
is improved upon. We will use Theorem 3.4(ii) to prove three instances of
Theorem 3.6, which cannot be proved by the other theorems in this section;
the required data are marked with an asterisk in Table 4.

Theorem 3.5. Let p be a prime, and let n ≥ p + 2. Then Re

n ≡ Ro

n

(mod p).

Proof. Table 2 and Theorem 3.2 imply that Theorem 3.5 is true when
p = 2, so assume that p is an odd prime. Theorem 3.4(iii) handles n ≥ p+3,
so assume that n = p + 2. The remainder of the proof is similar in spirit
to that of Theorem 3.4 with c = 1. One difference is that we define A =
{L ∈ C : (α,α,α) ∈ Atp(L)}, where α = (0)(1,2, . . . , p)(p + 1). From L ∈ A,
we construct L′ in the following way.

(a) Switch the partial columns (l10, l20, . . . , lp0) ↔ (l1(p+1), l2(p+1), . . . ,

lp(p+1)) to obtain the Latin square L∗.
(b) Apply the unique isotopism of the form θ = (τ, ε, ε) so that L′ = θ(L∗)

is reduced.

We observe that τ = αa for some a since (α,α,α) ∈ Atp(L) and α fixes
0 and p + 1. Hence, ε(L∗) = ε(θ(L∗)) since α is an even permutation. By
Lemma 1.11, step (a) causes ε(L) = −ε(L∗), and hence ε(L) = −ε(L′).
Finally, observe that L′ ∈ A. Hence, we have partitioned A into pairs {L,L′ },
where ε(L) = −ε(L′). It follows that |A+1| = |A−1|.

It is possible to prove versions of Theorem 3.4(iii) and Theorem 3.5 for
Rπ

n using Table 1 and Lemma 1.11, since isomorphisms preserve the par-
ity of a Latin square. Specifically, R000

n ≡ R011
n = R101

n ≡ R110
n (mod pc) and

R111
n ≡ R100

n = R010
n ≡ R001

n (mod pc) if p, c, and n satisfy the conditions
of Theorem 3.4(iii) or if c = 1 and p and n satisfy the conditions of Theo-
rem 3.5. We omit the full details.

We combine previous results to give the following theorem.
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18 D. S. STONES AND I. M. WANLESS

Theorem 3.6. If 2 ≤ t ≤ n − 1, then Re

n �≡ Ro

n (mod t) if and only if
t = n − 1 is prime.

Proof. Our proof is based on the following three cases.
Case I : t = n − 1 is prime. Table 2 lists Re

3 �≡ Ro

3 (mod 2). If t is an odd
prime, then Theorem 1.4 and (1.5) imply that Re

n �≡ Ro

n (mod t).
Case II : t is a prime such that t ≤ n − 2. This case is precisely Theo-

rem 3.5.
Case III : t is composite. Theorem 3.2 implies that Re

n ≡ 0 ≡ Ro

n (mod t)
except possibly if

(t, n) ∈
{
(4,5), (4,6), (4,7), (4,8), (9,10), (9,11), (9,12)

}
.

The t = 4 cases are resolved in Table 2. The t = 9 cases are resolved in
Table 4 (marked by an asterisk).

Drisko [4] worked with Le

p+1 and Lo

p+1 modulo p3 for prime p. For com-
parison, we give the following result which is implied by Theorem 3.6, (1.5),
and (1.7).

Corollary 3.7. Let t ≤ n. Then Le

n+1 �≡ Lo

n+1 (mod t3) if and only if
t = n is an odd prime.

As for Re

n and Ro

n modulo n, we give the following theorem.

Theorem 3.8. If n is composite, then Re

n ≡ Ro

n (mod n).

Proof. Theorem 3.2 implies that Re

n ≡ 0 ≡ Ro

n (mod n) except possibly if
n ∈ {8,9} ∪ {2p : p is a prime}. Table 2 shows that Re

n ≡ Ro

n (mod n) when
n ∈ {4,8,9}. Now assume that n = 2p for some odd prime p. Theorem 3.2
implies that 2 divides Re

n and Ro

n, so it is sufficient to show that Re

n ≡ Ro

n

(mod p). The rest of this proof uses the setup for Lemma 3.1. Let G be the
group of isomorphisms generated by θ := (α,α,α), where α is the p-cycle
(1,2, . . . , p).

Let P = {1,2, . . . , p}, and let P ∗ = Zn \ P . If L = (lij) ∈ A, then Lemma
1.10 implies that the submatrix formed by the rows and columns whose
indices are in P ∗ is a subsquare of L. We can therefore apply the partial
column switch

(l1(p+1), l2(p+1), . . . , lp(p+1)) ↔ (l1(p+2), l2(p+2), . . . , lp(p+2))

to generate a distinct Latin square L′ ∈ A for which ε(L) = −ε(L′), by
Lemma 1.11. These partial columns exist since n = 2p ≥ p+3. Hence |A+1| =
|A −1|.
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Judging from the data in Table 2, it appears that the converse of Theo-
rem 3.8 might also be true. Specifically, Table 2 here clearly implies that(

Re

n − Ro

n (mod n)
)
1≤n≤9

= (0,1,1,0,4,0,1,0,0).

Drisko [5] showed that Ue

n − Uo

n ≡ (−1)(n−1)/2 (mod n) when n is an odd
prime. However, it seems difficult to modify Drisko’s proof to find Re

n − Ro

n

(mod n) instead. The values of Ue

n − Uo

n for n ≤ 8 were listed in [27], which
we can verify and extend using the data in Table 3, since Table 1 implies
that

(Ue

n ,Uo

n ) =

{
(Rre

n ,Rro

n ) if n ≡ 0 or 1 (mod 4),

(Rro

n ,Rre

n ) if n ≡ 2 or 3 (mod 4).

A result of Glynn [8] implies that Re

n �≡ Ro

n (mod n + 1) if n + 1 is an odd
prime.

§4. Another generalized Alon-Tarsi conjecture

In this section, we offer the following conjecture, which includes, as special
cases, the Alon-Tarsi conjecture and its generalizations. For n ≥ 1, define

�rn =

{
(R000

n ,R011
n ,R101

n ,R110
n ) for n ≡ 0 or 1 (mod 4),

(R111
n ,R100

n ,R010
n ,R001

n ) for n ≡ 2 or 3 (mod 4).

Note that all four components of �r are nonzero for n ≥ 5 (see (2.2)).

Conjecture 4.1. Let �a be any (−1,+1)-vector of length 4. Then �a · �rn �=
0 when n ≥ 1.

In Table 5 we note how Conjecture 4.1 generalizes the previous conjec-
tures. We can check that Conjecture 4.1 is true for n ≤ 9 using the data
in Table 2. The values of |�a · �rn| obtained are listed in Table 6. Clearly,
multiplying �a by −1 does not affect whether �a · �rn �= 0, so we can assume
that the first entry of �a is +1.

Table 5: Showing how various conjectures are special cases of Conjecture 4.1

Alon-Tarsi conjecture �a = (+1, −1, −1,+1) for even n ≥ 2; uses (1.8)
Conjecture 1.5 �a = (+1,+1, −1, −1) for even n ≥ 2
Conjecture 1.6 �a = (+1, −1,+1, −1) for all n ≥ 1
Conjecture 1.7 �a = (+1, −1, −1,+1) for all n ≥ 1
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We list below some cases in which Conjecture 4.1 is true.
• If �a = (+1,+1,+1,+1), then Conjecture 4.1 is trivially true.
• If �a ∈ {(+1,+1, −1,+1), (+1, −1,+1,+1)}, then Conjecture 4.1 is true

since the second and third components of �rn are identical.
• If �a = (+1,+1,+1, −1) and n is even, then Conjecture 4.1 is true since

the second and fourth components of �rn are identical.
• Let N = {even n : there exists an odd prime p ≤ n − 2 for which Rn �≡ 0

(mod p)}. Suppose that �a has three negative or three positive compo-
nents. We claim that Conjecture 4.1 is true for �a for all n ∈ N . We will
illustrate how we came to this conclusion when n ≡ 2 (mod 4); for n ≡ 0
(mod 4) we can use the same proof with parities toggled: 111 �→ 000,
100 �→ 011, 010 �→ 101, and 001 �→ 110.

Since n is even, we have the identity R100
n = R010

n = R001
n . Theorem 3.5

implies that Re

n ≡ Ro

n (mod p), so

(4.1) R111
n − R100

n ≡ 0 (mod p).

If Conjecture 4.1 is false for �a and some n ∈ N , then either

(4.2) −R111
n + 3R100

n ≡ 0 (mod p)

or

(4.3) R111
n + R100

n ≡ 0 (mod p).

Summing (4.1) and whichever of (4.2) or (4.3) is appropriate gives R100
n ≡

0 ≡ R111
n (mod p), since p is odd. Hence, Rπ

n ≡ 0 (mod p) for all π, imply-
ing that Rn ≡ 0 (mod p), giving a contradiction. Note that {8,10} ∪
{14,16, . . . ,30} ⊆ N , as shown in [24].
Therefore, to prove Conjecture 4.1, it is sufficient to prove it only in the

following cases.
• �a = (+1, −1, −1, −1) for all n ≥ 11 except n ∈ {14,16, . . . ,30}. For even

n, we could instead prove that n ∈ N .
• �a = (+1,+1,+1, −1) for odd n ≥ 11.
• �a = (+1, −1,+1, −1) for all composite n ≥ 15 for which n ± 1 are both

also composite, that is, Conjecture 1.6 (a generalization of the Alon-Tarsi
conjecture), excluding the cases proved in [4], [5], [8], and Table 2.

• �a = (+1, −1, −1,+1) for all n ≥ 11 for which n ± 1 are both also composite,
that is, Conjecture 1.7, excluding the cases proved in [4], [8], and Table 2.

If Conjecture 2.2 is true, then the first two of these cases would be true for
sufficiently large n.

https://doi.org/10.1215/00277630-1543769 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1543769


22 D. S. STONES AND I. M. WANLESS

§5. Concluding remarks

This work is a significant blow to the hopes of proving more special cases
of the Alon-Tarsi conjecture and its generalizations using a modified ver-
sion of Drisko’s methodology. For our subsequent discussion, note that a
prime-power divisor pa of x satisfies Re

n �≡ Ro

n (mod pa) only if p divides
x/gcd(Re

n − Ro

n, x).
If we attempt to use a group of isomorphisms (whose order must divide

n!), then we would require an := n!/gcd(Re

n − Ro

n, n!) to have a prime
divisor other than those already found. The values of an for n ≥ 1 are
1,2,6,6,5,5,7,7,1, . . . . In particular, a9 = 1, so this method would not work
for n = 9, regardless of which group of isomorphisms we tried to use.

If we instead attempt to use a group of isotopisms (whose order must
divide n!3), then we will likely need to act on the set of all Latin squares
(not just those that are reduced) and assume that n is even; otherwise,
Le

n = Lo

n. Now we would require bn := n!3/gcd(Le

n − Lo

n, n!3) to have a prime
divisor other than those already found. Let cn = n!n/gcd(Re

n − Ro

n, n!n). For
even n, (1.8) implies that bn = cn (whereas bn = 1 for odd n ≥ 3). For n ≥ 1,
the sequence cn is 1,4,18,24,25,15,49,7,1, . . . . Here also, c9 = 1.

Finally, we remark that the Alon-Tarsi conjecture is quite peculiar—it
asserts the inequality of two numbers Le

n and Lo

n for even n, that are likely
to be asymptotically equal, that are congruent modulo t for a variety of
different t, and that are, in fact, equal for odd n.
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[6] P. Erdős, A. L. Rubin, and H. Taylor, “Choosability in graphs” in Proceedings of the
West Coast Conference on Combinatorics, Graph Theory and Computing (Arcata,
Calif., 1979), Congr. Numer. 26, Utilitas Mathematica, Winnipeg, 1980, 125–157.

[7] F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory
Ser. B 63 (1995), 153–158.

[8] D. G. Glynn, The conjectures of Alon-Tarsi and Rota in dimension prime minus one,
SIAM J. Discrete Math. 24 (2010), 394–399.

https://doi.org/10.1215/00277630-1543769 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1543769


HOW NOT TO PROVE THE ALON-TARSI CONJECTURE 23

[9] L. Habsieger and J. C. M. Janssen, The difference in even and odd Latin rectangles

for small cases, Ann. Sci. Math. Québec 19 (1995), 69–77.
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