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Abstract

A numerical solution of the RLW equation is presented using a cubic spline collocation
method. Basic cubic spline relations are outlined and incorporated into the numerical
solution procedure. Two test problems are studied to show the robustness of the proposed
procedure.

1. Introduction and governing equation

A numerical solution of the regularised long wave (RLW) equation in the form

U,+ Ux+eUUx-nUxxl = 0, (1.1)

where the subscripts t and JC denote differentiation and e and \i are positive parameters,
is studied with the artificial boundary conditions

U(a.t)=au U(b,t)=a2,
a < x < b, t > 0 (1.2)

Ux(a,t) = 0, Ux(b,t) = 0, - - -

and initial conditions

U(x,0)=f(x), (1.3)

where f (x) will be chosen later. Peregrine [13] proposed the RLW equation to
describe the development of the undular bore and wave motion. Mathematical theory
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of the equation was developed in the papers [2] and [4]. Exact solutions exist for the
limited boundary and initial conditions. Therefore numerical studies of the equation
are of interest in explaining physical phenomena such as shallow water waves and ion
acoustic plasma waves.

The cubic spline collocation procedure and its application have been widely used in
the numerical solution of partial differential equations (PDEs) [5,14-16] because they
possess some advantages over other numerical methods without the disadvantages of
being computationally intensive and having a complex problem formulation. Various
numerical schemes for obtaining the numerical solution of the RLW equation incor-
porating spline functions have been set up. Finite difference methods were proposed
based on both cubic and quintic splines in the papers [3,11]. Some variants of finite
element and collocation methods were constructed for the RLW equation by using
B-splines as weight and trial functions [6-9]. The use of cubic splines in numerical
methods for finding solutions of PDEs leads to a matrix system which is tridiagonal,
thus permitting the use of the Thomas algorithm. Evaluation of the first and sec-
ond derivatives is obtained directly from the spline relations. Boundary conditions
involving derivatives may be directly incorporated into the solution procedure.

In Section 2 of this paper, necessary basic spline formulations are given and then
an application of the proposed scheme on the RLW equation is presented. So the
RLW equation is turned into three separate scalar matrix systems of tridiagonal form
consisting of unknown parameters U, first derivatives V and second derivatives U"
respectively at the knots. In Section 3, the proposed method is tested for the model
problems of solitary wave solution and undular bore development. The computed
results are compared with the analytical solution for the solitary wave.

2. Numerical method

Consider a mesh with nodal points such that a = x0 < x\ < • • • < xN = b and
h = Xj — x,_i > 0, i = 1, 2, . . . , N.

We outline the basic cubic spline relations and use them in the solution of the RLW
equation. The function U(x, t), its first derivative U and its second derivative U" are
defined on [a, b] respectively, at the node point*, by:

U(xh t) = U,. U\xh t) = u; and (/"(*,, t) = Lf,

where ' and " denote differentiation with respect to x. Let Sp(U,x) = Sp(x) denote
the cubic spline function.

The cubic spline function and its first and second derivatives are continuous on the
solution domain [a, b] and satisfy

S,(x,) = Ult S'p(Xi) = m, and S£(*,) = M,.
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In general , since Sp(x) is a cubic spline function on each interval [jr,-_i,JC,-], the
function S'fa) is linear on the interval and can be determined by two points 5"(x,_i) =

t-u S;(xt) = Mt from

(XJ - x)Mj.\ + {x -x^
Sp(x) - -

We will form the second antiderivative of S'j,{x) on [JC,-_I, xt] and apply the inter-
polating conditions, which consist of continuity of the function and its first derivative
values at the node points, to evaluate the integration constants. This results in the
cubic spline interpolation polynomial:

(x, - x)3M,_, + (JC - *,_,)3M, (*, - JC) U,.
+W 6h

h
- -

o

in the interval [JC,-_i, JC,]. The main cubic spline relationships [1] are

4M, + Mi+l = 6(Ui+l - 2Ui + U^/h2, (2.1)

4m,- + m,+i = 3(Ui+l - U,-i)/h, (2.2)

ml+l - m, = h(M, + A#,+,)/2, (2.3)

\M,h/3 + Mi.xh/6 + (Ui- U,.t)/h or
m, = { (2.4)

\-M,hp - Mi+lh/6 + (U U)/h

or
' \-4mi/h-2mi+l/h + 6(Ui+l- UJ/h2.

Details about these relationships can be found in Ahlberg et al. [1]. The RLW
equation can be written in the form

(2.6)

An approximate solution for Ut can be obtained by considering the solution of

(£/,), - n(UM), = (1 - W ) , + 6(fn+X (2-7)

where the time derivative is discretised in the usual finite-difference way:

I i l)i, (2.8)

where ( /") , = — (m" + eil"m"). The nonlinear term in (2.6) may be linearised by
using the following term [14,15]:

{UUx)1
+l = U?+lml + U?m!+X - Ufml. (2.9)
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So, (2.8) can be rewritten as

U?+I(l + eAtemi) = U? + 1

}• (2.10)

Rearranging (2.10), we get

U?+i = F, + G,m1+i + S,M?+\ (2.11)

where

_ U? - ILMI -(1-0) At (ml + e(( /X' ' + U"~lm1 - ^n"'<"'))
' ~ 1 + OAtemi

1 +

- and 5< =1+eAtemi l+6Atem1

It can be noted that 0 = 0 gives an explicit scheme, 0 = 1 gives a fully implicit
scheme and 0 = 1/2 gives the Crank-Nicholson scheme. Equation (2.11) can be
reduced to three separate tridiagonal equations for Ui, m, and A/, using (2.1)-(2.5).
Using (2.4), (2.11) can be transformed into a scalar set of equations involving Ut-\,
Ui and Ui+\'.

AiUt_y + BiUj + CiUi+l = Dt, (2..12.)

where

At = 12Si-\SiSi+\ + 12h G,_iG,5,+i — 36/iG,_i5,51+i -

- 2AhS,-iGtSl+i - 6/i251_,G,GI+1

+ 24/iS1_,S,G1+1 +4/i3G,51+, - l2h2S,S,+i -4ft35,G1+1)

B, =60AGI_,5I5,+i +4/i4G,_,G1+i + 24/i2G,_,S,G,+, - 6/i2G,_,G(5,+,

+ 14*3C,_i5/+i - 60*5,-_,5,G,+i - 14/z3S,_,G,+1 - 14451_,51S1+1

- 48/i25(_,51+1 - 6A25,_, 0^ ,+ , ,

C, = -4A35,-|G, + 4A3G,_i5, + h'G^Gi - 3fc3G,_iG,Gi+,

- 12/i2 G,_, 5, G1+I +24A5,_, G,51+, + 12/i25,_,G,GI+1 +725,_,5,5,+1

+ 36/i5,_, 5, G(+, - 12/i25,_, 5, - 6/i2G,_, G, 5,+, - 24/i G,_, 5,51+, and

Dt = -l4h3S,.iF,Gi+i+^h3F,.,G,S,+, - 48/i25,_,F15,+1 +4h3G,-lStF,+l

+ UtfGi^FiSi+i +4h*G,-iF,G,+, - l2h2F,-iS,S,+i + /i4F,_,GIG,+1

+ h'Gi-XGiFM - l2h2Sl-lSlF,+l-4h3S,-iG,Fi+l-4h3F,-lS,G,+i.
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Using basic cubic spline formulations (2.5) and eliminating Ut and Mt from (2.11),
the following triangular form of matrix system is derived for mt:

tl + B,m1+l + QmiXl = £>,, (2.13)

where

_ 1 /2S,+4S,_,-ftG,-
'~3h

_4_ _ / ,-/tG, 2S,-i+4St-hG,

J_ _ (2Si + 4Si+1-hGi+l

' 3 * V3/« V *3A,+I

Dt = -£- - + ', '"' and A, = 1 + 6m
Using (2.2)-(2.4a) and solving (2.11) by eliminating m, for M,, the following single

tridiagonal system may be obtained:

A,M,n_+; + B(M?+i + QM$ = Dh (2.14)

where

_h G,
1 ~ 66 6A, AA, '

G/ + 1+2G, 2G, + G,_1
1 77 r

6A
3 6A,+i 6A,

2G, + G,
Aj'

6 6A,+i /iA1+,
F,+i — F, F, — F,_i G, — G,_i

~n n— and Ai = 1 1—
A A

nA,+| nA,- AI

Approximate values Ut at the nodal points can be calculated using the resulting
system (2.12). Direct calculation of the first derivatives m, and second derivatives M,
can be obtained by working out the systems (2.13)-(2.14) respectively. Since those
systems require the computation of Ui, m, and M, from the two previous time steps,
the first time step is calculated by putting 0 = 1. This means that the formula only
requires Ut, m, and M, from the previous time step. For the next time steps, any
value of 0 between 0 and 1 can be used. We used the fully implicit scheme in our
computation.
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TABLE 1. Single solitary wave, amplitude = 0.3, h = 0.125, At = 0.1, - 4 0 ^ x ^ 60.

[6]

Time
0
4
8
12
16
20

L2 x 10
3

0.0
0.191
0.208
0.234
0.266
0.301

/ x 1O3

0.0
0.083
0.087
0.095
0.104
0.114

h
3.97992
3.97995
3.97997
3.97998
3.97998
3.97996

h
0.810462
0.810276
0.810276
0.810276
0.810276
0.810276

h
2.57900
2.57839
2.57839
2.57839
2.57839
2.57839

The local truncation error is computed as

h2[2ix2{Uxxx)1

i ^ ^ ; + ••• ( 2 . 1 5 )

by neglecting the terms of higher order. Therefore (2.15) gives a truncation error of
O(k + h2 + kh2) for 6 € [0, 1].

Applying the von Neuman stability analysis by taking U constant in the nonlinear
term UUX in (1.1), we find that the proposed technique is unconditionally stable for
6 e [1/2,1].

3. Numerical computations

The numerical scheme has been assessed by using the maximum error

= || Ifxact - UN I!,, = max | If" - (UN)j |,

and the root mean square error L2,

(3.1)

(3.2)

\

Olver [12] showed that the RLW equation has three conservation laws:

/•OO /«OO /-00

/, = / Udx, I2= (U2 + IM(UX)2) dx and /3 = / (Ui + 3U2)dx.
J—oo J—oo J—oo

Conservation quantities and error norms will be computed to show how well the
numerical scheme behaviour models the test problems. Firstly we will study the

https://doi.org/10.1017/S1446181100009822 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009822


[7]

0.3-1

Numerical integration of the RLW equation using cubic splines

0.00015- ,

137

' i ' I ' I • i • i
- 4 0 - 2 0 0 20 40 60

X

(a)

-0.00005-

(b)

FIGURE 1. (a) Graphs of solutions at times t = 0 and t = 20. (b) Error = exact — numerical solution at
time t = 20.

solitary wave solution of the RLW equation. The analytical solution of the solitary
wave solution is computed from

U(x, t) = 3csech2(k[x - x0 - ec)t]), (3.3)

which represents a single solitary wave of amplitude 3 c, velocity v — 1 + ec and
k = (ec/|i,(l + ec))1/2/2 travelling across the interval —40 < x < 60 in the time
period 0 < t < 20 with parameters e = /J, = 1 and x0 = 0.

The initial condition is used from (3.3) by putting x0 = 0 and t = 0. The
parameters c = 0.1, At = 0.1 and /i = 0.125 were chosen to coincide with those
in papers [6,7,10]. The constants of motion may be worked out analytically for a
solitary wave solution of amplitude 0.3 by

/, = — = 3.9799497,

h =

it
36c2

+

5
144c3

= 0.81046249 and (3.4)

5k
= 2.579007.

The program was run to the time / = 20 and the results of error norms and constants
of motion lx, I2 and 1^ at time t = 20 are summarised in Table 1. During the run,
numerical invariants remained almost the same when compared with the analytical
values (3.4). In Figure 1 (a), the initial function and the numerical solution are graphed
for visual representation of the solution at time t = 20. The difference between the
exact and the numerical solution is depicted in Figure 1 (b) to observe the error
distribution over the domain from which the maximum error occurred just around the
peak position of wave amplitude.
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TABLE 2. Invariants and error norms for single solitary wave, amplitude 0.09, h = 0.125, At = 0.1,
- 4 0 £ x £ 60.

Time
0
4
8
12
16
20

L2 x 10
3

0
0.149

0.280

0.397

0.479

0.547

Loo X 103

0
0.193

0.141

0.151

0.213

0.431

/,
2.10702

2.10838

2.10928

2.10981

2.10981

2.10900

h
0.127302

0.127294

0.127294

0.127294

0.127294

0.127294

h
0.388804

0.388781

0.388782

0.388782

0.388782

0.388781

TABLE 3.

Amplitude 0.3

h
0.025

0.05

0.125

0.25

0.5
1.0
4.0

At
0.025

0.05

0.1
0.2
0.4
0.8
0.8

L2 x 10
3

0.03133

0.07552

0.30141

1.19736

4.82429

19.2379

86.8661

Loo x 103

0.01267

0.02819

0.11405

0.45444

1.82587

7.15536

30.0064

Amplitude 0.09

h
0.025

0.05

0.125

0.25

0.5
1.0
4.0

At
0.025

0.05

0.1
0.2
0.4
0.8
0.8

L2 x 10
3

1.10984

0.92754

0.54726

0.28658

0.53640

1.75726

4.44220

Loo x 103

0.43138

0.43158

0.43151

0.43151

0.43151

0.54777

1.27680

Corresponding simulation for the solitary wave with smaller amplitude 0.09 was
carried out for further verification of accuracy of the numerical methods. Invariants
and error norms are also recorded at the same selected times in Table 2. At time / = 20,
the error norms are satisfactorily small at L^ — 0.431 x 10"3 and L2 = 0.547 x 10~3.
Changes of invariants / ] , l2 and /3 from time t = 0 to time t = 20 are calculated from
the values in Table 2 and found less than 0.2, 0.0008 and 0.003 percent respectively.
The solitary wave solution of amplitude 0.09 is graphed at time t = 20 in Figure 2 (a).
As seen from the graph, the solitary wave migrated by keeping its shape during the
computer run. The error distribution is illustrated in Figure 2 (b). The maximum error
occurred at the right boundary of the domain at time t = 20. This error resulted from
the right artificial boundary condition, which is taken as 0, whereas the analytical
solution at the right boundary is 0.00043. Various time-step combinations are used for
a further verification of the algorithm to show accuracy numerically in Table 3. We
find that higher accuracy is obtained than the results in the paper [7, Table IE] when
smaller space-time steps were used. For instance, in paper [7], when h = 0.025 and
Af = 0.025, error norms L2 = 19.9 x 10~3 and Lx = 5.87 x 10"3 were obtained at
time t = 40 whereas we get L2 = 1.110 x 10"3 and Lx = 0.431 x 10~3.
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X

FIGURE 2. (a) Graphs of the initial solution at times / = 0 and / = 20. (b) Error = exact — numerical
solution at time t = 20.

Secondly, we study the undular bore development using the initial condition

U(x, 0) = 0.5U0[l - tanh ((x - xc)/d)]

and boundary conditions U(a, t) = Uo and U(b, t) = 0, where U(x, 0) denotes
the elevation of the water above the equilibrium surface at time t = 0. Here d
represents the slope between the still water and deep water. The change in water level
of magnitude U(x, 0) is centred o n x = xc. Physical boundary conditions

U > 0 and U • Uo

are replaced by artificial boundary conditions so as to be able to apply the numerical
methods.

We have chosen parameters Uo = 0.1, s = 3/2, \i = 0.16666667, h = 0.24 and
At = 0.1 over the domain —60 < x < 540 to compare the results with previous
ones [6,10]. The program is run with gentle profile d = 5 up to time t = 400.
Numerical quantities and the magnitude of the leading undulation are demonstrated in
Table 4. Here x shows the peak position of the leading undulation in the same table.
Theoretical variations of the invariants / t, /2, h

—/, = — f
dt dt J_o

E-Ul = 0.1075,
2

dt
L /
dt y_o

%Ul = 0.011 and

!U2)dx = ^UZ = 0.034113
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TABLE 4. Results for an undular bore £/0 = 0.1.

[10]

Time
0
50
100
150
200
250
300
350
400

IW
0.10000
0.11031
0.13694
0.15754
0.17029
0.17786
0.18208
0.18508
0.18686

X

-60
48.480
102.24
156.24
210.48
264.96
319.44
374.15
428.87

A
6.01198
11.38698
16.76198
22.13698
27.51198
32.88698
38.26198
43.63698
49.01198

h
0.57630
1.12631
1.67632
2.22635
2.77638
3.32642
3.87645
4.42649
4.97652

h
1.78496
3.49045
5.19570
6.90068
8.60551
10.31029
12.01504
13.71979
15.42453

0.20-1

400 450 500 200

5 (b)d = 2

FIGURE 3. Initial condition and undulation profile at / = 400, Uo = 0.1, h = 0.24 and At = 0.1.

can be worked out to compare with the numerical values:

— /, =0.1075, —/2 = 0.011001 and — /3 = 0.034099
dt dt dt

so that the numerical change in the invariants is found to be very small. In Figure 3,
development of undular bores for both the gentle slope d = 5 and the steep slope
d = 2 are drawn at time t = 400.

The program is rerun by extending the domain to —60 < x < 900 to observe the
behaviour of the undulations in a long runtime. The magnitudes of the successive nine
leading undulations against time are depicted in Figure 4 from which the progress
of the undular bores is smooth and stable for both the gentle and steep slopes up to
time t = 900. Amplitudes of the successive nine leading undulations at time t = 900
are documented in Table 5. By that time, after a short incubation period, undulations
begun to appear successively and have grown in time, then the principal undulation
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0 .16-

0.12-

Time

(a) d = 5 (b) d = 2
FIGURE 4. Development of the undulations.

TABLE 5. Amplitudes of undulations at time t = 900.

800

Undulation
First

Second
Third
Fourth
Fifth
Sixth

Seventh
Eighth
Ninth

Amp.(d = 5)
0.1907
0.1839
0.1788
0.1753
0.1708
0.1652
0.1599
0.1545
0.1491

Amp.(d = 2)
0.1938
0.1882
0.1825
0.1774
0.1721
0.1668
0.1617
0.1565
0.1515

moves to right by attaining their magnitude, that is, the principal undulation shows
solitary wave-like behaviour. This can be seen in Figure 4. For example, the first
leading undulation attains an amplitude of 0.1907 for the gentle slope, and of 0.1938
for the steep slope at time t = 900. When d = 5, the magnitude of the first leading
undulation remains almost the same after about the time t = 600.

A numerical solution algorithm for the RLW equation has been constructed using
the collocation method with cubic splines as interpolation functions. Since error norms
have been found to be small enough, single solitary wave motion is well presented.
Instabilities are not observed for undular bore development simulation in a long run
of the algorithm. Therefore the cubic spline collocation procedure is advisable for
obtaining the numerical solution of the RLW equation.
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