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Third Meeting, January 18, 1893,

C. G. Kxorr, Esq., D.Sc., F.R.S.E, in the Chair.

The Quaternion and its Depreciators.
By Prof. C. G. K~orr, D.Sc., F.R.8.E.

Of late years there has arisen a clique of vector analysts who
refuse to admit the quaternion to the glorious company of vectors.
There are others again who take exception to some of Hamilton’s
most fundamental principles, and make corrections as they deem
them, which logically revolutionise the whole basis of the calculus.

These rebellious ones do not agree at all amongst themselves ;
but their disloyal sentiments may be conveniently discussed under
three headings.

First, there is the broad question as to the value of the quaternion
as a fundamental geometrical conception.

Second, there is the question of notation.

Third, there is the question of the sign of the square of a vector
when quaternion expressions are to be transformed into ordinary
algebraic expressions.

In discussing these points, I shall give what seems to me to be
the most natural geometrical approach to the calculus of quaternions.
The position of the innovators will thus be better understood.

I. THE QUATERNION AS A GEOMETRICAL CONCEPTION.
(Ficures 21, 22, 23).

In the preface to the third edition of his Quaternions, Professor
Tait speaks of Professor Willard Gibbs as one of the retarders of
quaternion progress, and of his system of notation as ““a sort of
hermaphrodite monster compounded of the notations of Hamilton
and Grassmann ” Professor Gibbs, in a letter published in Nature,
April 2, 1891, virtually admits both impeachments. For he pro-
ceeds to give reasons for his antagonistic attitude, first, to Quater-
nions as an algebra of vectors, and, second, to Hamilton’s notation,
His objection to Hamilton’s selective system of notation is based
upon the dogma that the quaternion product cannot claim a funda-
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mental place in a system of vector analysis. In support of this
contention, Professor Gibbs presents a broad argument from geo-
metry, which he thinks he strengthens by a reference to trigono-
metrical usage. He says:—

“It will hardly be denied that sines and cosines play the leading
part in trigonometry. Now the notations Vef3 and Saf represent
the sine and cosine of the angle included between « and S, combined
in each case with certain other simple notions. But the sine and
cosine combined with these auxiliary notions are incomparably
more amenable to analytical transformation than the simple sine and
cosine of trigonometry, exactly as, etc., etc.”

What does this argument amount to? Certainly no quaternionist
ever denied the importance of the sine and the cosine in trigono-
metry ; and Hamilton was unquestionably the first to show forth
the analytical power of the functions Sa3 and VaB. But because
these functions are so incomparably inore amenable to analytical
transformation than their trigonometrical ghosts, are we to infer
that they are necessarily superior to or more fundamental than
anything else ?  Yet that is the remarkable logic we are treated to.

Mr Heaviside, in his series of articles on * Electromagnetic
Theory,” published in the Electrician, seems to be referring to this
argument when he says:—*The justification for the treatment of
scalar and vector products as fundamental ideas in vector algebra is
to be found in the distributive property they possess.” A fortiors,
the justification for the treatment of the quaternion product as a
fundamental idea in vector algebra is to be found in the distributive
and associative property it possesses,

Moreover, as Professor Macfarlane points out, the angle itself is
of greater fundamental importance than its sine or cosine. So, on
the principle of answering a wise man according to his wisdom, I
say i —

It will hardly be denied that angles and their functions play the
leading part in trigonometry. Now the notation a3~! represents the
angle included between a and 8 combined with certain other simple
notions. But the angle combined with these auxiliary notions is
incomparably more amenable to analytical transformation than the
simple angle of trigonometry, and so on—which statement proves
just as much and just as little as the great original itself.

But the real argument advanced by Professor Gibbs is as
follows :—
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“ Va3 represents in magnitude the area of the parallelogram de-
termined by the sides a and 3, and in direction the normal to the
plane of the parallelogram. SyVaf represents the volume of the
parallelepiped determined by the edges «f8y. These conceptions are
the very foundations of geometry.* . . . I do not know of
anything which can be urged in favour of the quaternion product as
a fundamental notion in vector analysis, which does not appear
trivial or artificial in comparison with the above considerations.
The same is true of the quaternionic quotient and of the quaternion
in general.”

“These conceptions”—what conceptions? It can hardly be the
conceptions of vector and scalar products of vectors, for these are
altogether of the nineteenth century, whereas geometry is of all
centuries. It must then be simply the conceptions of the parallelo-
gram as the typical area, and of the parallelepiped as the typical
volume. But to speak of these conceptions, and these conceptions
only—as must be understood if the argument means anything—to
speak of these as the very foundations of geometry is surely a mis-
use of terms, to put it most mildly. Is not the inclination of two
lines as fundamental a conception as either of these? Indeed,
underlying all the recognised theorems of parallelograms and
parallelepipeds there is the great axiom of parallel lines. That lies
at the foundation of geometry, if anything so lies.

To appreciate the real character of this argument, let us consider
the meaning and purpose of a vector analysis. Having formed the
conception of a vector, we have next to find what relations exist
between any two vectors. We have to compare one with another ;
and this we may do by taking either their difference or their ratio.
The geometry of displacements and velocities suggests the well-
known addition theorem

a+8=p,
in which, by adding the vector 8, we pass from the vector a to the
vector 3. But this method, which is always given first as the
simplest, does not seem to me to be more fundamental geometrically
than the other method which gives us the quaternion. When we
wish to compare fully two lengths, @ and b, we divide the one by the
other., We form the quotient a/b, and this quotient is defined as
the factor which changes b into @. Now a vector is a directed

* The part omitted here is the part already given about the sines and cosines,
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length. By an obvious generalisation, therefore, we compare
two vectors by taking their quotient «/B, and by defining this
quotient as the factor which changes the vector 8 into the
vector a. This is the germ out of which the whole of vector
analysis naturally grows. A more fundamental conception it is
impossible to make. Yet Gibbs calls it trivial and artificial ! Far
more fundamental—we are told—are the conceptions of a vector-
bounded area and of a vector-bounded volume, whose bounding
vectors may have an infinity of values. Again, a vector is an
embodiment of direction ; and to know how to ehange a direction is
surely demanded of a vector analyst from the very beginning. But
a change of direction is an angular displacement—that is, a versor.
Or take the case of a body strained homogeneously. The vector
joining any pair of points changes by a process which is a com-
bination of stretching and turning. A simpler description cannot
be imagined. It is completely symbolised by the quaternion with
its tensor and versor factors. And this, we are taught, is trivial
and artificial ! On the contrary, so fundamental and natural is the
conception of the quotient of two vectors that it can be made intel-
ligible to any one. We all unconsciously perform the operation
when estimating the time that must be allowed to catch a train.

There is a certain superficial plausibility in the argument that
the quaternion product of two vectors is in that form less suggestive
of geometric significance than the scalar and vector parts taken
severally. But when Professor Gibbs says that “the same is true
of the quaternionic quotient,” he invites the severest criticism. For
not only is the quaternion quotient, as a geometrical conception,
more fundamental and direct than its own scalar and vector parts ;
but, if simplicity of conception be a guide, it is infinitely more fun-
damental than even the much-lauded vector and scalar products,
To a quaternionist, however, the product «f is fundamentally as
intelligible as the quotient ; for it is simply a/8-

Professor Gibbs would have us base the whole of vector analysis
on the two geometrical ideas embodied in the formulae Vaf and
—8yVaB. These are defined, and from the definitions, combined
with recognised geometrical truths, the calculus is developed.
Clifford, in his Dynamic, starts in this very way ; and such a method
may have an apparent advantage in introducing an otherwise igno-
rant student rapidly to the merits of a concise and expressive nota-
tion. Tt is “spoon meat,” as Mr MacAulay puts it in his recent
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letter to Nature (December 15, 1892). But the average student
will probably make little real progress along these lines. He will
probably fail to grasp the unity of the calculus as developed from
its broad quaternion basis. His faith—his credulity indeed—is
severely tested from the very outset. Certain geometric conceptions
are put forward and represented by a symbolism of a distinetly
arbitrary character. For example, Vaf does not really mean the
area of the parallelogram determined by the vectors a and B, but is
a mode of representing that area by a vector line perpendicular to
its plane.* And, again, the transition from the parallelepiped
SyVaef to the uniplanar projection Syd cannot but seem to be a
piece of legerdemain, involving the transformation of an area into a
line. The method requires indeed a succession of definitions, and a
careful geometrical discussion of the properties of the quantities so
defined. In quaternions, however, the whole is a beautiful and
compact development from the fundamental conception of the
factor (a/B) which changes 8 into a. Corresponding to every
such quaternion, there is another quaternion known as the conju-
gate, which will turn B into a particular vector ', equal in length
to a, but lying equally inclined to B on the opposite side of it. In
short, af3a’ lie in one plane, and o’ is, so to speak, the reflection of «
in B (regarded as a mirror).

The geometry is of the very simplest. Suppose, for example,
that the quaternion o/ does not change the length of 3, but simply
its direction—in other words, that it is a versor merely.

Call it ¢, and its conjugate Kg. Then if OB, OA, OA’ (Fig. 21)
are f3, a, o’ respectively, we get at once

¢OB=0A or ¢B=a
Kq.0B=0A'or Kgf=d

Hence (g+Kg)B=a+d
=00
=8 x 2cosb,
and (q—Kq)ﬂ=a—a'%_0T)
=0OB".2sind.

But OB’ is simply OB turned through a right angle. Hence if

* This is very clearly brought out in O’Brien’s system of vector analysis, briefly
described further on.
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we take ¢ to represent the quadrantal versor, having the same axis
as g, OB' =1f.

Thus we get
g+ Kg = 2cos6
g — Kq = 2:isiné,

That is, the sum of a quaternion and its conjugate is a scalar
quantity ; while the difference is a quadrantal quaternion, changing
the length of the vector on which it acts in the ratio of 1 to 2sin#.

The quadrantal quaternion is evidently of great importance, and
it has a property of peculiar value.

Thus let 4’ be any two given quadrantal versors, and let them
be represented by double arrow-headed unit lines in the directions
of their axis, as shown in Figure 22.

Take the unit vector at right angles to both. Then assuming
the distributive law, we have

(i+7)B=1B+B

=q +0.'.

But if we construct on + and ¢ a parallelogram like that which
gives us the resultant vector o + o, we get for its diagonal a directed
line parallel to the axis of the quaternion which will turn 8 into
a+a. Not only so, but the length of this diagonal has the same
ratio to the length of a+ o, which the length of ¢ (or 1) has to the
length of B. We may therefore regard this diagonal as representing
the quadrantal quaternion (¢ +i'). The conclusion is that quadrantal
versors and (by an easy extension) quadrantal quaternions are com-
pounded just like vectors. Since, so far, no definition of a vector
acting on another vector has been given, we may (if no inconsistency
arises) identify quadrantal quaternions and vectors, It is this
identification which so wonderfully simplifies the calculus, and yet
in no way destroys its generality. 'We shall refer to this later on.

Meanwhile the point to be noted is that, with this identification
of quadrantal quaternion and vector, we conclude that

g+ Kg=28¢, a scalar.
q-Kg=2Vyg, a vector,

where the meanings of 8¢ and Vg are easily detected. If ¢ is a
versor, Sq is the cosine of the angle through which ¢ turns a vector
perpendicular to its axis; and Vg is the vector (or quadrantal
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quaternion) measured along this axis, and of length equal to the sine
of the same angle. By a simple extension, if « and b are the lengths
(or tensors) of a and B, we find

a a a
. =8S_+V_
B B B’
where S% = %cos@ and VT;' = i%}sin@.

And now consider the result of operating by two quadrantal
versors in succession. Let ¢'s” be these versors (Fig. 23). Draw the
planes perpendicular to them, and let y be a vector along the line
of intersection. Take 3 perpendicular to y and ¢, so that </G=1.

Then @R =t"y=aq,
or, assuming the associative law, we get
i"{.B=a.
Hence 77’ is the quaternion o/S, which (as is obvious from the
figure) has its axis perpendicular to ¢’ and ¢”, and turns 8 through

an angle equal to the complement of the angle between ¢’ and <".
Consequently we find, 6 being the angle between <" and ",

Si"i= 8% — _cost
Vii=VZ = isinb.
B

From this we readily see that, with the identification of vectors
and quadrantal quaternions,

a3 =8af+Vaf,
and SaB = — abcosd
Vof = i.absind,

where % is a unit vector perpendicular to the plane of. Thus the
geometric meanings of Sa and Vaf3 grow naturally out of the original
conception of the quaternion quotient of two vectors, taken in con-
junction with the identification of vectors and quadrantal quater-
nions, and with the assumption that the distributive and associative
laws hold.

In any vector analysis which begins by separately defining the
parts of the complete quaternion product, there is a want of cohesion
from the very beginning, and there is nothing that can be compared
with the beauty and solidarity of the quaternion calculus.
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Take, by way of comparison, the symbolic algebra of the Rev.
M. O’Brien, to which the systems affected by Gibbs, Heaviside, and
Macfarlane have a strong family likeness. O’Brien, at that time
Professor of Astronomy and Natural Philosophy in King’s College,
London, published his most important paper in the Philosophical
Transactions (1852). He begins by defining what he calls the
longitudinal and lateral translations of the vector 8 with reference
to the vector a. These are symbolised as products in the form a x 8
and a.B—the reason being because they are distributive. It is
readily seen that a x 8 is the product of the lengths of « and 8 into
the cosine of the angle between them; in fact, Hamilton’s — Saf,
Grassmann’s ““inner” product, and Gibbs’s ““direct” product (a.8).
In a.f8 O’Brien recognises the area of the parallelogram, of which
a and B are the sides. In developing his system, he finds that the
line perpendicular to the plane containing these two vectors is of
fundamental importance. He calls it the directrix, and uses for it
the symbol D. Thus De.8 corresponds geometrically to Hamilton’s
VaB. It will be noticed that O’Brien keeps quite distinct the con-
ception of the product «.8, and that of its directrix De.8. From
the definitions it follows that a.ais zero, so that a x @ may be written
o® without any fear of ambiguity. Then «' is assumed to be the
square of the length of . It is abundantly evident that O’Brien’s
vector in multiplication is not intended to have any versor charac-
teristic. He sees that the square of every unit vector must be the
same, and confessedly assumes it to be + 1, pointing out, however,
that if he could see any reason for making it ~ 1, his system would
be the same as Hamilton’s. We shall return to this further on.

Meanwhile, take another of the arguments accumulated by Pro-
fessor Gibbs in favour of the non-quaternionic basis of vector
analysis. He writes :—

‘“ How much more deeply rooted in the nature of things are the
functions Saf and Vaf than any which depend on the definition of
a quaternion will appear in a strong light if we try to extend our
formulae to space of four or more dimensions. It will not be claimed
that the notions of quaternions will apply to such a space, . . .
But vectors exist in such a space, and there must be a vector
analysis for such a space. The notions of geometrical addition and
the scalar product are evidently applicable to such-a space. As we
cannot define the direction of a vector in space of four or mere
dimensions by the condition of perpendicularity to two given vectors,
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the definition of Va3, as given above, will not apply totidem verbis
to space of four or more dimensions. But a little change in the
definition, which would make no essential difference in three dimen-
sions, would enable us to apply the idea at once to space of any
number of dimensions.”

To elucidate the “ nature of things” by an appeal to the fourth
dimension—to solve the Irish Question by a discussion of social life
in Mars—it is a grand conception, worthy of the scorner of the
trivial and artificial quaternion of three dimensions. But is it not
the glory of quaternions that it is so pre-eminently a tri-dimensional
calculus? Geometers who look forward to a four dimensional exist-
ence may think their time in three dimensions best employed by
confining their attention only to such mathematical methods as seem
to be applicable to the higher space. But he lives best who works
best in the particular environment of the moment. The man who
fasts a whole week in prospect of a feast of unique magnificence is
hardly rational. And note that Professor Gibbs has to make
“a little change in the definition” of Vag, ere he can make it ser-
viceable in his evanescing vision of four dimensional space. Even
his own vector analysis does not apply at once ; and, with the ad-
mission of the necessity of change, the argument loses all point.

 There must be a vector analysis in such a space”—true, and
there must be in space of » dimensions an M-in-one corresponding
to the 4-in-one in 3-dimensional space. Moreover, the geometrical
significance of a quaternion, as the factor that changes one vector
into another, must have its analogue in space of four or higher
dimensions. For if there be vectors, there must be modes of changing
one into another.

In further pursuit of his end, Professor Gibbs draws a compari-
son between the quaternion and the linear and vector function,
which latter he regards as quite enough for all purposes. He asserts
that “ nothing is more simple than the definition of a linear vector
function, while the definition of a quaternion is far from simple.”
Observe, it is the simplicity of the definition that is here spoken of ;
but a definition will appear simple or the reverse, according to the
degree of previous knowledge possessed. I question very much that
a vector function of a vector is an easy conception to make on the
part of one who is just entering upon the study of a vector analysis.
It is only by a study of its properties, geometrical and dynamical,
that the linear vector function becomes intelligible. Not until the
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thing symbolised is got a hold of by the mind can the definition of
the symbol convey any adequate meaning. But, on the other hand,
if the conception of a vector be realised at all, the further conception
of the geometric meaning of the quotient and product of two vectors
is a very simple step indeed. A simpler can hardly be imagined.

‘When Professor Gibbs speaks of the definition of a quaternion
being far from simple, he probably has in mind the truth that a
quaternion is expressible as the sum of a scalar and a vector. Mr
Heaviside says : ¢ The quaternion is regarded as a complex of scalar
and vector.,” The pure analyst may think of it so ; but the physicist
should think of it in its purely geometrical significance as made up
of tensor and versor. Its property of being decomposable into
scalar and vector parts with geometric meanings, at first sight so dis-
tinct from its own fundamental characteristic, is an absolutely invalu-
able one. The quaternion includes within itself the conception of
a rotation, a stretching, a vector area, and a projection. You may
choose whichever part or parts may serve your purpose for the
moment—they are ali there uniquely determined when the quater-
nion is given. There truly is a king of quantities. ‘ Upon earth
there is not his like.”

Still another argument, advanced in all seriousness by both
Gibbs and Heaviside, is that even the avowed quaternionist com-
paratively rarely uses the quaternion, but is constantly manipulating
his scalar and vector products. Now, it is true that the symbols 8
and V throng the pages of Hamilton and Tait ; but the expression
Vof does not hide the truth that of is a quaternion. It rather
displays it. By way of illustration, let us apply the Gibbs-Heaviside
argument to trigonometry. In any treatment of this subject, the
quantities sinf and cosf occur a hundred times at least for once
that 6 occurs singly. Is the angle, then, of no fundamental import-
ance in trigonometry? There is more than an apparent analogy
here. For just as sin and cos are selective symbols operating on 6,
so are V and 8 selective symbols operating on g¢.

II. CoMPARISON OF NOTATIONS.

Professor Gibbs, having to his own satisfaction got rid of the
“ trivial and artificial ” quaternion, is, for consistency’s sake, obliged
to object to the selective system of notation. This is not, however,
the ostensible ground on which he recommends the adoption of a
notation in which vector and scalar products of two vectors are
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indicated by symbols inserted between the quantities. This he
regards as the natural mode of representation. Consequently he
suggests a x B to represent what he calls the “skew” product, and
a.B to represent what he calls the “direct” product.* The skew
product is Hamilton’s vector product, which is certainly an infinitely
more suitable name, even from Gibb’s own limited point of view.
The “direct” product—a most inappropriate name, it seems to me
—1is the product of the lengths of the vectors into the cosine of the
angle between them, and corresponds to Hamilton’s - SaB. It is
obvious that, though there may be a saving of labour in wr'ting a.8
instead of Saf, no such advantage attaches to a x 8 as compared
with VaB. But it is when more than two vectors have to be joined
together that the inferiority of the suggested notation becomes
painfully evident. Thus the expression SaBy must be written
- a.3 x v, which is less compact and less symmetrical than Hamilton’s
form. Again, the expression VVeBVyS must be written (ax 3)
x (y % 8), where the brackets are all-essential. The quantity VaSy
cannot be expressed by Gibbs at all in simple form, but has to be
given in the expanded form

—afBxytax(fxy)

Such an expression as Va.3Vy8 can only be displayed in the
extraordinary form

—afy x8+ax (B x(yx8)).

It is occasionally necessary to use brackets in somewhat com-
plex quaternion formulae, although in general a separating ‘dot”
suffices to prevent ambiguity. But, in Gibbs’s system, brackets
have to be introduced just as soon as we begin to pass to the
simplest formulae involving three vectors. The cross and dut are,
in short, quite unequal to the task of distinguishing vector and
scalar quantities.

Heaviside, in his notation, retains Hamilton’s V, but drops the
S, so that where no initial V exists, the product is taken to be the
scalar product. Thus he would write Saf8y in the form —aVgy, in
which, it appears to me, the symmetry of the expression is, to a
large extent, lost, and in which there is no gain in compactness.
The possibility of cyclically permuting afy without altering the
value of Safy is by no means so evident in Heaviside’s form.

* These are O’Brien’s very symbols, but used with the meanings interchanged.
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One of the peculiar merits of Hamilton’s notation is the way in
which vector quantities stand out in relief among quantities of a
different character. Small Greek letters are in general used for
vectors ; small Roman letters for scalars. The selective symbols
V, 8, T, U, K are evident at a glance, and we know what a quan-
tity is before we have to inquire narrowly into its constitution.
Not so with Gibbs’s notation, in which any really complex expres-
sion becomes bewildering in its dots, crosses, and brackets. Heavi-
side has to a large extent destroyed the perspicuity of Hamilton’s
notation by employing capitals for the frequently occurring single
quantities, so that the very important symbol V is not conspicuous.
He distinguishes vectors from scalars by using heavy type. This
distinguishes them sufficiently, no doubt, in print; but vector
analysis is a thing fo be used, and it is hopeless to write, easily and
rapidly, capital letters and thick-lined capital letters with pencil,
pen, or chalk. His own suggestion of a suffix notation to be used
in manuscript is an unconscious condemnation of his whole system.
A good notation in vector analysis requires these three things: (1)
rapidity and ease in writing the frequently recurring quantities ;
(2) a distinction, evident at a glance, between vectors and scalars ;
and (3), as important as any, the vector and scalar parts of products
thrown out in clear relief. It is abundantly evident that, in these
respects, Hamilton’s notation easily holds its own.

Apart altogether from the comparison that has just been made,
there is, I think, a fundamental objection to a notation like O’Brien’s
and Gibbs’s. It is that, corresponding to either product, there is no
process by which a generalised quotient can be formed by taking one
of the members over to the other side of the equation. Thus the
equation axfB=y

suggests by its very form that there ought to be a transformation
like a=7y-+pL.

But there is no such, for obvious geometrical reasons. In other
words, given y and f3, « is not determined. This simply shows, of
course, that ax 8 has no claim whatever to being regarded as a
complete or generalised product. Exactly the same is true of « .
Now in quaternions we have «B8=g¢, where any one is determined
uniquely when the other two are given. We are able at once to
write a=¢f37' or B=u"l¢. But in the equations

Vaf3=y and Suff=a
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there is no suggestion of the possibility of taking 8 or « to the other
side as a kind of divisor. By the very law of their being, S and V
are selective symbols, and (like sin, cos, log, etc.) operate on the
whole quantity «. But in Gibbs’s notation we have two quantities
having all the appearance of ordinary products, to which, however,
the familiar transformations which are suggested by their form are
inapplicable. Such a restriction is surely inexpedient, especially
when the desired end can be attained by a less objectionable and
infinitely more perspicuous notation such as Hamilton has provided.

ITI. Tae VersoriaL CHARACTER OF VECTORS.

The identification of quadrantal quaternions and vectors has
already been described as constituting one of the most important
simplifications effected in the calculus. If a quadrantal quaternion
operate fwice on the same vector perpendicular to its axis, it will
turn that vector through fwo right angles, and change the length of
the vector in the ratio of a® to 1, where a is the tensor or stretching
part of the quaternion. In symbols, if a is the quadrantal quater-
nion or vector, and B the perpendicular vector acted on, we get

afl= -a’B,
because the direction of 8 is simply inverted; or «’= —a® In
words, the square of a vector is equal to minus the square of its
length. If <, j, % are unit vectors, then *=j=4*~= —1. This
negative sign, which O’Brien puzzled over long ago, is a stumbling-
block and rock of offence to both Mr Heaviside and Dr Macfarlane.
It reappears whenever the quantity Sef is transformed into its
value in ordinary algebraic quantities. Heaviside apparently was
the first to kick against this peculiarity of quaternions. In his
earlier papers he used the symbolism of quaternions because of its
expressive compactness ; and having found it irksome to be con-
tinually changing signs of scalar products, when he had occasion to
transform these into ordinary algebraic symbols, he determined to
take the scalar product as plus the produet of the tensors into the
cosine of the angle between the vectors. This O'Brien touch seems
s0 far to have led to no confusion. Heaviside’s formulae are quasi-
quaternionic, and are a considerable simplification on the correspond-
ing Cartesian expressions. But as the change involves the very
fundamental one of making 4% 5% 4* each plus unity, it is certain
that the system is not quaternions. What, then, is-it? To what,
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if fully developed, would it lead us? Macfarlane completely
answers this question. In his pamphlet, The Algebra of Physics, he
works out very fully O’Brien’s and Heaviside’s vector analysis, and
obtains a system very similar up to a certain point to Hamilton’s
quaternions, but departing widely therefrom in certain of its higher
developments. It is much more complicated, YET X0 MORE GENERAL.
When Dr Heaviside has realised the complication which is the
logical outcome of his imagined simplification, we trust he will re-
turn into the paths of quaternionic rectitude. In his recent paper
on the Forces, Stresses, and Fluxes in the Electromagnetic Field
(Phil. Trans. 1892), he writes that his system ¢is simply the ele-
ments of quaternions without the quaternions, with the notation
simplified to the uttermost, and with the very inconvenient minus
sign before scalar products done away with.” As we shall see
presently, the first nine words of this sentence are fundamentally
inconsistent with the last twelve.

Let us consider, first, what is common to quaternions, and to
the system advocated by Heaviside and Macfarlane. It is well
known that quaternions may be built up analytically upon the pro-
perties of 4, j, &, three unit vectors (or right versors), at right angles
to one another. Now MHeaviside and Macfarlane admit the relations

k= —ji, jh=i= —kj, ki=j= — ik

which also hold in quaternions. Gibbs, it may be noted, does not
use the complete product at all, but writes his relations thus :

ixj=k= —jx1,ete,; t.i=1, ete.

O'Brien and his unconscious followers, however, boldly put
P?=7=/= +1, thereby clashing at once with quaternions.

Taking, then, what is common to the two, namely, the set of
equations represented by 4 =% = —ji, let us consider the product of
the three vectors, 1, i+j, j, the values of ¢, j% A* being meanwhile
left undetermined.

Then by one mode of association,
4 =i 47 =i+ = =)+,
and by another mode of association,

i+ = +yy=15+k =17 -1
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Here the distributive law is assumed. Now if these quantities
are to be the same, that is, if the associative law is also to hold, we
must have P=7= -1

If we use +1, we get opposite vectors, and the associative law
does not hold in vector products. The above, of course, is a very
simple case. In the completely general case in this rival system,
the products (af8)y and o(By) are different quantities, giving the same
scalar part, but quite different vector parts. It is surprising that
this aspect of the question should have escaped O’Brien.

Let us represent vectors in Heaviside’s and Macfarlane’s system
by Roman letters abed ..., and corresponding Hamiltonian vectors
by ofy8 .... Then it is easy to see that, since the scalar part of the
product ab is equal to — S,

ab= —Sa/3+ V(Lﬂ: —I{(LB: —ﬁa’
and it may be shown that

(ab)e= —yuf8
a(bc) = — Bya.

Now in quaternions we get in general siz different quantities by
permutations of o, B, y; and at first sight it might seem that this
new vector algebra gives twelve different products, since each ar-
rangement such as abe gives two products by different associations.
But inquiry soon shows that this is not so ; for although there are
two quantities got by different associations of any given arrange-
ment, each quantity so obtained is reproduced in a particular asso-
ciation of some other particular arrangement. We easily see, in
fact that afy = — (bc)a= — c(ab)

vof3= - (ab)e= —b(ca),

and so on. It isevident that the O'Brien system gives us absolutely
nothing more than is given by quaternions, but simply adds com-
plexity. In quaternions we get all possible products by permuta-
tion only ; in this other system we get the same number of quantities,
partly by association, partly by permutation. The complexities of
the system are still more pronounced when we pass to products of
four or more vectors. Macfarlane glories in his five products
obtained by different associations, namely,

((ab)e)d, (albe))d, (ab)(cd), a((be)d), a(b(cd)).
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But then we find that each one of these is reproduced in four

other associations of particular arrangements. For example,
(@d)(cd) = ((ad)b)e = (d(ba))c = b((dc)e) = b(c(ad)).

All this hopeless confusion is the result of putting 2%, % &* each
equal to unity. Well may we be grateful to Hamilton for having
given us an assoclative vector algebra of the utmost generality. A
most interesting discussion of this very point is given in §§ 50-56 of
the Preface to Hamilton’s Lectures on Quaternions. It is there
shown, from general considerations of the symmetry of space, that,
when the rules for the multiplication of vectors are made to differ
as little as possible from the usual rules for the multiplication of
numbers in algebra, the result is the quaternion system of vector
analysis, the commutative law only being departed from. These
sections should be carefully considered by all would-be innovators.

The question naturally arises—What meaning are we to
attach to the equations 4 =£k, jk=1, etc?! Heaviside and Macfar-
lane seem to regard ¢ and j as mutually perpendicular vectors,
which, by their product, give a third vector perpendicular to both.*
In quaternions the meaning is obvious, for ¢ is the versor which,
acting on j, turns it into £&. Moreover, Professor Gibbs, on page 6
of his pamphlet, explicitly enunciates the same principle when he
says that « the effect of the skew [ie., vector] multiplication by a
[any unit vector] upon vectors in a plane perpendicular to a is
simply to rotate them all 90° in that plane.” To which, by way of
commentary, we may quote the following from Heaviside :

“In a given equation” [in quaternions, that is], “one vector
may be a vector, and another a quaternion. Or the same vector, in
one and the same equation, may be a vector in one place and a
quaternion (versor or turner) in another. This amalgamation of the
vectorial and quaternionic functions is very puzzling. You never
know how things may turn out.”

Puzzling #—then should Mr Heaviside find his own system as
puzzling as any. For when he writes the vector product

ﬁ:h
he is simply acting on j by 4, or on ¢ by 7, and turning it through a

* O’Brien seems to be much more consistent here, for his product a.8 is the
area, and he uses Da.f as the symbolism for the quantity Vag. Where Heaviside
and Macfarlane cease to be O’Brienites, they become inconsistent.
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right angle. It is impossible to get rid of this versorial effect of a
vector., It stares you in the face from the very beginning. It is
the only rational way of impressing the meaning of the equations.

Leaving Gibbs and Heaviside to harmonise, if possible, their
differences, 1 shall here call attention briefly to one distinction
between Hamilton’s quaternions and Grassmann’s dusdehnungslehre.
In the Ausdehnungslehre of 1862, Grassmann explains the meaning
of his units e, e, e, . . . The essential feature of these is, that
€= — €0, 6,6;= — e, and so on for any pairs. Since the units
are supposed to be of the same kind, it follows that ee, = — e;¢, also,
an equation which cannot be true unless ¢,* vanishes. Similarly the
squares of all the units vanish. Grassmann also suggests that an-
other algebra is given if we assume ¢? ¢ ¢? . . . to beeach
equal to + 1, and all the products to be zero.

It is evident that the whole mode of looking at the question is
fundamentally different in the two cases; and that it is impossible
to identify Grassmann’s units with Hamilton’s 4, j, £. Grassmann’s
“outer” and ‘“inner” products in the Ausdehnungslehre of 1844
correspond to Hamilton’s Vaf and - Saf; but there is no doubt
that Grassmann failed to see that these quantities could be combined
by subtraction, so as to give a new quantity having a very simple
geometrical meaning, namely the quaternion of Hamilton.

IV. GENERAL CONCLUSIONS.

The general conclusions at which we have arrived may be sum-
marised briefly as follows :

(1) The quaternion quotient is as fundamental a geometrical
conception as the vector sum, the vector product, and the scalar
product of two vectors, so that Professor Gibbs’s argument, which
is based upon the assertion that it is certainly not so, is void and
meaningless.

(2) Whatever demerits may exist in Hamilton’s own notation,
there has not as yet been suggested anything that can be regarded
as an improvement. The changes introduced by Gibbs and Heavi-
side destroy some of the most perspicuous and symmetrical features
of the quaternion notation. Leaving out of account a few very
exceptional cases, these suggested mnotations cannot for a moment
compare with Hamilton’s in clearness, compactness, and facility for
manipulation.
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(3) In the original conception of a vector (as involved in the
addition, theorem, for example), there is nothing inconsistent with
its versorial character in multiplication. The truth is, that many
physical quantities, which are symbolised by vectors, are essentially
rotational. It is not merely displacement, or velocity, or accelera-
tion that is so symbolised. Moments of velocities and forces, rota-
tions themselves, vortex axes, and a whole host of similar quantities
in electricity and magnetism, are either simple vectors or localised
vectors. Or again, it is universally admitted that a displacement
may be regarded as a rotation about an infinitely distant axis.
Every vector in space may be regarded as a vector arc upon a
spherical surface of infinite radius. But a vector arc on a spherical
surface is a versor. On what physical ground, then, can any one
object to a vector having a versorial quality ¢ Indeed, notwith-
standing all assertions to the contrary, Heaviside and Macfarlane
really use the vector as a versorial operator ; for what other mean-
ing can be attached to the equation 4 =k? Gibbs, as we said,
explicitly uses the vector as a versor. The versorial character of a
vector being thus admitted, there is no sufficient reason for regard-
ing the square of a vector as other than minus the square of its
length,

(4) The vector algebra, which is built upon the assumption that
¥ =7=k*= +1 is non-associative in its products. And yet, notwith-
standing this appearance of greater generality, it gives us absolutely
no new thing. Its non-associative character is partly balanced by
the fact that its non-commutativeness is incomplete. It simply
muddles what is beautifully clear in quaternions.

In this paper I have limited myself to the consideration of the
fundamental differences that exist between quaternions and the
systems advocated by Gibbs, Heaviside, and Macfarlane. To com-
plete the discussion, however, it would be necessary to review the
systems in themselves as they have been developed. Of the three,
Professor Gibbs has given us the most consistent system in his
pamphlet, The Elements of Vector Analysis. In a paper communi-
cated to the Royal Society of Edinburgh, I have entered at some
length into a criticism of the contents of this pamphlet.

I show that Professor Gibbs, although ostensibly excluding the
quaternion, introduces it in a covert way in his treatment of the

https://doi.org/10.1017/50013091500031199 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500031199

80

linear and vector function. Not only so, but in certain volume
surface -and line integrals he uses the quaternion product itself,
thereby perjuring his whole position, as described in his letter to
Nature. Then there is his treatment of the quantities and opera-
tions that cluster round the quaternion operator 7. By their
tinkering processes, Gibbs, Heaviside, and Macfarlane all reduce
this beautiful operator to a mere make-believe, which, in the simpler
applications, appears to have all the essential attributes of the true
<7, but utterly fails when higher things are demanded of it.

It is a fair question—What has induced these scientific writers
to take up their antagonistic attitude to the quaternion calculus?
Heaviside and Macfarlane confess that their grievance is the minus
sign. Tt is marvellous—indeed, almost ludicrous—to have mathe-
maticians take fright at such a very simple matter. To the be-
ginner, perhaps, who is constantly translating the quaternion
quantities into ordinary analytical form, the necessity of changing
the sign before scalar quantities is at first a little irksome. But,
with a very little experience, the irksomeness quite vanishes away,
It is no more formidable than re-arranging the terms of an equation
by shifting them to different sides. Possibly, however, this preli-
minary peculiarity may have deterred many from continuing their
study of quaternions. Heaviside, with inimitable assurance, thinks
his system is what the physicist wants. An algebra non-associative
in its products! When once the physicist has realised the full
meaning of this, he will surely take courage, and tackle the
quaternion analysis in earnest.

Gibbs, however, although he uses a symbolism for — Sa8, and
thereby appears to side with Heaviside, nowhere confesses to have
been repulsed by the “unnatural ” and ““inconvenient” minus sign.
Why, then, does he object to Hamilton’s system? His ostensible
reasons, as given in the first letter to Nature, have been shown to
be based on a complete misapprehension. Evidently he has not
taken the trouble to get into the spirit of quaternions—and this, I
believe, to be the true explanation of the apathy amongst physicists
towards quaternion analysis— or (if we may judge from his second
letter to Nature) he has so convinced himself as to the all-efficiency
of Grassmann’s methods, that le is determined to bar out the great
thing in Hamilton’s system which is lacking in Grassmann’s. With
what success, or non-success rather, he manages this, is shown in my
paper communicated to the Royal Society of Edinlurgh.
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