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EIGENVALUE CHARACTERIZATION FOR (n, p)
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Abstract
We consider the (n, p) boundary value problem

Yy 4+ AH@E y) = XK(t,y), n=2,te(01),
Y2 =yP0)=0, 0<i<n-2,

where A > 0and 0 < p < n — lis fixed. We characterize the values of A such that the
boundary value problem has a positive solution. For the special case A = 1, we also offer
sufficient conditions for the existence of positive solutions of the boundary value problem.

1. Introduction

In this paper we shall consider the nth order differential equation
Yy +AH@, y) =rK(t, y), t € (0, 1), (1.1)
together with the (n, p) boundary conditions

y(’)(o)zov 0515’1_2,

1.2
y(p)(l) —_ 0, ( )

wheren > 2, A > Qand p is a fixed integer satisfying 0 < p < n—1. Throughout it is
assumed that there exist continuous functions f : [0, c0) — (0, 00) and k, k;, h, h; :
(0, 1) — R such that

(H,) f is nondecreasing;
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(Hy) foru € [0, 00),

HED iy, ky < 20

f@)y — )
(Hs) h(t) — k,(¢) is nonnegative and is not identically zero on any subinterval of
©, 1);
(Ho) [y (1 —0y=?~"[hy (1) — k(D)]dt < oo
We shall characterize the values of A for which the (n, p) boundary value problem
(1.1), (1.2) has a positive solution. By a positive solution y of (1.1), (1.2), we mean
y € C™(0, 1) satisfying (1.1) on (0, 1) and fulfilling (1.2), and y is nonnegative and
is not identically zero on [0, 1]. If, for a particular A the boundary value problem (1.1),
(1.2) has a positive solution y, then X is called an eigenvalue and y a corresponding
eigenfunction of (1.1), (1.2). We let

h(t) <

< ki(1);

E ={) > 0] (1.1),(1.2) has a positive solution}

be the set of eigenvalues of the boundary value problem (1.1), (1.2).

Next, for the special case . = 1, we shall give an existence result for positive solu-
tions of the boundary value problem (1.1), (1.2), assuming that f is either superlinear
or sublinear. To be precise, introduce the notation

fo = lim fw foo = lim ACH

u—0t u u—00 U

The function f is said to be superlinear if fo = 0, foo = 00, and f is sublinear
provided f = 00, fo = 0. The technique used here is a generalization and extension
of that initiated by Fink, Gatica and Hernandez [19] and Erbe and Wang [17] for
second-order boundary value problems.

The motivation for the present work stems from many recent investigations. In
fact, when n = 2 the boundary value problem (1.1), (1.2) describes a vast spectrum of
scientific phenomena such as gas diffusion through porous media, nonlinear diffusion
generated by nonlinear sources, thermal self ignition of a chemically active mixture
of gases in a vessel, catalysis theory, chemically reacting systems, adiabatic tubular
reactor processes, as well as concentration in chemical or biological problems, where
only positive solutions are meaningful, for example, see 5,9, 11, 12,21, 24,29]. Re-
cently, several eigenvalue characterizations for particular cases of (1.1), (1.2) have
been carried out. To cite a few examples, Fink, Gatica and Hernandez [19] have dealt
with the boundary value problem

Y'+rqgf(y) =0, te(0,1),

y(0) = y(1) = 0. (1.3)

https://doi.org/10.1017/50334270000009462 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000009462

388 Patricia J. Y. Wong and Ravi P. Agarwal [3]

Their results are extended in [20] to systems of second-order boundary-value problems.
In [8] and [18], a different boundary value problem is tackled

1" N - 1 !
y' + — +Aq@)f(y) =0, te(0,1),
y(0) = y(1) =0.

(1.4)

Further, Chyan and Henderson [10] have studied a more general problem than (1.3),
namely,

Y +rgOf() =0, te©1), (L.5)
yP©0) =y"?(1) =0, 0<i<n-2 '
Our results not only generalize and extend the known eigenvalue theorems for (1.3)-
(1.5), but also complement the work of Wong and Agarwal [33,34], as well as
including several other known criteria offered in [2].

For the special case A = 1, particular and related cases of (1.1), (1.2) have been
the subject matter of many recent publications on singular boundary value problems,
for example, see the monograph of O’Regen [28] and also [3, 4, 13,23, 25,26,31].
Further, for the case of second-order boundary value problems, (1.1), (1.2) arise in
applications involving nonlinear elliptic problems in annular regions. For this we
refer to [6,7,22,30]. In all these applications, it is frequent that only solutions that
are positive are useful. Recently, Eloe and Henderson [14, 15] have considered the
nth-order differential equation

Y?+qf() =0, te(1),
subject to the boundary conditions

y20) = y*?(1)=0, 0<i<n-2,
y?0)=y()=0, 0<i<n-2.

Our result not only generalizes and extends their work, but also complements other
related investigations in [16, 17, 32, 34].

The plan of this paper is as follows. In Section 2 we shall state a fixed-point
theorem due to Krasnosel’skii [27], and present some properties of a certain Green’s
function which are needed later. In Section 3, by defining an appropriate Banach
space and cone, we characterize the set E. Finally, the special case A = 1 is treated in
Section 4 and a fixed-point theorem from [27] is used to give an existence result for
positive solutions of (1.1), (1.2).
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2. Preliminaries

THEOREM 2.1 ([27]). Let B be a Banach space, and let C(C B) be a cone. Assume
Q,, Q, are open subsets of B with 0 € 2, Q, C Q,, and let

S:CNEL\Q) —» C

be a completely continuous operator such that, either

@ ISyl <llyl,y e CNaK,, and ISyl = |lyll, y € CNI, or
() ISyl = liyll. y e CN Ay, and ||Syll < llyll, y € CN3Q,.

Then, S has a fixed point in C N ($2,\$2)).

To obtain a solution for (1.1), (1.2), we require a mapping whose kernel G(, 5) is
the Green’s function of the boundary-value problem

_y('l) =O,
yP() =y?0) =0, 0<i<n-2,

where 0 < p < n — 1 but fixed. From [1] we have

1 "' =P - -5, O0<s<t<l
G(t,s) = (=9 =9 =7=E=0 2
(n—=D! |t — sy, OD<r<s<l
and
o' .
WG(t,s)zo, O0<i<p, (5)€l[0,11x][0,1].
LEMMA 2.1. For (t,s) € [0, 1] x [0, 1], we have
t,s) < 1 —s)—PL 2.2
Gt.) = opsi (1= 9) 2.2)
PROOF. This is immediate from (2.1).
LEMMA 2.2. For (t,5) € [+, 2] x [0, 1], we have
G@,s) > Ly™ ! (1 —5)"""¢(s) 2.3)
,§ - - , .
=\3) G-n F s (
where 0 < ¢(s) <1 is given by
1-({—=-5), s<t
d(s) = { ( ) (2.4)
1, t<s.
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PROOF. For0 < s < t, from (2.1) we find
(n—DIGE,s)> 1" —s)" P — (t —ts)"!
="' =) "1 - (1 —s5)"]

n—1
> (%) (1 =5)"""7'p(s).

Fort < s < 1, the inequality (2.3) is obvious.

We shall need the following notation later. Let
v(t) =h(@)—k(@) and u(t) =h@) —k@).
For a nonnegative y on [0, 1], we denote

1 |
(n— ! /o (1 =5y 'u(s) f(y(s)) ds

and

1 {
p= ——/ (1 = 5)""""'p(s)u(s) f (y(s)) ds.
(n—DtJy

(5]

2.5)

(2.6)

2.7

In view of (H;) and (Ha), it is clear that > 8 > 0. Further, we define the constant

_ 1 n—I1 ﬁ
V= 4 o
and note that 0 < y < 1.

3. Eigenvalue characterization

Let the Banach space
B={y|yeC[0, 1]}

be equipped with norm || y[| = sup,; [y(2)], and let

C = {y € B |y(1) is nonnegative on {0, 1]; rPin]y(t) >yl t -
refi.3

We note that C is a cone in B. Further, let

Cu={yeCllyl =M.
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We define the operator § : C — B by

1
Sy() =/ G@,s)[H(s,y) — K(s,y)] ds, t € [0, 1]. 3.1
0

To obtain a positive solution of (1.1), (1.2), we shall seek a fixed point of the operator
AS in the cone C.
It is clear from (H,) that

Uy < Sy() < Vy(@), 1e0,1], (3.2)
where

Uy = fo Gl ) fyE) ds (3.3)
and

V() = /0 Gt sy () ds. (3.4)

We shall now show that the operator S is compact on the cone C. Let us consider
the case when u(?) is unbounded in a deleted right neighborhood of 0 and also in a
deleted left neighborhood of 1. Clearly, v(¢) is also unbounded near 0 and 1. For
m € (1,2,3,...}], define u,, v, : [0, 1] > R by

|
u(—) 0<t< :
m+ 1 m+1
Un () = {u@), 1 <1< " (3.5)
e m+1—" ~“m+1 '
m
<t=<l,
(m+,) ST
( ) 0<t< 1
m+ 1 T T m+1
() = { (1), L i ™ (3.6)
e m+1~"" " m+1 '
m
<t<l,
<m+1) m+17~— =
and the operators U,,, V,, : C — B by
|
Um}’(t)=/ G, Sun(s) f(y(s)) ds, 3.7
0
1
Vay® = [ G516 F 60 ds. (38)
0
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It is standard that for each m, both U,, and V,, are compact operatorson C. Let M > 0
and y € Cy. Then, in view of Lemma 2.1, we find

[Vay(t) = Vy(@®)|

i
=/ G, Hva(s) —vE)|f(y(s))ds
0

m
m+1

et I
= / G, s)|vm(s) — v(S)If(y(S))dS+/ G(t, )| vm(s) —v() f(y(s))ds
1
v (m T 1) — v(s)

0
m
v(m+1)—v(s) ds:I.

M T
) f (1 = s+
(n— D! Jo
|
+ ] -5t
The integrability of (1 — £)"~7~'v(¢) (condition (H,)) implies that V,, converges
uniformly to V on Cy. Hence, V is compact on C. Similarly, we can verify that U,
converges uniformly to U on C, and therefore U/ is compact on C. It follows from
(3.2) that the operator S is compact on C.

ds

THEOREM 3.1. There exists a ¢ > 0 such that the interval (0, c] C E.

PROOF. Let M > 0 be given. Define

-1

c= l: AC)) /(1 ytoPT lv(s)a’sjl . 3.9)
n—Dn!

Let A € (0, c]. We shall prove that (AS)(Cy) € Cy. For this, let y € Cy and we
shall first show that ASy € C. Clearly, from (3.2) and (H;), we find

I
ASy)(@®) = Af G(t, HHu(s)f(y(s)ds =0, te€]0,1] (3.10)
0

Further, it follows from (3.2) and Lemma 2.1 that

1
Sy(t) 5/ G(t, s)v(s) f(y(s))ds

< / (1 =) "u(s) f(y(s))ds —a, 1€ [0, 1],
(n—l)'
Thus

ISyl < a. (3-11)
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Now, on using (3.2), Lemma 2.2 and (3.11), we find for ¢ € [ ] that

1
ASY() = A / G(t, $)u(s) f (y(s)) ds
0

v

1 n-—1 1 i
* (Z> (n—D! /0 (1= 5)"""'¢()u(s) f(y(s)) ds

(5) 7

1\ ISyl
A(—) B- == =2yISyl =yIASyl.

i
>

>
- 4
Therefore
rPln](ASy)(t) > yIlIASyll (3.12)
1€ 4° 4

and (3.10) and (3.12) lead to ASy € C.
Next, we shall show that ||ASy|| < M. For this, on using (3.2), Lemma 2.1 and
(3.9) successively, we get

1
ASY)(E) < A [ G, $)v(s) f (¥(s)) ds

= (n— 1)|/ (1 =s5)"Plu(s)f(M)ds <M, 1€l0,1].

Consequently,
IASyll = M.

Hence (AS)(Cy) € Cy. Also, standard arguments yield that AS is completely
continuous. By the Schauder fixed point theorem, AS has a fixed point in C,,. Clearly
this fixed point is a positive solution of (1.1), (1.2) and therefore X is an eigenvalue
of (1.1), (1.2). Since A € (0, ] is arbitrary, it follows immediately that the interval
0,c]CE.

The next theorem makes use of the monotonicity and compactness of the operator
S on the cone C. We refer to [19, Theorem 3.2] for its proof.

THEOREM 3.2 ([19]). Suppose that .y € E. Then, for eachQ < . < Ao, > € E.

The following corotlary is immediate from Theorem 3.2.

COROLLARY 3.1. E is an interval.
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We shall establish conditions under which FE is a bounded or unbounded interval.
For this, we need the following results.

THEOREM 3.3. Let A be an eigenvalue of (1.1), (1.2) and y € C be a corresponding
eigenfunction. If y®=Y(0) = q for some q > 0, then X satisfies

-1
g(v)q [f ( o 1),)] < < gglf O, (3.13)

where

1
g(@) = [/ (1 =) 12(s5) ds] ) (3.14)
0

PROOF. For m € {1,2,3,...}, we define f, = f * ¢,,, where ¢, is a standard
mollifier [10, 19] such that f,, is Lipschitz and converges uniformly to f.

Forafixedm, let A, be an eigenvalue and y,,, with y"~(0) = ¢, be a corresponding
eigenfunction of the boundary-value problem

y,(:) + A-mHm(L)’m) = )"me(t’ )’m), t e [Oy I]v (315)
WO0)=0, 0<i<n-2,
y(,,,)( : - (3.16)
ym (1) =0,

where H,, and K,, converge uniformly to H and K respectively, and

H,(t,2) — Kn(t,
un(®) < LD =Kl D 3.17)
fn(2)
(see (3.5) and (3.6) for the definitions of u,,(¢) and v, (¢)).
Clearly, y,, is the unique solution of the initial value problem (3.15),

y(0)=0, 0<i<n-2,

() =q. 1
Since
I ) = AnlKn(t, ) = Hi(t, Yu)] < —Amttin (1) fn (9 ()) <0,
we have y"~" is nonincreasing and hence
yo @) <y&P0)=q, rel0,1l (3.19)
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Noting that
. ! .
¥ = / yit(s)ds, 0<i<n-2,1€l0,1], (3.20)
0
we obtain, on using (3.19),
t !
yo=2(r) =f yrD(s)ds < / gds =qt, tel0,1].
0 0

Applying the above inequality and continuing integrating, we find

n—1

t < q ’
n-D!'" (n-1)!
Now, from (3.15), (3.17) and (3.21) we get for ¢ € [0, 1],

t [0, 1]. (3.21)

Ym(t) < g

At (1) fr(0) < =y () < A Un(t) fim (—9———> : (3.22)
(n— 1!
An integration of (3.22) from 0 to ¢ provides
6i(1) < ya~ V() < 6,), te€l0,1], (3.23)
where
0,(t) =q — Ap fn (_q_) /' Un(s)ds
(n—1! 0

and

02(t) = 4 — A £ (0) [ n(5) .
0

Continuing the integration process, we getforO < p <n — 1,

6;(1) < yP(1) < 6,(), te[0,1), (3.24)
where
_ q oot q 1 (t _ s)n—p—l
60 = i i () [ e
and
00 = G it R fm(O)f ('_s)" - ey s
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In order to have y”(1) = 0 (see (3.16)), from (3. 24) it is necessary that 6;(1) < 0
and 6,(1) > 0, or equivalently,

-1
A 2 g0m)q [fm ( - 1)!)] (3.25)

< gum)glfu ()] (3.26)
Coupling (3.25) and (3.26), we get

and

-1
g(vm)q [fm ( 1),)] < Am < 8um)qLfu (O] (3.27)

It follows from (3.23) that {y"~"}%_ is a uniformly bounded sequence on [0, 1].
Using the initial conditions (3.18) and repeated integrations, we find that {y®}%_,
0 <i <n—1is auniformly bounded sequence. Thus there exists a subsequence,
which can be relabelled as {y,,}>°_,, that converges uniformly (in fact, in C®~"-norm)
to some y on [0, 1]. We note that each y,,(¢) can be expressed as

1
Ym(t) = lm[ G, $)Hn(s, ym) — Kn(s, yu)lds, t€[0,1].  (3.28)
0

Since {A,}%°_, is a bounded sequence (from (3.27)), there is a subsequence, which can
be relabelled as {A,,}°.,, that converges to some A. Letting m — oo in (3.28) yields

m=1]>

1
y@) = A/ G(t,s)[H(s,y) — K (s, y)]ds, t € [0, 1].
0

This means that y is an eigenfunction of (1.1), (1.2) corresponding to the eigenvalue
A. Further, y®~"(0) = g, and (3.13) follows from (3.27) immediately.

THEOREM 3.4. Let A be an eigenvalue of (1.1), (1.2) and y € C be a corresponding
eigenfunction. Further, let n = ||y|| and p = max,cpo) |y"~2(t)|. Then

1 -1
> f?n)(n—l)![/o (1-—s)""’"v(s)ds] (3.29)

and

3 -1
A< f(?/n) U G (%s) u(s)dsjl . (3.30)
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Also, there exists a ¢ > 0 such that

! -1
p 1 3 1
= Fien) - 2! [/ © (5“‘) “(S)dS] : (3.31)

PROOF. First we shall prove (3.29). For this, let z5 € [0, 1] be such that

n =yl = yt).

Then, applying (3.2) and Lemma 2.1 we find

1
n= y(to) = (ASy)(to) < A f G, $)v(s) £ (y(s)) ds

< — 1),f (1 = """ o) F(y(s)) ds

<

” 1),f(n)f (1 —s)"""'u(s)ds

from which (3.29) is immediate.
Next, using (3.2) and the fact that min,e[ 13 y(t) = yn, we get

1 ! 1
n=y <§> > A/O G (5, s) v(s) f(y(s))ds

> / ‘G (% s) v(5) F (¥(s)) ds
> Af(ym) / (— s) o(s)ds
which gives (3.30).

Finally, to prove (3.31 ) we note from the relation
!
yO ) =/ y*(s)ds, 0<i<n-3,1tel0,1) (3.32)
0

and the nonnegativity of y that y*~2 is nonnegative on [0, 1]. It is also observed
that y™ is nonpositive and hence y”~? is concave on [0, 1]. Thus, there exists a
unique ¢ € [0, 1] such that p = max,¢) Y 2(t) = y®=2(,). We shall consider
two cases.

https://doi.org/10.1017/50334270000009462 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000009462

398 . Patricia J. Y. Wong and Ravi P. Agarwal [13]

Case 1 y*21) =0
Here, y"=2(0) = y®=2(1) = 0. Thus, it follows from the concavity of y®~2? that

B-t, t €[0,1]
Y@ z !
l—t,(l_t)’ tely, 1]
>pt(l—-1), tel0,1]. (3.33)

Using (3.32) and (3.33), we get

4 1 t2 t3
y‘"'3’(t)=/ y" P (s)ds 2[ ps(l—s)ds=p|{=—=), tel01]
0 0 2 3
Continuing the integration process, we obtain
yO)y = py(r), tel0,1], (3.34)

where

n-1 t

n—0D! “nt

v =

We note that

i 2t
1/’(')'(n-z)! (l—n—1>

is nonnegative for r € I = [0, %]. Hence in particular ¥ (¢) is nondecreasing for
t € [3,1] € 1. It follows from (3.34) that :

11
9 '~ | 3.35
y@)>cp t6[4 2] (3.35)
where
1 1 2
—uli\= _ . 36
¢ 1/’(4) yr=ym R R (3.36)

Now, relation (3.32) provides

t

t
y®3I(t) = / y"I(s)ds < / pds =pt, tel0,1]
0 0
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Using the above inequality and (3.32) again leads to

n—2
YO S P < (nf2)" reo, 1], (3.37)
In view of (3.37), (3.2) and (3.35), we find
Jol 1
n—21 > 2y ( ) (5, ) u(s) f(y(s))ds
1
(5 )u(S)f(y(S)) ds

> )»f(c;o)fE G (%s) u(s)ds

from which (3.31) follows immediately.

Case 2 y®2(1) > 0
In this case, y“~2(0) = 0, y"~(1) # 0. Hence, by the concavity of y*~?, we
have

Y@y > Yo () >y Dyl —1), t €0, 1] (3.38)

Using a similar technique to that of Case 1, it follows from (3.38) and successive
integrations that

y(@) = Yy (), teld, 1 (3.39)

This leads to (3.35), where

oy 1 2
¢=— [4n_1(,, myrie 4"n!] > 0. (3.40)

The rest of the proof is similar to that of Case 1.
This completes the proof of the theorem.

THEOREM 3.5. Let

Fy = { f ‘f’(‘u) is bounded for « € [0, co) ] ,

lim

u—00 f(u) l '

lim

. U
"->°°f(u)_0]’ w-{f

Fo={f
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(@) If f € Fg, then E = (0, ¢) or (0, c] for some ¢ € (0, 00).
(b) If f € Fy, then E = (0, c] for some ¢ € (0, 00).
() If f € Fy, then E = (0, 00).

PROOF. (a) This is immediate from (3.30) as well as from (3.31).
(b) Since Fy S Fp, it follows from case (a) that E = (0, ¢) or (0, c] for some

¢ € (0, 00). In particular,
c=supkE. (341

Let {1,}S°_, be a monotonically increasing sequence in E which converges to c,
and let {y,}>_, in C be a corresponding sequence of eigenfunctions. Further, let
Nm = llynll. Then, (3.30) implies that no subsequence of {n,}>>_, can diverge to
infinity. Thus, there exists M > 0 such that n,, < M for all m. So y,, is uniformly
bounded. Hence, there is a subsequence of {y,,}°_, , relabelled as the original sequence,

which converges uniformly to some y € C. Noting that A, Sy,, = y,, we have

Sy, = Aiym. (3.42)

m

Since {cSy.)., is relatively compact, y, converges to y and A,, converges to c,
letting m — oo in (3.42) gives ¢Sy = y, thatis, ¢ € E. This completes the proof for
Case (b).

(c) This follows from Corollary 3.1 and (3.29).

EXAMPLE 3.1. Consider the boundary-value problem

y@ 4 A (12y +57 =0, te(01),

1
(54213 - 1%y
y(0) = y'(0) = y"(0) = yP(1) =0,

where 0 < p <3 but fixed, A > 0andr > 0.
Taking f(y) = (12y + 5)", we find

H(,y) _ 1 an K(t,y) _
f» (5423 — 14y f»m

Hence, we may take

1

mn= =2Gr iy

Grao—py "0

and k(¢) = k;(¢) = 0. All the hypotheses (H,)—(H,) are satisfied.
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Case 1 0<r«<l
Since f € F, by Theorem 3.5(c) the set E = (0, 00). Forexample when p = A =
2, the boundary-value problem has a positive solution given by y(t) = £3(2—1t)/12.

Case 2 r=1

Since f € Fg, by Theorem 3.5(a) the set E is an open or a half-closed interval.
Further, we note from Case 1 and Theorem 3.2 that when p = 2, E contains the
interval (0, 2].

Case 3 r>1
Since f € Fy, by Theorem 3.5(b) the set E is a half-closed interval. Again, it is
noted that when p = 2, (0,2] C E.

EXAMPLE 3.2. Consider the boundary-value problem

sin ¢
y"+Am(5y+8)’ =0, te (0, 1),

y(0) =y (1) =0,

where p = Q or 1 (but fixed), A > Oand r > 0.
Choosing f(y) = (5y + 8)", we may take

3sinme sinmt

hit)=——""  ht)= —
(0 (8 + Ssinme) @ 4(8 + Ssinmt)

and k(t) = ki(t) = 0. All the hypotheses (H,)—(H,) are satisfied and we note that
when p = 0 and A = 72, the boundary-value problem has a positive solution given
by y(t) = sinwt. With obvious modification, the three cases considered in Example
3.1 also apply here.

4. Special case: A =1

THEOREM 4.1. Suppose that f is either superlinear or sublinear. Then the boundary-
value problem (1.1), (1.2) has a positive solution.

PROOF. To obtain a positive solution of (1.1) (1.2), we shall seek a fixed point of the
operator S (defined in (3.1)) in the cone C. We have seen that S is compact on the
cone C. Further, we observe from the proof of Theorem 3.1 that S maps C into itself.
Also, the standard arguments yield that S is completely continuous.
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Case 1 Suppose that f is superlinear. Since f; = 0, we may choose €, > 0

such that

fwy<eu, O<u<sé

and

(n—l)',/ A =s5)""""u(s)ds < 1.

4.1

4.2)

Let y € C be such that ||y|| = 8. Then, applying (3.2), (4.1), Lemma 2.1 and (4.2)

successively, we find for ¢t € [0, 1],

1
Sy(t) < / G(t, $)v(s) f (¥(s)) ds
0

1
€ / G(t, s)v(s)y(s)ds

- 1),/ (1= 9)"""u(s)y(s) ds

S - nzfo (L= "o(s)lyl s < Iyl

Hence
ISyl < liyll

If we set 2; = {y € B | |lyll < 8}, then (4.3) holds for y € C N 3.
Next, since f,, = 00, we may choose M, N > 0 such that

fw)=Mu, u=N

and

i1
Myf G(E,s)u(s)dszl.

Let y € C be such that ||y|| = N, = max{26, g]. Thus for ¢ €[4, 2],

N
y@) zvliyllzy- " =N,
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which in view of (4.4) leads to

13
fO®)=My@), te [Z’ Z]‘ (4.6)

Using (3.2), (4.6) and (4.5), we find

1
Sy( ) (2 s) u(s) f(y(s))ds

1

2 7 s) u(s) f(y(s))ds
> / G(— s)u(sms)ds
>

/ ( )u<s>y||yuds>||yu

Therefore

1Syl = Iyl 4.7

IfwesetQ, ={y e B}yl < N}, then (4.7) holds for y € C N 3Q,.

In view of (4.3) and (4.7), it follows from Theorem 2.1 that S has a fixed point
y € CN(2:\2), such that § < |ly|| < N,. This y is a positive solution of (1.1),
(1.2).

Case 2 Suppose that f is sublinear. Since f; = 00, there exist L, £ > 0 such that

fWwy>Lu, O<u=<E¢ (4.8)

and

LyfZ G (%,s) u(s)ds > 1. 4.9)
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Let y € C be such that ||y|| = &. On using (3.2), (4.8) and (4.9) successively, we get

i
Sy (%) > fo G (%s) u(s) f(y(s)) ds
1
> L/ G (%, s) u(s)y(s)ds
0
> L[ G (%s) u(s)y(s)ds

3
H 1
> L[ G <§,s) u@)ylyllds = |yl

i
1

ety

from which (4.7) follows immediately. If we set 2, = {y € B | ||yl < &}, then (4.7)
holds for y € C N 9Q2,.
Next, in view of f,, = 0, we may choose J, 8 > 0 such that

fw) <0u, u>J (4.10)

and

0
(n— 1!

1
/ (1 —s5)"Py(s)ds < 1. 4.11)
0

Let J, = max{2§, J}. Since f is nondecreasing, f(u) < f(J;))forO < u < J;. In
view of (4.10), this implies that

fwy=<6J, O0<uc=<l. 4.12)
Let y € C be such that ||y|| = J;. Then it follows from (4.12) that
fy@) <64, tel01] (4.13)

On using (3.2), (4.13), Lemma 2.1 and (4.11) successively, we get for ¢ € [0, 1] that
1
S50 = [ 696 £ ds
0

1
59.1,/ G, s)v(s)ds
0
6J,
<
“(n-1)!
<Ji =iyl

1
/ (1 —s)" " 'u(s)ds
0
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from which (4.3) follows immediately. If we set 2, = {y € B | ||yl < J,}, then(4.3)
holds for y € C N 3%2,.

Now that we have obtained (4.7) and (4.3), it follows from Theorem 2.1 that S has
a fixed pointy € C N (R,\8)), such that £ < ||y|| < J;. This y is a positive solution
of (1.1), (1.2).

The proof of the theorem is complete.

The following two examples illustrate Theorem 4.1.

EXAMPLE 4.1. Consider the boundary-value problem
mlsinme

Oy T gy b1y =0, te1),
YUt G—dcosmry D @D

y(©0) = y'(0) = y”(1) =0,

where 0 < p <2butfixedandQ <r < 1.
Taking f(y) = (4y + 1)" (which is sublinear), we find that

H(t,y) _ misinme and K(t,y) _
f» (5 —4cosme)y f»m

Hence we may choose

aésinmt Bt = nlsinmt
(5 —4cosmt)’ T (5—4cosmt)
and k(t) = k;(t) = 0. All the conditions of Theorem 4.1 are fulfilled and therefore

the boundary-value problem has a positive solution. We note that when p = 1, one
such solution is given by y(t) = 1 — cosm¢.

hy(t) =

EXAMPLE 4.2. Consider the boundary-value problem

y' + Qy+3) =0, te(,1),

(G +2t — 2y
y(0) = y"(1) =0,
where p =0or 1 (but fixed)and0 < r < 1.
Choosing f(y) = (2y + 3)" (which is sublinear), we may take
5 1

P — T ht)=———

B +2 -2y 1) 33 +2t — 12y

and k(t) = k,(tr) = 0. Again, all the conditions of Theorem 4.1 are satisfied and so

the boundary-value problem has a positive solution. Indeed, when p = 1, one such
solution is given by y(t) =t (2 — 1)/2.

hi(t) =
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