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Abstract
Ranking multiple interventions is a crucial task in network meta-analysis (NMA) to guide clinical and policy
decisions. However, conventional ranking methods often oversimplify treatment distinctions, potentially yielding
misleading conclusions due to inherent uncertainty in relative intervention effects. To address these limitations,
we propose a novel Bayesian rank-clustering estimation approach, termed rank-clustering estimation (RaCE),
specifically developed for NMA. Rather than identifying a single “best” intervention, RaCE enables the
probabilistic clustering of interventions with similar effectiveness, offering a more nuanced and parsimonious
interpretation. By decoupling the clustering procedure from the NMA modeling process, RaCE is a flexible
and broadly applicable approach that can accommodate different types of outcomes (binary, continuous, and
survival), modeling approaches (arm-based and contrast-based), and estimation frameworks (frequentist or
Bayesian). Simulation studies demonstrate that RaCE effectively captures rank-clusters even under conditions
of substantial uncertainty and overlapping intervention effects, providing more reasonable result interpretation
than traditional single-ranking methods. We illustrate the practical utility of RaCE through an NMA application to
frontline immunochemotherapies for follicular lymphoma, revealing clinically relevant clusters among treatments
previously assumed to have distinct ranks. Overall, RaCE provides a valuable tool for researchers to enhance rank
estimation and interpretability, facilitating evidence-based decision-making in complex intervention landscapes.

Highlights

• What is already known?
– Network meta-analysis (NMA) is widely used to compare multiple interventions and generate treatment

rankings for clinical and policy decision-making.
– Conventional ranking reporting often oversimplifies treatment distinctions by focusing on identifying a

single “best” intervention when interventions have similar effectiveness.
– Existing methods may lead to misleading conclusions due to ranking uncertainty. For example, treatments

with fewer trials tend to receive positively biased rankings, while extensively studied treatments may have
negatively biased rankings.
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• What is new?
– Rank-clustering estimation (RaCE) for NMA is a novel Bayesian rank-clustering framework that prob-

abilistically groups interventions with comparable effectiveness rather than imposing strict hierarchical
rankings.

– Unlike existing clustering methods embedded within specific NMA models, RaCE decouples rank-
clustering from the NMA modeling process, enabling broader applicability across NMA models of
different outcome types (binary, continuous, and survival), modeling approaches (arm-based and contrast-
based), and estimation frameworks (frequentist and Bayesian).

• Potential impact for RSM readers
– RaCE offers an advanced rank-clustering tool for NMA to enhance the interpretability of intervention

comparisons, helping researchers make more informed and clinically relevant decisions.

1. Introduction

Network meta-analysis (NMA) is a widely adopted and powerful approach that integrates evidence
from both direct and indirect comparisons, enabling simultaneous evaluation of multiple interventions
within a unified model. This framework extends the scope of traditional meta-analysis to provide a
more comprehensive assessment of the effectiveness of interventions. NMA is particularly valuable
in settings where direct head-to-head trials are limited, offering insights into the relative rankings of
treatments or interventions and informing evidence-based clinical decisions and policy development.

Despite its strengths, interpreting NMA results can be challenging, particularly when numerous
interventions are involved.1 Reporting only the probability of being the best intervention is well
recognized as potentially misleading, as it can result in erroneous conclusions especially in the
presence of unequal uncertainty across the interventions being compared.2,3 Popular ranking metrics,
such as the surface under the cumulative ranking curve (SUCRA), condense rank probabilities
into a single numerical score that reflects the overall intervention effectiveness.4 While useful for
summarization, SUCRA can sometimes mislead by overemphasizing rankings without accounting for
clinically meaningful differences. For example, interventions with similar effect sizes may have very
different SUCRA scores due to small uncertainty, potentially exaggerating distinctions that lack clinical
significance.5 Alternatively, early methods to cluster interventions are limited to point effect estimates,
which are often criticized for neglecting estimation uncertainty.6

To address these concerns, guidelines from Cochrane7 and PRISMA8 recommend reporting rank
probabilities across all ranks rather than focusing solely on the “best” rank. Visual tools, such as
rankograms and rank-heat plots, enhance the understanding of intervention performance by illustrating
the distribution of rank probabilities to emphasize the uncertainty inherent in ranking results.9,10 It is
also recommended that clinical researchers should focus on intervention effect sizes in addition to
rankings, as a high rank does not necessarily imply a large or clinically meaningful effect size.11 While
these approaches reduce bias and improve interpretability, they complicate the concise summarization
of NMA findings, making it more challenging to distill actionable insights for clinical and policy
decisions.

A compelling example of this complexity arose from a recent collaboration with the World Health
Organization, where NMA was employed to evaluate the efficacy of prenatal balanced energy protein
(BEP) supplements for pregnant women in low- and middle-income countries. Instead of identifying a
single best BEP supplement, the priority was to determine a set of effective BEP options suitable for
country- or region-specific policy decisions under varying practical constraints.12 This case highlights
the limitations of conventional ranking approaches in NMA, motivating the investigation of NMA rank-
clustering methods to align more closely with real-world decision-making needs.

Similar research questions have also attracted significant emerging interest. For example, Kong,
Daly, and Béliveau13 introduced estimation of intervention effects with ties in contrast-based NMA
models by employing generalized fused lasso to penalize all pairwise differences between treatment
effects. Barrientos, Page, and Lin14 presented a novel Bayesian nonparametric approach with a spike
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and slab prior to model clustered treatment effects for binary outcomes. However, these efforts
in the advanced NMA methodology predominantly embed the intervention clustering procedure
directly within the NMA model itself. Subsequently, these clustering-embedded methods are highly
dependent on specific NMA data structures and outcome types, limiting their methods’ flexibility and
generalizability.

A more versatile strategy, adopted in this work, is to decouple advanced rank-clustering from
the NMA modeling process. Instead of embedding clustering within a predefined NMA framework,
the decoupling strategy leverages the output of NMA intervention effect estimates, regardless of the
underlying NMA modeling approach, as input for rank-clustering. This approach enhances applicability
across various NMA estimation models, allowing researchers to select the most appropriate modeling
strategy for their specific context. By avoiding constraints on model selection, this strategy broadens
the applicability of rank-clustering, improves the interpretability of intervention rankings, and supports
more flexible and informed decision-making. Moreover, its adaptable structure ensures compatibility
with future advancements in NMA methodology, making it a robust and scalable solution for
intervention ranking in complex clinical and policy settings.

Outside meta-analysis, rank-clustering methods have been rapidly developed based on ordinal
comparison data when items (e.g., interventions) are inferred to be equal or indistinguishable in rank.
Important early work includes Marsarotto and Varin,15 which developed a frequentist statistical method
for estimating overall rankings of sports teams in a league that permits some teams to be equally
ranked. Their method has been extended to rank-cluster additional datasets in sports16 and model
citation exchange among academic journals.17 More recently, Piancastelli and Friel18 introduced a
Bayesian statistical model for rank-clustering based on the Mallows model.19 Their model requires pre-
specifying the number and size of rank-clusters, which was relaxed by Pearce and Erosheva20 in their
rank-clustered Bradley–Terry–Luce (BTL) model, based on the BTL family of ranking distributions.
These methods, varied in their assumptions and types of permissible data, have significantly improved
accuracy in estimation, prediction, and ranking interpretability. Nevertheless, none of these approaches,
despite their progress in method innovation for clustered rankings, could be directly applied to NMA
as they rely on ordinal comparison data rather than continuous relative intervention effects.

In this work, we develop a general Bayesian ranking method, named RaCE-NMA (rank-clustering
estimation for NMA, or RaCE in short), to uncover the ranking structure of intervention options in
the network. Instead of identifying a single “best” intervention, RaCE-NMA identifies a cluster of
interventions that are collectively ranked as best, with uncertainty, offering a practical and interpretable
summary for clinical decision-making. In particular, we go beyond directly modeling the study-level
NMA data for ranking clusters, but focus on clustering over NMA-estimated treatment effects. Thus,
this strategy is broadly applicable to diverse existing NMA models while being compatible with future
NMA modeling evolution. In practice, it can not only facilitate the decision-making for intervention
selection, but also shed light on designing future head-to-head clinical comparative studies within the
top rank-clustered group to strengthen or refine the existing network of evidence.

The remainder of this article is organized as follows. In Section 2, we propose the RaCE model for
NMA and discuss its Bayesian estimation. Section 3 presents two simulation studies, followed by an
application of the RaCE method to a real-world NMA study of 11 immunochemotherapies for follicular
lymphoma.21 Section 5 concludes with a discussion of implications and limitations.

2. Rank-clustered network meta-analysis

We propose RaCE for NMA as a general Bayesian framework to uncover the ranking structure of
interventions within a network. Served as a post-processing step in an NMA analysis, RaCE is a
refinement method applied after conducting a standard NMA, requiring only the input of estimated
means and variance–covariance matrix of intervention effects derived from any NMA model output
(e.g., in Bayesian NMA, the posterior mean and variance–covariance matrix of intervention effects).
In this section, we introduce notation, outline the proposed model, and describe an algorithm for
computationally efficient estimation.
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2.1. Notation

Let J denote the number of interventions and let 𝜇̂ 𝑗 be the estimated NMA effect mean of each
intervention 𝑗 ∈ {1, . . . , 𝐽}. We use 𝜇̂ = [𝜇̂1 . . . 𝜇̂𝐽 ]𝑇 to denote the 𝐽 × 1 vector of estimated
means. Next, let Σ̂ be the estimated 𝐽 × 𝐽 NMA variance–covariance matrix of the interventions’
effects, where Σ̂ 𝑗 𝑗 is the estimated NMA effect variance of intervention j, and Σ̂𝑖 𝑗 is the covariance
between interventions i and j. While this definition is clear for arm-based NMA models, here we add
the following specification for contrast-based NMA models: without loss of generality, we designate
𝑗 = 1 as the benchmark intervention with fixed 𝜇̂1 = 0 and Σ̂11 set to a small positive constant to avoid
degeneracy.

The RaCE method partitions the set of interventions J = {1, . . . , 𝐽} into distinct ranks. In
mathematical clustering notation, a partition of an object set J can be re-written as a collection
𝑔 = {𝐶 (1), 𝐶 (2), . . . , 𝐶 (𝐾)} of K disjoint, nonempty subsets (henceforth referred to as “clusters”)
of J such that their union forms J . That is, to form a complete partition of J , every intervention
j must belong to exactly one cluster and every cluster must contain at least one intervention. In our
modeling, we take a probabilistic view of possible partitions of J and estimate the cluster effects. Let
𝐶−1 ( 𝑗) represent the cluster that contains intervention 𝑗 ∈ J . For example, if interventions i and j
belong to the kth cluster, then 𝐶−1 (𝑖) = 𝐶−1 ( 𝑗) = 𝐶 (𝑘). We define 𝑆(𝑘) =

��{𝐶 (𝑘)}�� as the size of the
cluster 𝐶 (𝑘), and denote by K the total number of clusters in g. To emphasize dependence on g, we
will write 𝐾𝑔, 𝐶𝑔 (𝑘), etc. Lastly, let G represent the collection of all possible partitions g of J , and let
G𝑘 = {𝑔 ∈ G : 𝐾𝑔 = 𝑘}.

2.2. RaCE-NMA model

The proposed RaCE-NMA model may be seen as a variant of the Rank-Clustered BTL model.20 While
the original Rank-Clustered BTL model enables inference on an overall ranking of items in which some
items may be rank-clustered, it requires input data in the form of deterministic ordinal comparisons
(e.g., rankings of items). In NMA rank-clustering, such input data would inappropriately neglect the
ranking uncertainty. Thus, we adapt their approach for continuous data to accommodate the NMA
estimation of intervention effects. Specifically, we assume the following generative Bayesian model:

𝜇̂ |𝜇 ∼ MVN(𝜇, Σ̂) (2.1)
𝜇 𝑗 ≡ 𝜈𝐶−1

𝑔 ( 𝑗) (2.2)

𝜈𝑘 |𝐺 = 𝑔 𝑖𝑖𝑑∼ Normal(𝜇0, 𝜎
2
0 ) 𝑘 = 1, . . . , 𝐾𝑔 (2.3)

𝐺 ∼ Uniform(G). (2.4)

Here, we give an intuitive explanation of how the model proceeds. First, we assume the estimated
NMA effect means 𝜇̂ as a single data observation from a multivariate Normal 𝑀𝑉𝑁 (𝜇, Σ̂2) distribution
(Eq. 2.1) where 𝜇 = [𝜇1 . . . 𝜇𝐽 ]𝑇 ∈ R𝐽 . The Multivariate Normal distribution captures covariances
between the estimated intervention effects. The RaCE model employs the NMA statistics, 𝜇̂ and Σ̂, as
surrogate data for each intervention. Although in Bayesian NMA modeling, one could alternatively treat
individual draws from the posterior distributions for each intervention effect as surrogate data, such a
technique would artificially increase the sample size via a very large number of posterior samples. That
is, posterior draws are not “data” but “results” drawn from a previous NMA model. As such, additional
posterior draws do not provide additional information on the underlying treatments themselves. Instead,
our choice to use the summary statistics, 𝜇̂ and Σ̂, permits a form of nonparametric cluster membership
modeling in which the posterior for each 𝜇 𝑗 will largely mimic the posterior for the relative intervention
effect of intervention j.

Second, the mean intervention effects 𝜇 𝑗 are set to equal the cluster-specific intervention effect 𝜈𝑘 for
all interventions j in cluster k. From a modeling perspective, it is equivalent to map the cluster-specific
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parameters 𝜈𝐶−1
𝑔 ( 𝑗) through 𝐶−1( 𝑗) to all interventions j contained within the same cluster k (Eq. 2.2).

Third, each cluster in g is assigned a cluster-specific effect parameter, 𝜈𝑘 , 𝑘 = 1, . . . , 𝐾𝑔 (Eq. 2.3).
These parameters are drawn from a Normal prior distribution. Finally, a partition, g, is drawn uniformly
at random from the set of all possible partitions G. Note that g is a specific partition drawn from the
random variable G. The uniform prior aims to be uninformative, giving equal weight to all partitions1

(Eq. 2.4).
The model has two hyperparameters in its prior specification: The first, 𝜇0, is the prior mean on

cluster-specific means. We suggest selecting 𝜇0 via an “objective Bayes” approach by setting 𝜇0 as the
grand mean among intervention means, i.e., 𝜇0 = 𝑛−1 ∑𝐽

𝑗=1 𝜇̂ 𝑗 . The second, 𝜎2
0 , is the prior variance on

cluster-specific means. Model results may be sensitive to the choice of 𝜎2
0 . Thus, we suggest selecting

𝜎2
0 to be large, inducing an uninformative prior. One reasonable choice is to set 𝜎2

0 = 10Var({𝜇̂ 𝑗 }𝐽𝑗=1).
Furthermore, the model contains two sets of parameters to be estimated. The partition parameter, g,

represents the (unordered) clustering structure among the interventions. The cluster-specific parameters,
𝜈𝑘 represent the estimated average intervention effect among interventions in cluster k. Given (𝑔, 𝜈),
we can rank each intervention from most to least effective by simply ordering the values in 𝜈 and
subsequently determining which interventions belong to each cluster according to g. Thus, the RaCE
model induces rank-clusters among interventions.

2.3. Rank-clustering interpretation

The RaCE approach represents a fundamental departure from conventional NMA ranking methods in
both the construction and interpretation of treatment rankings. Conventional NMA ranking metrics,
such as SUCRA, were built upon conventional posterior rank probabilities derived through exhaustive
pairwise comparisons that assume strict orderings and do not permit ties. As a result, interventions that
are statistically indistinguishable in terms of treatment effect are still forced into a strict rank hierarchy,
which can further lead to overstated rank differences between interventions with similar effectiveness.

Moreover, methods based on conventional rank probabilities, including SUCRA, are known to be
sensitive to estimation variance. Interventions with limited supporting data or higher uncertainty can
attain disproportionately favorable rankings due to tail mass. This phenomenon is demonstrated in
Simulation Study 2 (Section 3.2), where treatment 4, characterized by large uncertainty, was spuriously
ranked above more consistently supported interventions such as treatment 1 with a notable probability.

In contrast, RaCE mitigates these limitations by employing a probabilistic clustering framework
for treatment ranking. Rather than assigning a fixed, strictly ordered rank to each intervention, RaCE
introduces a latent partition structure in which treatments with similar estimated effects are grouped
into the same rank cluster. This framework jointly estimates both the number of rank clusters and
the assignment of treatments to clusters, while explicitly accounting for uncertainty in treatment
effect estimates. Each cluster is associated with a latent effect, and all treatments within a cluster are
considered indistinguishable in terms of intervention effect and share the same rank.

To translate clusters into numeric rankings, we adopt the convention of assigning each treatment the
lowest (i.e., most favorable) rank among its cluster. For example, if the partition structure is given by
𝑔 = (1, 1, 2) and the corresponding cluster-level effects are 𝜈 = (−1, 1) (assuming smaller 𝜈 indicates
better treatment effect), then treatments 1 and 2 are grouped in the top cluster and assigned rank 1,
while treatment 3 is assigned rank 3. Notably, no treatment is assigned rank 2 under this convention.

It is important to clarify that in RaCE, the posterior rank probabilities are defined based on
the latent clustering structure, and thus differ both conceptually and empirically from conventional
rank probabilities. Specifically, the posterior rank probabilities for each intervention still sum to one
across all possible ranks, but the probabilities for a given rank do not necessarily sum to one across

1Since there are more partitions with intermediate numbers of clusters than partitions with very few or many clusters, the
uniform prior favors intermediate numbers of clusters a priori. However, we find the proposed model effectively identifies cluster
structures (see Section 3).
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interventions, due to the possibility of ties. For interpretability of NMA ranking results, investigators
may focus on identifying interventions with a high posterior probability of belonging to the top-ranked
cluster. See Section 4 for an illustration of this interpretation in a real-world application. For notational
clarity, we refer to these RaCE-derived probabilities as “posterior rank-clustering probabilities” to
distinguish them from conventional posterior rank probabilities used in SUCRA and related methods.

2.4. Bayesian estimation

Bayesian models can be slow and computationally expensive to estimate. As such, it is important to
develop an efficient estimation algorithm. Here, we propose a fast estimation algorithm for the Bayesian
RaCE-NMA model based on a Gibbs sampler.

The model contains two parameters, g and 𝜈. We estimate g and 𝜈 using a reversible jump Markov
chain Monte Carlo (RJMCMC) Gibbs sampler that alternates between updating g and each 𝜈 𝑗 via their
full conditionals. The sampler is summarized in Algorithm 1.

Algorithm 1 Gibbs sampler for rank-clustered NMA models.

1. Initialize 𝑔 (0) and 𝜈 (0) at random, ensuring that |𝜈 (0) | = 𝐾𝑔 (0) .
2. For 𝑡 = 1, 2, . . . , 𝑇1,

(a) Sample 𝑔 (𝑡) via its full conditional using RJMCMC in order to traverse the space of partitions
of varying numbers of clusters.

(b) Sample 𝜈 (𝑡)𝑇2 times via Metropolis–Hastings. In the case when Σ̂𝑖 𝑗 = 0 for all 𝑖 ≠ 𝑗 , Gibbs
sampling can occur in closed-form.

Steps 2(a) and 2(b) proceed similarly to a related algorithm for the Rank-Clustered BTL model. In
Step 2(a), a new cluster structure g is proposed by either splitting an existing cluster in two (a “birth”
in the terminology of Green22) or combining two existing adjacent clusters into one (“death”). This
procedure permits efficient exploration of the space of possible partitions, which may be extremely
large. In Step 2(b), we iteratively sample each 𝜈𝑘 , 𝑘 = 1, . . . , 𝐾𝑔 (𝑡 ) via Metropolis–Hastings. As noted
before, when Σ̂𝑖 𝑗 = 0 for all 𝑖 ≠ 𝑗 , Gibbs sampling can occur in closed form due to the conjugacy of the
Normal prior placed on each 𝜈𝑘 with the assumed Normal data model. Further details of the algorithm
are sufficiently technical and details are thus relegated to Appendix A.

We provide a few practical notes on model estimation. The number of outer Gibbs steps, 𝑇1, should
be sufficiently large to allow for convergence of the MCMC chain. Specific choices are context-
dependent, but often at least 5,000 steps are needed. Step 2(a) performs RJMCMC on clusters of
objects. Since RJMCMC can be slow to converge in high dimensions, it is important to run multiple
chains and assess for mixing and convergence.23 Step 2(b) relies on Metropolis–Hastings, which may
not be efficient. Thus, we find 𝑇2 ≈ 5 is appropriate for posterior sampling.

3. Simulation studies

We conduct two simulation studies to demonstrate properties of the proposed model. In the first, we
explore how the model estimates rank-clusters among interventions as the variance and degree of
separation among their posterior distributions changes. In the second, we demonstrate rank-clustering
in the regime when the relative intervention effect is highly uncertain for a specific intervention.

3.1. Study 1: Rank-clustering by degree of separation

In our first simulation study, we assess the accuracy of the proposed RaCE model in estimating
rank-clusters of interventions whose posterior distributions of relative intervention effects are either
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Figure 1. Effect of 𝜎̂ ∈ {0.1, 0.3, 0.5} on the degree of separation between two posterior distributions
with distinct means, 𝜇̂ 𝑗 , 1 unit apart.

equal or not. We refer to pairs of interventions with different true effect parameters as “distinct,” and
use “separation” to describe the degree of overlap (or lack thereof) in their posterior distributions.
This distinction is critical: interventions can be truly distinct in effect yet poorly separated due to
high uncertainty. By varying the degree of separation among the posterior distributions of relative
intervention effects through various scenarios, we evaluate RaCE model’s performance to recover the
correct clustering structure.

Specifically, we consider analyses with 𝐽 ∈ {6, 12, 18} interventions, which are truly rank-clustered
into 𝐾 ∈ { 𝐽3 ,

2𝐽
3 , 𝐽} clusters. Note that when 𝐾 = 𝐽, all interventions are distinct. We randomly assign

each intervention a posterior mean, 𝜇̂ 𝑗 , to a value in the set {1, 2, . . . , 𝐾}, assuming it is identical
to the true mean effect. During random assignment, we also ensure each value contains at least one
intervention so that there are K clusters, each one unit apart in mean. Then, we set the posterior standard
deviation of each treatment to 𝜎̂ ≡

√
Σ̂ 𝑗 𝑗 ∈ {0.1, 0.3, 0.5}, where every intervention j has the same

value for 𝜎̂. For simplicity, we set covariances Σ̂𝑖 𝑗 = 0. The effect of each value of 𝜎̂ is shown in
Figure 1. It can be seen that when 𝜎̂ = 0.1, interventions have clearly separated posterior intervention
effects. When 𝜎̂ = 0.3, interventions are distinct but with some overlap. When 𝜎̂ = 0.5 interventions are
again distinct but exhibit substantial overlap. Furthermore, as 𝜎̂ grows, there is greater uncertainty in
each treatment effect’s posterior distribution. As such, we should expect less certainty in rank-clustering
treatments with large 𝜎̂, even when they have the same estimated mean, 𝜇̂.

Finally, for each combination of J, K, and 𝜎̂, we run 20 independent simulations to vary the specific
rank-clustering structure. In each, we record the posterior rank-clustering probability for across pairs
of interventions which are rank-clustered or distinct. Results are shown in Figure 2.

Figure 2 shows that the RaCE model appropriately assigns high probabilities of rank-clustering to
interventions with equal means (light blue) and low probabilities of rank-clustering to interventions
with distinct means (dark blue). This indicates accurate estimation of rank-clustering. For fixed 𝜎̂, we
observe similar performance as J varies. For fixed J and 𝜎̂, estimation accuracy generally increases
as K increases (i.e., higher rank-clustering probabilities for rank-clustered treatments and lower rank-
clustering probabilities for treatments with distinct means), indicating that the model performs better
when there are fewer sets of interventions with equal means (i.e., more clusters). Regarding 𝜎̂, the
model assigns low posterior probability to rank-clustering interventions with distinct means when
𝜎̂ = 0.1 or 0.3. This is a direct result of the clear separation of the posterior distributions (see Figure 1).
Alternatively when 𝜎̂ = 0.5, posterior distributions significantly overlap and posterior probabilities of
rank-clustering interventions with distinct means are slightly higher. As 𝜎̂ increases, the model rank-
clusters interventions with equal means with probability as low as 0.50. As such, the model is somewhat
conservative in clustering interventions. This conservatism may be seen as appropriate given that the
intervention effects are highly uncertain for large 𝜎̂.
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Figure 3. Point estimates and 95% credible intervals of assumed posterior distributions of the relative
intervention effect for each intervention 𝑗 ∈ {1, 2, 3, 4}.

3.2. Study 2: Highly uncertain intervention effect

In our second simulation study, we assess the ability of the model to infer rank-clusters in the presence
of an intervention whose relative effect is highly uncertain relative to the rest. Specifically, we consider
the case when there are 𝐽 = 4 interventions, with posterior means 𝜇̂ = [−1, 0, 1, 0]𝑇 , standard deviations
𝜎̂ ≡

√
Σ̂ 𝑗 𝑗 = (0.1, 0.1, 0.1, 1), and covariances Σ̂𝑖 𝑗 = 0. By convention, small values for relative

effects indicate a more efficacious treatment. A forest plot of the assumed posterior distributions of
each intervention, as might be obtained from a traditional NMA, is shown in Figure 3. As can be seen,
interventions 1–3 are distinct in relative intervention effect and well-separated in distribution, while
intervention 4 is highly uncertain and has a posterior distribution that overlaps substantially with all
other interventions.

We apply the RaCE model to this hypothetical dataset. Table 1 displays the estimated posterior
probability that each pair of interventions is rank-clustered. We observe that interventions 1–3 have no
posterior probability of rank-clustering among themselves. However, intervention 4 has a combined
0.77 probability of rank-clustering with the remaining interventions. The largest probability (0.40)
belongs to intervention 2, with whom it shares a mean intervention effect. The modest probability of
rank-clustering may be attributed to the considerable uncertainty regarding the efficacy of treatment
4. To a lesser but still meaningful extent, intervention 4 is rank-clustered with each of interventions 1
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Table 1. Posterior probability
that each pair of interventions is
rank-clustered.

2 3 4

1 0 0 0.18
2 0 0.40
3 0.19

0.84 0.16 0 0

0 0.5 0.5 0

0 0 0.16 0.84

0.16 0.34 0.34 0.164
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Figure 4. Posterior probability of each intervention belonging to each rank level under a traditional
analysis (a) and the proposed RaCE model (b).

and 3, reflecting the overlapping nature of their posterior distributions and thus reasonable uncertainty
regarding the rank-clustering structure. Furthermore, the model assigns the remaining 0.23 probability
that intervention 4 is distinct from the remaining interventions.

Finally, Figure 4 displays a heat map of the posterior probability that each intervention is assigned
each rank level, under two distinct methods of analysis. The color and number indicate a model-specific
posterior probability that a treatment (on the y-axis) is assigned a given rank (on the x-axis); darker
colors indicate a higher posterior probability. Panel (a) displays results under the traditional assumption
that each intervention must be assigned a distinct rank. Alternatively, panel (b) displays results under
the proposed RaCE model. Note that in panel (a), the probabilities in each row and column sum to 1
due to the assumption that each intervention requires a unique rank. In contrast, in panel (b), only row
probabilities sum to 1, a result of the RaCE model permitting rank-clusters.

In the traditional analysis (panel (a)), the substantial uncertainty associated with Treatment 4 results
in a lower probability that treatment 1 is ranked in first place. In contrast, the RaCE model (panel (b))
assigns treatment 1 a 0.97 posterior probability of belonging to first-place cluster, substantially less
affected by the inclusion of the uncertain treatment 4 in the comparison. At the same time, RaCE permits
treatment 4 to simultaneously belong to first-place cluster with a posterior probability of 0.22. These
results illustrate how RaCE distinguishes high-certainty evidence from high-uncertainty estimates: it
confidently identifies treatment 1 as belonging to the “best” class, while still accommodating some
probability that treatment 4 may be comparably or more effective.
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4. Case study

We demonstrate the RaCE-NMA methodology on the results of a real NMA.21 The study compares
the efficacy of 𝐽 = 11 front-line immunochemotherapies for follicular lymphoma. A forest plot of the
posterior distributions of the relative treatment effect2 for each of the 11 treatments is displayed in
Figure 5. We note that Wang et al.21 treat the previous standard of care, R-CHOP, as the baseline. Thus,
its posterior relative intervention effect is a point-mass at 0 by construction. Wang et al.21 found a 72%
posterior probability that G-Benda-G is the best (i.e., most effective) treatment among the 11 compared;
R-Benda-R4 and R-Benda-R have 25% and 3% posterior probabilities, respectively, of being the best
treatment. For each of these three treatments, a posterior 95% credible interval for their rank includes
1, indicating some evidence the treatment is in first place. The study calculated posterior probabilities
and credible intervals by ordering treatments by their posterior estimates of relative treatment effects
in each posterior draw to produce a posterior draw for the ranking of treatments, and then calculating
marginal probabilities based on rankings.

We observe that in Figure 5 the posterior distributions of the relative treatment effects for each
treatment are highly overlapping. Thus, the assumption made by Wang et al.21 that each treatment
receives a unique rank is potentially inappropriate. That is, some treatments may be equally effective
at treating follicular lymphoma, or simply indistinguishable in efficacy, and thus rank-clustered.
Therefore, we apply the RaCE-NMA model to examine if certain treatments are rank-clustered for
first-place.

We fit the RaCE-NMA model to the results of Wang et al.21 post-hoc. Specifically, we input as data
the posterior means, 𝜇̂ 𝑗 for each treatment j and variance–covariance matrix Σ̂. Since R-CHOP ( 𝑗 = 1)
is the baseline treatment, there is artificial certainty in its relative treatment effect in the form of a
point-mass posterior at 𝜇̂1 = 0. To ensure a proper posterior distribution in the RaCE-NMA model,
we thus set Σ̂11 to a comparatively small positive value, specifically, Σ̂11 = 1

10 min 𝑗={2,...,11}{Σ̂ 𝑗 𝑗 } and
set Σ̂1 𝑗 = 0, 𝑗 = 2, . . . , 11. We set minimally informative hyperparameters of 𝜇0 = 1

11
∑11
𝑗=1 𝜇̂ 𝑗 and

𝜎2
0 = 10Var({𝜇̂ 𝑗 }11

𝑗=1). We ran four independent chains, each with 𝑇1 = 50,000 and 𝑇2 = 5 and removed
the first half of each as burn-in. See Appendix B for trace plots, which demonstrate good mixing and
convergence.
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G−Benda−G
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Figure 5. Forest plot replicating the posterior distributions of the relative treatment effects of 11 front-
line immunochemotherapies for follicular lymphoma.21 Point estimates and 95% credible intervals are
shown. R-CHOP has a relative treatment effect of 0 with no uncertainty by construction as the baseline
treatment. A smaller value indicates a more effective treatment.

2In log-hazard ratio, with the lower value indicating a better treatment effect.
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Figure 6. Posterior probability of each treatment belonging to each rank level under the NMA model
of Wang et al.21 (a) and the proposed RaCE model (b).

Figure 6 displays heat maps of the estimated ranks of each treatment according to the original
analysis by Wang et al.21 (a) and the proposed RaCE model (b). As in Figure 4, the color and number
indicate a model-specific posterior probability that a treatment (on the y-axis) is assigned a given rank
(on the x-axis); darker colors indicate a higher posterior probability. In panel (a), the probabilities in
each row and column sum to 1 due to the assumption that each treatment requires a unique rank. In
contrast, in panel (b), only row probabilities sum to 1, a result of the RaCE model permitting rank-
clusters.

According to the RaCE model, G-Benda-G, R-Benda-R4, and R-Benda-R all have substantial
posterior rank-clustering probability of belonging to first place. Hence, the model suggests that these
treatments form a cluster of treatments that are simultaneously the most effective. By comparison, the
original analysis estimates a small or zero posterior probability of first place for each treatment after
G-Benda-G, a result of the modeling assumption of distinct ranks. Although not of primary interest
to this analysis, we visually observe a rank-cluster of treatments R-CHOP-R, R-Benda, G-CHOP-G,
and R-2(Len) behind the initial rank-cluster, and a “last place” rank-cluster of treatments R-CVP-R,
R-CHOP, G-CVP-G, and R-CVP.3

Second, Figure 7 displays the cumulative posterior probability of each treatment belonging to each
rank level under the original analysis of Wang et al.21 (a) and our proposed rank-clustering analysis (b).

The cumulative probabilities under the RaCE-NMA model more quickly increase to 1. This result
is explained by rank-clustering in the proposed model, thus permitting interventions to share lower-
numbered ranks in addition to the clustering effect.

Third, Table 2 displays the SUCRA and the median number of “strictly better” treatments for each
model. For the purpose of illustration, we extend the concept of SUCRA4 for the RaCE model based
on the cumulative rank-clustering probabilities: a value of 1 indicates a treatment is certain to be in the
“best” class, while a value of 0 indicates a treatment is certain to be the worst. The median number of
“strictly better” treatments is calculated by counting the number of treatments in each posterior draw
with a strictly better ranking than any given treatment and subsequently taking the median number
among the posterior draws.

For the former, we observe that the RaCE-SUCRA is generally higher for each treatment to
accommodate possible ties in ranking. For the latter, we see that three treatments credibly have

3Rank-clusters may not always be as visually apparent as in this Case Study (see Figure 4). In such cases, one should analyze
model results by direct interpretation of the posterior probabilities that each treatment belongs to each rank.
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Figure 7. Cumulative ranking probability of each treatment under the NMA model of Wang et al.21 (a)
and the proposed rank-clustering model (b).

Table 2. SUCRA and median number of better treatments (MNBT) corresponding
to each treatment under original analysis by Wang et al.21 and under the proposed
RaCE model.

SUCRA MNBT (50% CI)

Treatment (Wang et al.) (RaCE model) (Wang et al.) (RaCE model)

G-Benda-G 0.967 0.992 0 (0, 1) 0 (0, 0)
R-Benda-R4 0.884 0.943 1 (0, 1) 0 (0, 1)
R-Benda-R 0.812 0.925 2 (2, 2) 1 (0, 1)
G-CHOP-G 0.663 0.647 3 (3, 4) 3 (3, 4)
R-CHOP-R 0.514 0.657 5 (4, 5) 3 (3, 4)
R-2(Len) 0.501 0.604 5 (4, 6) 3 (3, 5)
R-Benda 0.482 0.657 5 (4, 6) 3 (3, 4)
G-CVP-G 0.278 0.276 7 (6, 8) 7 (7, 8)
R-CHOP 0.186 0.279 8 (7, 9) 7 (7, 8)
R-CVP-R 0.159 0.296 8 (8, 9) 7 (7, 7)
R-CVP 0.054 0.264 10 (9, 10) 7 (7, 8)

0 treatments strictly better than them. As a result, we have reasonable evidence that G-Benda-G,
R-Benda-R4, and R-Benda-R are rank-clustered in first place, representing a class of three “best”
treatments.

5. Discussion

This study introduces a novel rank-clustering estimation approach, RaCE, designed to enhance the
interpretability and applicability of intervention rankings in NMA. Unlike conventional ranking meth-
ods that focus on identifying a single “best” intervention, RaCE systematically clusters interventions
with similar effectiveness while automatically accommodating the uncertainty in intervention effect
estimates. By shifting the focus from absolute rankings to probabilistic clustering, RaCE provides a
more robust and meaningful summary of comparative performance, reducing the risk of overstating
minor differences between interventions.

RaCE offers several key advantages. First, RaCE provides a structured way to assess intervention
equality, addressing a critical limitation of conventional NMA ranking methods that may lead to
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misleading conclusions in clinical decision-making.2,24 In many real-world applications, identifying
a set of top-performing interventions is more relevant than selecting a single best intervention.14 By
clustering interventions with similar effectiveness, RaCE helps distinguish truly superior interventions
from those that are statistically indistinguishable, improving the reliability of results interpretation.
This shift from strict ranking to rank-clustering provides a more reliable framework for evaluating
intervention equivalence, enhancing decision-making for researchers and policymakers.

Second, unlike model-specific clustering approaches, RaCE is broadly applicable across different
NMA modeling frameworks, including frequentist and Bayesian methods, contrast-based and arm-
based models, and various outcome types, such as binary, continuous, and survival data. The only
information needed to apply the RaCE model is the mean and variance–covariance of the relative effects
for the interventions (e.g., mean and variance–covariance matrix of the joint sampling distribution or
posterior distribution of intervention effects). This flexibility allows researchers to apply RaCE to a
wide range of NMA settings without being constrained by the underlying estimation model. By lever-
aging intervention effect estimates from any NMA model as input, RaCE ensures compatibility with
evolving methodological advancements and accommodates different data structures. This adaptability
makes it a valuable tool to facilitate diverse NMA applications.

Third, we develop RaCE for NMA by tailoring the rank-clustered BTL model,20 an advanced
statistical model that naturally enables probabilistic grouping of interventions based on their relative
effectiveness while accounting for ranking uncertainty. This approach does not require pre-identifying
ranking structures among the interventions, such as the number of rank-clusters or overall ranking of
interventions, or the commonly adopted minimal clinically important difference (MCID) to manually
adjust the binary pairwise comparison and strict rank ordering. Instead, the RaCE model estimates
similar interventions in a unified Bayesian approach, ensuring a more interpretable and practically
relevant ranking structure. While RaCE also produces adjusted individual intervention effects, these
values serve only as intermediate steps rather than direct interpretations, reinforcing the focus on
meaningful rank-clusters rather than absolute ranks.

Fourth, RaCE is appropriately conservative when rank-clustering interventions based on their
relative effects. As shown in simulation study 1 (Section 3.1), the model often assigns interventions
with identical means and standard deviations in their relative effects a posterior probability of rank-
clustering between 0.5 and 0.9. Although identical or near-identical estimates of relative effects may
suggest perfect rank-clustering of interventions, uncertainty in the relative effects suggests that distinct
effects are quite possible in reality. Thus, the model captures clustering among similar interventions
without erroneously assuring equal intervention effects.

Fifth and last, RaCE infers accurate rank-clusters among interventions whose intervention effects
are highly uncertain based on the result of a previous NMA study. In NMA, intervention rankings are
influenced by the number of trials and network structure.2 For example, treatments with fewer trials
tend to receive positively biased rankings, while extensively studied treatments may have negatively
biased rankings.3 Consequently, this can lead to inaccurate rankings, favoring less-researched and
inferior treatments over the well-established and causing seriously inflated false positive rates.24

Simulation Study 2 (Section 3.2) demonstrates that the RaCE model properly addresses this limitation
by permitting extensively-studied and effective interventions to share the top rank, resulting in a much
narrower RaCE credible interval when appropriate.

Despite its advantages, the proposed method has some limitations. RaCE counts heavily on the
quality of NMA model estimates as its input data. For example, a common assumption in NMA
modeling is evidence consistency, i.e., direct comparisons share the same overall effects as indirect
comparisons. If this assumption does not hold in the NMA model, our rank-clustering result becomes
unreliable. Therefore, RaCE users should carefully assess NMA model assumptions and select the most
appropriate estimation approach for their specific application. Additionally, RaCE assumes normality
in the distribution of effect estimates, which serves as the input for clustering. While this assumption is
widely accepted and valid in most NMAs, deviations from normality could affect clustering accuracy.
Future research should explore extensions that relax this assumption to accommodate more complex
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intervention effect distributions. Finally, the current method focuses on univariate outcomes, limiting
its applicability in settings where multiple treatment endpoints (e.g., efficacy21 and safety25) must be
considered simultaneously. Expanding RaCE to handle multivariate outcome clustering would further
enhance its utility in clinical decision-making and policy development.

RaCE provides a flexible and interpretable solution to rank-clustering in NMA, enabling the
identification of intervention groups with comparable effects. By decoupling rank-clustering from
NMA modeling, it ensures broad applicability across different estimation frameworks and enhances the
utility of NMA findings for policy decision-making. Overall, this method represents an important step
toward more transparent and practical reporting of intervention rankings, aligning with the emerging
needs of real-world applications.
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Appendix

A. Details of Algorithm 1

Algorithm 1—Step 2(a): In Step 2(a), we sample a new partition 𝑔′ conditional on the current partition
g. Since (𝑔, 𝜈) are intricately tied, 𝜈 must simultaneously be updated to an appropriate 𝜈′. We follow
the seminal work of 22 on reversible-jump MCMC.

In each iteration, we propose 𝑔′ which are slight modifications of g: Precisely, we allow only for
“births” splitting one cluster into two, or “deaths” merging two clusters into one. Since all partitions
have positive probability, this process is irreducible, as required. There is no need to propose 𝑔′ that
shuffle the partitions but maintain the number of clusters, as these partitions may be obtained by
successive birth and death moves.

Births are attempted with probability 0.5. In a birth, we select a cluster k at random among those with
at least two objects. The cluster is split “binomially”, meaning that each object is placed independently
into one of the “child” subgroups, 𝑘1 or 𝑘2, with equal probability, conditional on each subgroup
ultimately containing at least one object. Deaths are attempted with probability 0.5. In a death, two
adjacent clusters are merged at random. Adjacency means that �𝑘 : 𝜈𝑘 ∈ (𝜈𝑘1 , 𝜈𝑘2).

Births and deaths require updating 𝜈 by increasing or decreasing its dimension by 1, respectively. In
a birth, we split a cluster’s worth 𝜈𝑘 into (𝜈′𝑘1

, 𝜈′𝑘2
) using

𝜈′𝑘1
= 𝜈𝑘 − 𝑢, 𝜈′𝑘2

= 𝜈𝑘 + 𝑢, (A.1)

where 𝑢 ∼ Normal(0, 𝜏2). 𝜏 should be chosen by the user based on the scale of the surrogate data. We
suggest setting 𝜏 = 1

2 min
𝑗≠ 𝑗′

| 𝜇̂ 𝑗 − 𝜇̂ 𝑗′ |, and adjusting higher (lower) if the Metropolis–Hastings acceptance

probability is near 1 (near 0) in a trial run of the sampling algorithm. The corresponding death solves
these equations simultaneously:

𝜈𝑘 =
𝜈′𝑘1

+ 𝜈′𝑘2

2
. (A.2)

For reversibility, we automatically reject proposed births where 𝜈′𝑘1
, 𝜈′𝑘2

are not adjacent.
The Metropolis–Hastings probabilities for a birth and death, respectively, are min(1, 𝐴) and

min(1, 𝐴−1), where

𝐴 =
𝑃(𝜈′, 𝑔′ | 𝜇̂)
𝑃(𝜈, 𝑔 | 𝜇̂) × 𝑞(𝜈, 𝑔 |𝜈′, 𝑔′)

𝑞(𝜈′, 𝑔′ |𝜈, 𝑔)𝑃(𝑢) ×
���𝜕 (𝜈′𝑘1

, 𝜈′𝑘2
)

𝜕 (𝑢, 𝜈𝑘 )

���, (A.3)
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where 𝑞(𝜈′, 𝑔′ |𝜈, 𝑔) is the transition probability of sampling (𝜈′, 𝑔′) given current parameter set
(𝜈, 𝑔).22

We now calculate each term in A. First,

𝑃(𝜈′, 𝑔′| 𝜇̂)
𝑃(𝜈, 𝑔 | 𝜇̂) =

𝑃( 𝜇̂ |𝜈′, 𝑔′)𝑃[𝜈′|𝑔′]𝑃[𝑔′]∑
𝑔′′

∫
𝜈′′
𝑃( 𝜇̂ |𝜈′′, 𝑔′′)𝑃[𝜈′′|𝑔′′]𝑑𝜈′′𝑃[𝑔′′]

∑
𝑔′′

∫
𝜈′′
𝑃( 𝜇̂ |𝜈′′, 𝑔′′)𝑃[𝜈′′|𝑔′′]𝑑𝜈′′𝑃[𝑔′′]
𝑃( 𝜇̂ |𝜈, 𝑔)𝑃[𝜈 |𝑔]𝑃[𝑔]

=
𝑃( 𝜇̂ |𝜈′, 𝑔′)𝑃[𝜈′|𝑔′]𝑃[𝑔′]
𝑃( 𝜇̂ |𝜈, 𝑔)𝑃[𝜈 |𝑔]𝑃[𝑔]

=
𝑃( 𝜇̂ |𝜈′, 𝑔′)
𝑃( 𝜇̂ |𝜈, 𝑔) ×

Normal(𝜈′𝑘1
|𝜇0, 𝜎

2
0 )Normal(𝜈′𝑘2

|𝜇0, 𝜎
2
0 )

Normal(𝜈𝑘 |𝜇0, 𝜎
2
0 )

× 1, (A.4)

where 𝑃( 𝜇̂ |𝜈, 𝑔) is defined by Equation (2.1). Second,

𝑞(𝜈, 𝑔 |𝜈′, 𝑔′)
𝑞(𝜈′, 𝑔′|𝜈, 𝑔)𝑃(𝑢) =

0.5 × 1
𝐾𝑔′−1(

0.5 × 1
#{𝑙:𝑆𝑙 (𝑔) ≥2} ×

2
2𝑆𝑔 (𝑘) −2

) (
1√

2𝜋𝜏2 𝑒
−𝑢2
2𝜏2

) (A.5)

=
#{𝑙 : 𝑆𝑔 (𝑙) ≥ 2}(2𝑆𝑔 (𝑘)−1 − 1)

(𝐾𝑔′ − 1) ( 1√
2𝜋𝜏2 𝑒

−𝑢2
2𝜏2 )

.

The numerator in Equation (A.5) is the death probability times the probability of selecting a pair of
adjacent partitions given 𝐾𝑔′ total partitions after a split (there are 𝐾𝑔′ −1 such pairs). The denominator
is the birth probability times the probability of selecting a specific cluster k among those with at least
two members. This term also includes the probability of dividing the 𝑆𝑔 (𝑘) objects in cluster k into two
non-empty subsets. There are (2𝑆𝑔 (𝑘) −2)/2 such subsets, since there are 2𝑆𝑔 (𝑘) total possible partitions,
two empty partitions, and two ways to obtain each two-way split. Third and last,

���𝜕 (𝜈′𝑘1
, 𝜈′𝑘2

)
𝜕 (𝜈𝑘 , 𝑢)

��� =
�����
[
𝜕
𝜕𝜈𝑘

𝜈′𝑘1
𝜕
𝜕𝑢 𝜈

′
𝑘1

𝜕
𝜕𝜈𝑘

𝜈′𝑘2
𝜕
𝜕𝑢 𝜈

′
𝑘2

] ����� =
�����
[
𝜕
𝜕𝜈𝑘

𝜈𝑘 − 𝑢 𝜕
𝜕𝑢 𝜈𝑘 − 𝑢

𝜕
𝜕𝜈𝑘

𝜈𝑘 + 𝑢 𝜕
𝜕𝑢 𝜈𝑘 + 𝑢

] ����� =
�����
[
1 −1
1 1

] ����� = 2.

Algorithm 1—Step 2(b):
Step 2(b) proceeds differently when the supplied covariance matrix Σ̂ is diagonal or not. In the latter

(standard) case, we update each 𝜈𝑘 , 𝑘 = 1, . . . , 𝐾𝑔, sequentially via a standard Metropolis–Hastings
algorithm. In the former case, we notice that each 𝜇̂ 𝑗 is assumed independent, thus permitting closed-
form sampling of each 𝜈𝑘 via its full conditional: Specifically, for every 𝑘 = 1, . . . , 𝐾𝑔,

𝑃[𝜈𝑘 | 𝜇̂, 𝑔]
∝ 𝑃[𝜇̂ |𝜈𝑘 , 𝑔] × 𝑃[𝜈𝑘 ]

=
∏

𝑗∈𝐶𝑔 (𝑘)
Normal( 𝜇̂ 𝑗 |𝜈𝑘 , 𝜎̂2

𝑗 ) × Normal(𝜈𝑘 |𝜇0, 𝜎
2
0 )

∝ exp
(−(𝜈𝑘 − 𝜇0)2

2𝜎2
0

+
∑

𝑗∈𝐶𝑔 (𝑘)

−( 𝜇̂ 𝑗 − 𝜈𝑘 )2

2𝜎̂2
𝑗

)

∝ exp
(−𝜈2

𝑘 + 2𝜈𝑘𝜇0

2𝜎2
0

+
∑

𝑗∈𝐶𝑔 (𝑘)

−𝜈2
𝑘 + 2𝜈𝑘 𝜇̂ 𝑗

2𝜎̂2
𝑗

)

∝ exp
( (−𝜈2

𝑘 + 2𝜈𝑘𝜇0) (
∏
𝑗∈𝐶𝑔 (𝑘) 𝜎̂

2
𝑗 ) +

∑
𝑗∈𝐶𝑔 (𝑘) (−𝜈

2
𝑘 + 2𝜈𝑘 𝜇̂ 𝑗 ) (𝜎2

0
∏
ℓ∈{𝐶𝑔 (𝑘)/ 𝑗 } 𝜎̂

2
ℓ )

2𝜎2
0
∏
𝑗∈𝐶𝑔 (𝑘) 𝜎̂

2
𝑗

)
.
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For ease of notation, let Δ = 𝜎2
0
∏
𝑗∈𝐶𝑔 (𝑘) 𝜎̂

2
𝑗 , i.e., the product of the prior variance and the cluster’s

object variances. Continuing on, we have

𝑃[𝜈𝑘 | 𝜇̂, 𝑔]

∝ exp
( (−𝜈2

𝑘 + 2𝜈𝑘𝜇0) ( Δ
𝜎2

0
) +

∑
𝑗∈𝐶𝑔 (𝑘) (−𝜈

2
𝑘 + 2𝜈𝑘 𝜇̂ 𝑗 ) ( Δ

𝜎̂2
𝑗

)

2Δ

)

∝ exp
(−𝜈2

𝑘 (
Δ
𝜎2

0
+
∑
𝑗∈𝐶𝑔 (𝑘)

Δ
𝜎̂2

𝑗

) + 2𝜈𝑘 ( 𝜇0Δ
𝜎2

0
+
∑
𝑗∈𝐶𝑔 (𝑘)

𝜇̂ 𝑗Δ

𝜎̂2
𝑗

)

2Δ

)

∝ exp
(−𝜈2

𝑘 + 2𝜈𝑘

𝜇0
𝜎2

0
+
∑

𝑗∈𝐶𝑔 (𝑘)
𝜇̂ 𝑗

𝜎̂2
𝑗

1
𝜎2

0
+
∑

𝑗∈𝐶𝑔 (𝑘)
1
𝜎̂2
𝑗

2
1
𝜎2

0
+
∑

𝑗∈𝐶𝑔 (𝑘)
1
𝜎̂2
𝑗

)
∝ exp

(−(𝜈𝑘 −
𝜇0
𝜎2

0
+
∑

𝑗∈𝐶𝑔 (𝑘)
𝜇̂ 𝑗

𝜎̂2
𝑗

1
𝜎2

0
+
∑

𝑗∈𝐶𝑔 (𝑘)
1
𝜎̂2
𝑗

)2

2
1
𝜎2

0
+
∑

𝑗∈𝐶𝑔 (𝑘)
1
𝜎̂2
𝑗

)

∝ Normal
( 𝜇0
𝜎2

0
+
∑
𝑗∈𝐶𝑔 (𝑘)

𝜇̂ 𝑗

𝜎̂2
𝑗

1
𝜎2

0
+
∑
𝑗∈𝐶𝑔 (𝑘)

1
𝜎̂2

𝑗

,
1

1
𝜎2

0
+
∑
𝑗∈𝐶𝑔 (𝑘)

1
𝜎̂2

𝑗

)
.

We note that the conjugate posterior derived above is distinct but similar in form to that of a standard
Normal–Normal conjugate family, in that the posterior mean is a weighted average of the prior mean
and data mean(s), with weights determined by the prior variance and data variance(s).

B. Further results from case study

First, we display trace plots of the number of rank-clusters, K, and the intervention-specific means, 𝜇.
Figure B1 displays estimates of K across 4 chains of 250k iterations each (the first half were removed
as burn-in). We observe good mixing and convergence among the chains. Figure B2 displays estimates
of 𝜇 across 4 chains of 250k iterations each, where again the first half were removed as burn-in. We
observe good mixing and convergence among the chains.

Figure B1. Trace plot of the number of rank-clusters, K.

https://doi.org/10.1017/rsm.2025.10049 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.10049


18 Michael Pearce and Shouhao Zhou

Figure B2. Trace plot of intervention-specific means, 𝜇 𝑗 .
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Figure B3. Forest plot of the posterior distributions of the relative treatment effects of 11 front-line
immunochemotherapies for follicular lymphoma based on the proposed rank-clustering model. Point
estimates and 95% credible intervals are shown. A smaller value indicates a more effective treatment.

Second, we conduct a posterior predictive check by examining estimates of the intervention-specific
posterior distributions according to the RaCE model (Figure B3). We observe that the relative treatment
effect is similar to that of Wang et al.,21 as replicated in Figure 5. There are two important differences.
First, there is some shrinkage toward the mean of effect across all treatments, as is common in Bayesian
models. Second, some the posterior distributions of some treatments shrink toward each other. This is
the desired consequence of the rank-clustering model.

Cite this article: Pearce, M, Zhou, S. RaCE: A rank-clustering estimation method for network meta-analysis. Research Synthesis
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