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Abstract
The generalized risk-adjusted cost-effectiveness (GRACE) analysis method modifies standard
cost-effectiveness analysis (CEA), the primary method currently used worldwide to value health
improvements arising from healthcare interventions. Generalizing standard CEA, GRACE allows for
decreasing or even increasing returns to health. Previous presentations of GRACE have relied
extensively on Taylor Series expansion methods to specify key model parameters, including those
that properly adjust for illness severity and preexisting disability, consequences of uncertain treatment
outcomes, and the marginal rate of substitution between life expectancy and health-related quality of
life. Standard CEA cannot account for these sources of value or cost in its valuation of medical
treatments. However, calculations of GRACE measures based on Taylor Series are approximations,
whichmay be poorly behaved in some contexts. This paper provides a new approach for implementing
GRACE, using exact utility functions instead of Taylor Series approximations. While any proper
utility function will suffice, we illustrate with three well-known functions: constant relative risk
aversion (CRRA) utility; hyperbolic absolute risk aversion (HARA) utility, of which CRRA is a
special case; and expo-power (EP) utility, of which constant absolute risk aversion (CARA) is a special
case. The analysis then extends from two-period to multiperiod models. We discuss methods to
estimate parameters of HARA and EP functions using two different types of data, one from discrete
choice experiments and the other from “happiness economics” methods. We conclude with some
reflections on how this analysis might affect benefit-cost analysis studies of healthcare interventions.

1. Introduction

Cost-effectiveness analysis (CEA), the primary method to measure the value of health-
care interventions (Garber & Phelps, 1997), is widely used around the world currently as
an alternative to benefit-cost analysis (BCA). This emerged in healthcare because CEA
practitioners were unwilling to assume a “value of life,” that is, a specific value of the
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decision threshold, K, the standard CEA willingness to pay (WTP) for gains in health.
They instead reported only incremental cost-effectiveness ratios (ICERs) for various
healthcare interventions. This leaves the monetary value of the WTP to social decision-
makers, who would then determine if an intervention was worthy of use. This tradition
began primarily in the British National Health Service after World War II and has since
spread around the world.

Unfortunately, CEA imposes an important restriction on the allowed form of utility – that
there are constant returns to health in creating utility. This assumption appears at odds with
evidence that consumers value treating severe disease more than mild disease. To relax this
restriction, the generalized risk-adjusted cost-effectiveness (GRACE) model has been
developed (Lakdawalla & Phelps, 2020; Lakdawalla & Phelps, 2021, 2022; Phelps &
Lakdawalla, 2023). CEA is a special case of GRACE.

To date, GRACE has been explicated using Taylor Series expansions (Taylor, 1715) to
estimate the necessary parameters in the model, thus allowing full flexibility in estimating
the GRACE measure of value for medical interventions. However, in practice, convergence
of some of the Taylor Series approximations is slow, particularly in situations involving
highly severe illness and/or disabilities. Further, the Taylor Series presentations do not
always generate an intuitive understanding of the GRACE methodology.

An alternative and perhaps more useful approach assumes that utility in health has a
specific functional form, a common approach, for example, in studies of the economic value
of extending life expectancy (LE; Cordoba & Ripoll, 2017), the estimation of risk prefer-
ences (Holt & Laury, 2002; Noussair et al., 2014; Holt & Laury, 2014) and various other
health economics analyses (e.g., Zeckhauser, 1970; Feldstein, 1973; Feldstein & Friedman,
1977; Keeler et al., 1988; Manning & Marquis, 1996; Marquis & Holmer, 1996; Garber &
Phelps, 1997). The purpose of this article is to present the GRACE methodology with exact
utility functions.

We first summarize the GRACE model and then describe the total value of a medical
intervention using constant relative risk aversion (CRRA) utility and the more general
hyperbolic absolute risk aversion (HARA) model. Next, we briefly discuss a third
alternative, the expo-power (EP) model (Saha, 1993). CRRA utility is a special case
of HARA. Constant absolute risk aversion (CARA) is a special case of EP. Since
CRRA utility provides the clearest conceptual understanding of how GRACE works,
we use that as the primary presentation vehicle, followed by a discussion of the changes
that occur when the more general HARA function is used and implications for use of the
EP model. A glossary of the acronyms and parameters used herein appears at the end of
the article.

2. Overview of CEA and GRACE

2.1. Standard cost-effectiveness and WTP for health gains

The formal version of cost-effectiveness analysis (CEA), consistent with microeconomic
principles, was first set forth by Garber and Phelps (1997). They assumed that health is
producedwith a two-input process,H =H a,bð Þ, where paandpb are the prices of a andb,and
H0

a andH
0
b are the associated marginal products. Define utility as a function of consumption,

C, equal to income less medical spending, and health, H. In a two-period model, H0 is
baseline period zero health, measured on a scale of 0 ≤H ≤ 1, and typically set at H0 = 1,
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perfect health. Overall utility is given byV C,Hð Þ =U Cð ÞH, whereU Cð Þ is assumed to have
diminishing returns, but utility is assumed to have constant returns to H: Defining the

elasticity of utility with respect to C as ωC � U0 Cð Þ C
U Cð Þ
h i

, the WTP for a quality-adjusted

life-year (QALY) is the marginal utility of a QALY scaled by the marginal utility of
consumption, or:

K � U Cð Þ
U0 Cð ÞH0

=
C
H0

� �
1
ωC

� �
: (1)

Insurance coverage choices are made in period 0, before individual illness states are
known. These choices affect access to care in period 1, after illness states are realized.
Expected utility is maximized by adjusting the use of inputs so that pa

H0
a
= pb

H0
b
≤ K. WTP for

one QALY exceeds the value of a year’s consumption, C, only because of diminishing
returns to consumption, that is, 0<ωC < 1: Current estimates suggest that 2C ≤ K ≤ 3C in
industrialized countries, lower in developing countries (Phelps, 2019; Phelps & Cinatl,
2021; Phelps & Lakdawalla, 2023).

OnceK is determined, CEA and BCA are equivalent under certain conditions (Bleichrodt
&Quiggin, 1999). The CEA rule says that the incremental cost-effectiveness ratio (ICER) of
any medical intervention – marginal cost divided by marginal product – should not exceed
WTP, normally stated as pa

H0
a
≤ K. Once a specific value of K is chosen, CEA value measures

convert directly into net monetary benefit (NMB) measures and hence to standard BCA
(Phelps & Mushlin, 1991).

Since CEA presumes constant returns to H, it does not matter to whom health improve-
ments are given, what their untreated illness severity is, what their level of preexisting
disability is, or what degree of uncertainty about treatment benefits exists. Constant returns
toH also require that themarginal rate of substitution (MRS) between gains in health-related
quality of life (HRQoL) and LE be the same in all situations. The mantra of standard CEA
says that “… a QALY is a QALY is a QALY…” (Williams, 1992).Mathematically, the total
value of a medical intervention in CEA is

TVMICEA = LE�ΔHRQoLþHRQoL�ΔLE: (2)

This formula values gains in LE at the existing HRQoL, and thus values LE gains for
disabled people less than the value for otherwise-similar nondisabled people. Similarly, if
disability reduces LE, then gains in HRQoL are similarly lower for disabled than for
nondisabled people. This may have contributed to the U.S. Affordable Care Act’s banning
of cost-effectiveness measures that discriminate against disabled people for federally related
health programs.

2.2. How GRACE differs from CEA

GRACE retains CEA’s assumption of separable utility in consumption, C, and health, H1:

V C,Hð Þ =U Cð ÞW Hð Þ: (3)

1 Separability simplifies the presentation without altering any basic concepts in the model. It limits the ways in
which H and C interact in creating utility rather than allowing more-general interactions. With separability,
∂
2V C,Hð Þ
∂C∂H = ∂

2V C,Hð Þ
∂H∂C =U0 Cð ÞW 0 Hð Þ.
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However, in GRACE, both U Cð ÞandW Hð Þ exhibit positive but diminishing returns to
health.2 As proven in Lakdawalla and Phelps (2020) and Lakdawalla &Phelps (2021, 2022),
this simple generalization alters standard CEA methods in six important ways:

(i) GRACE demonstrates greater WTP for HRQoL gains as untreated illness severity
increases.

(ii) GRACE reveals greater WTP for both HRQoL and LE gains as disability increases.
(iii) GRACE shows that with diminishing returns to health, standard CEA over-values

gains in health, with the magnitude of over-valuation depending on how rapidly
marginal utility declines as health increases.

(iv) Combining these three insights, standard CEA methods overvalue treatments for low-
severity illnesses and undervalue treatments for high-severity illnesses, and they
undervalue treatments for persons with preexisting disabilities.

(v) The relative value of LE and HRQoL varies by initial values of those measures,
contrary to the CEA implication that it is identical in all situations.

(vi) When consumers exhibit relative risk aversion and prudence (Kimball, 1990), uncer-
tainty in treatment outcomes for HRQoL lowers the value of treatment gains, but
increases in the probability of unusually good outcomes (positive skewness in HRQoL
outcome distributions) increase the value of treatments.

GRACE defines five new parameters that can be computed using knowledge of underlying
preference parameters, along withmeasures of treated and untreated illness and disability, as
well as the distributions of health outcomes in the treated and untreated states.

We also note that, like traditional CEA and almost the entire health economics literature,
GRACE presumes time-separable utility, which in turn implies consumer risk-neutrality
over changes in mortality risk. Therefore, GRACE primarily affects the value of HRQoL,
rather than of LE gains.

2.2.1. Nonstochastic parameters

Three GRACE parameters depend only on levels of health outcomes. These parameters
combine to alter the traditional CEA value per unit of health gain, K, to reflect the
consequences of diminishing return to health. We discuss these next.

Diminishing returns to H. From Equation (3),

∂V C,Hð Þ
∂C

=U0 Cð ÞW Hð Þ, (4a)

∂V C,Hð Þ
∂H

=W 0 Hð ÞU Cð Þ: (4b)

Therefore, the MRS between C and H is

MRS � W 0 H0ð ÞU C0ð Þ
U0 C0ð ÞW H0ð Þ : (4c)

2GRACE also allows for regions of strict convexity in W , if, for example, patients exhibit “value of hope”
(Lakdawalla et al., 2012). We focus on the globally concave case for expositional convenience.
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Define ωH =W 0ðH0Þ½ H0
WðH0Þ�, the elasticity of utility with respect to health. Treat baseline

health as “perfect” so that H0 = 1, and define baseline consumption, C0. Then,

MRS =
C0

H0

� �
ωH

ωC

� �
: (4d)

This alters theWTP valueK from Equation (1) in several distinct ways. Using Equation (4d),

we define the first adjustment to K = C0
ωC

h i
1
H0

h i
as

K∗ = KωH : (5a)

Since 0<ωH ≤ 1, K∗ ≤ K: Therefore, before adjusting for illness severity or preexisting
disability, CEA weakly overvalues gains in HRQoL compared with GRACE, with equality
obtaining only under the standard CEA restriction that ωH = 1.

Illness severity. The second GRACE change introduces illness severity. Define ℓ∗ as the
proportional loss in untreated health in period 1. Further, define H1S =H0 1�ℓ∗ð Þ as the
untreated health level in period 1 after the illness occurs and μH � E H1Sð Þ as its mean. For
ease of intuition, GRACE uses mean QoL gain as the unit of health improvement; later, we
explain howGRACE accounts for variance and higher-order moments of QoL gain. As with
standard CEA, GRACE assumes full annuitization and constant consumption, so that
C0 = C1 = C. Therefore,MRS = W 0 μHð ÞU Cð Þ

U0 Cð ÞW H0ð Þ. In effect, theMRS in Equation (4c) ismultiplied
by R = W 0 μHð Þ

W 0 H0ð Þ, the ratio of marginal utilities in the average untreated sick state to the healthy
state. This adjustment shifts the location at which MRS is measured on indifference
curvesfromH0 toμH : Lakdawalla and Phelps (2020) prove that the WTP measure K in
standard CEA then becomes

KGRACE = RK∗ = KωHR: (5b)

For low-severity illnesses, R≈1, and R rises exponentially with severity. Since 0<ωH < 1
under diminishing returns, it follows that standardCEAovervalues treatments for low-severity
illnesses and undervalues them for high-severity illnesses.

Permanent disability. Lakdawalla and Phelps (2021, 2022) further generalized this
approach by introducing the possibility of preexisting permanent disability. Just as the
MRS between well and sick states changes with untreated illness severity, so also the MRS
changes with permanent disability, rising as the degree of disability increases. In perfect

health, before any illness has presented itself, the period zeroMRS = C
H0

h i
ωH
ωC

h i
:Define d∗ as

the proportional loss in HRQoL created by disability and HD =H0 1�d∗ð Þ. To properly
represent the ratio of marginal utilities when preexisting disability is present (see
Equation (4c)), the MRS must be adjusted by the factor

D =
W H0ð Þ
W HDð Þ : (5c)

D = 1 with no disability, and D rises exponentially as d∗ rises. This adjustment is necessary
to correct for the new base from which ex ante resource allocation decisions are made,
accounting for the way the utility of health,W Hð Þ, affects the marginal utility of consump-
tion in Equation (4a) and hence in the MRS in Equation (4c).
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The GRACE-adjusted WTP. These changes lead to the final difference in WTP compared
with standard CEA:

KD
GRACE =DKGRACE =DRK∗ =DRωHK: (6)

CEA is a special case of GRACE, characterized by the restrictions that d∗ = 0 andωH = 1 so
that R and D and H0 all equal 1.0, and WTP collapses to the standard CEA measure of K.
GRACE’s new parameters rely only on parameters of utility functions themselves and upon
levels of HRQoL in treated and untreated states. Therefore, estimating them does not require
information about the distribution of treatment outcomes.

A graphical presentation of these changes may further assist in understanding how
GRACE differs from standard CEA. These figures show indifference curves between
consumption, C and health, H. The MRS is the negated slope of the indifference curve at
any point along it, and it equals WTP for health gains in each condition.

Setting aside, for now, any randomness in H1S, Figure 1 shows how the MRS increases
when moving from perfect health, H0, to untreated health with an illness in period
1, H1S =H0 1�ℓ∗ð Þ: The second panel in Figure 1 shows the additional increase in the
MRS for a personwho begins with a permanent disability and then incurs the same illness. In
this case, the untreated level of illness isH1S =H0 1�ℓ∗ð Þ 1�d∗ð Þ:This demonstrates items
(i) and (ii) shown above.

Figure 2 shows how the MRS changes as the elasticity of utility with respect to
consumption, ωC changes. In general, MRS = ωH

ωC

W H1Sð Þ
W H0ð Þ

C
H1S

. Under the assumptions of
standard CEA, this collapses to K = C

ωC
. As ωC declines from ω1

C toω2
C andω3

C, the
opportunity cost of consumption falls, and the WTP, the MRS in this figure, grows as the
indifference curves steepen.

In each of these curves, the elasticity of utility with respect to health,ωH , is kept at 1.0, the
standard CEA assumption. Thus, Figure 2 demonstrates how the CEA measure of WTP, K,
changes as ωC changes.

Figure 3 shows the effect of introducing the fundamental GRACE change in assumptions
about the nature of utility. For any one of the curves shown in Figure 2, if the elasticity of utility
with respect to health, ωH , embeds positive but strictly diminishing returns, that is, 0<ωH <
1, then the indifference curves flatten out, so theMRS falls at every point on the curve. Figure 3
shows the primary effect of allowing diminishing returns, item (iii) shown above.

Figure 1. MRS between consumption and HRQoL increases with acute illness severity and/
or permanent disability.
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In combination, these results demonstrate how GRACE changes WTP from the standard
CEA value of K to KD

GRACE =DRωHK.

2.2.2. Stochastic parameters

The previous discussion dealt with three GRACE parameters that do not involve the
distribution of health outcomes. Next, we discuss two additional parameters that require
information about those distributions.

Uncertainty of treatment outcome. Lakdawalla and Phelps (2020, Equation (5)) define the
expected period utility gain of a stochastic treatment B for a patient known to have the
disease in question as

EW Tð Þ = E W H1SþBð Þ�W H1sð Þ½ � (7a)

and the expected monetary value of that treatment gain as3

Figure 3. Thewillingness to pay for health improvement at any given illness severity rises as
the utility elasticity of health falls.

Figure 2. Thewillingness to pay for health improvement at any given illness severity rises as
the utility elasticity of consumption falls.

3 FromLakdawalla and Phelps (2020, Equation (5)), this sets the probabilities of survival into period 1, p1 and the
probability of illness, ϕ equal to 1 to minimize notational clutter.
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EV Bð Þ = U Cð Þ
U0 Cð Þ

� �
EW Tð Þ
W H0ð Þ

� �
: (7b)

Next, define

ETG =
EW Tð Þ
W 0 μHð Þ : (7c)

Normalizing EW Tð Þ by W 0 μHð Þ converts it into units of average HRQoL
improvement, ETG.

Recalling that R � W 0 μHð Þ
W 0 H0ð Þ, simple algebraic manipulation now gives

EV Bð Þ = KωHR ETGf g: (7d)

By computing a Taylor series expansion of EW Tð Þ around the level of untreated health,
Lakdawalla and Phelps (2020) show that μBϵ≈ETG, where μB is the average HRQoL
improvement, and ϵ is the “certainty-equivalence” ratio measuring the number of riskless
QoL units the individual would give up in exchange for the treatment’s stochastic HRQoL
gains. The certainty-equivalence ratio, ϵ, allows for the approximation of health gains in
terms of nonstochastic QoL improvement. It can be computed using the information on
higher-order parameters of the statistical distributions of treated and untreated outcomes,
including mean, variance, skewness, and kurtosis. We shortly use this Taylor Series
approximation in a comparison of GRACE and standard CEA methodologies.

The MRS between LE and HRQoL. To convert longevity and HRQoL gains into a single
index of health improvement, GRACE, like traditional CEA, converts longevity gains into
units of HRQoL improvement. This requires use of the MRS between LE gains and average
HRQoL gains. Furthermore, GRACE, like traditional CEA and almost all the health
economics literature, assumes that utility is time-separable and thus linear in the probability
of survival, holding consumption, and HRQoL constant. Therefore, the marginal utility of
gains in LE is the expected utility of the level of health experienced in after the effects of
treatment on HRQoL are received: E W HTð Þð Þ. The marginal utility of gains in average
HRQoL is simplyW 0 μHð Þ, the marginal utility of the average value of untreated health. The
ratio of these forms theMRS between LE and HRQoL, δ, and has units of measurement ofH

δ =
E W HTð Þ½ �
W 0 μHð Þ

� �
: (8a)

Lakdawalla and Phelps (2022) define a new variable, the ratio of expected utility in the
treated state to utility of perfect health,

ρ =
E W HTð Þ½ �
W H0ð Þ : (8b)

They then prove that
ωHRδ = ρH0: (8c)

Therefore, KωHRδμP = KρH0μP: We will use this alternative expression below.
Under traditional CEA,E W HTð Þð Þ =HT ,W 0 μHð Þ = 1, and theMRS becomes simplyHT .

However, with diminishing returns to H, people should be more willing to trade LE for
HRQoL gains when HRQoL is low, and conversely. Put slightly differently, 1δ represents the
WTP for HRQoL gains expressed in terms of LE, not consumption.
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2.2.3. The total value of medical interventions in GRACE

Combining these parameters, we are now in a position to specify the total value of medical
interventions (TVMI) for GRACE. Define the mean gain in survival probability (LE gain)
from treatment as μP, and define the ex ante probability of illness as ϕ. Now, from the ex ante
period 0 perspective,

TVMIGRACE = KDϕ μPρH0þμBϵωHRf g: (9a)

In contrast and relying on Equation (2), traditional CEA computes TVMI as

TVMICEA = Kϕ½μPHT þμB�: (9b)

This highlights the differences between GRACE and CEA. In CEA where ωH = 1,
then so also R = 1, ϵ = 1, ρ =HT andD = 1:Compared with GRACE, CEA overlooks the
effects of the effect of diminishing returns to health, ωH , the extra value of treating
disabled people, D, the effect of illness severity on treatment, R, the effect of QoL
levels on the MRS between LE and HRQoL, ρ, and the effect of treatment uncertainty on
value, ϵ:

The terms in Equation (9a) can be recovered without knowledge of a specific utility
function, provided the analyst can estimate relative risk aversion, relative prudence, and
other higher-order risk preferences (Lakdawalla & Phelps, 2020; Lakdawalla & Phelps,
2022). However, this process introduces approximation error into the TVMI expression,
because of the Taylor series expansions used to estimate the parameters in the equation. As
an alternative, we can unravel the definitions ofD,ρ,ϵ,ωH , and R to express an “exact” form
of Equation (9a):

TVMIGRACE =
KϕH0

WðH0ð1�d∗ÞÞfμPE½WðHTÞ�þE½WðTÞ�g: (9c)

The first term in curly braces describes the expected utility from gains in LE and the second
term describes the expected utility from gains in HRQoL, as defined in Equation (7a). When
the functionW is known, along with the distributions ofH1s andB, all terms in Equation (9c)
can be calculated exactly, without reliance on approximations.

2.2.4. Summary

In all previous explications of GRACE, each key parameter has been estimated using Taylor
series expansion methods. In what follows, we replace the Taylor Series expansion methods
with the use of exact utility functions. This simplifies the understanding of the GRACE
methods and the estimation of the TVMIGRACE.

3. GRACE estimation with exact utility functions

This section develops the entire GRACE model using specific utility functions. In concept,
this same approach could be used for any specified utility function. Since computing
Equation (9c) for any given utility function is simply an algebraic exercise, we do not labor
through that process here. Rather, we explore what several different utility functions imply
for key GRACE parameters to provide intuition.
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3.1. Constant relative risk aversion

The simplest case to understand is to specify that utility has CRRA: This formulation lends
itself to intuitive understanding of the way GRACE functions. With CRRA, utility and
marginal utility are given by

W Hð Þ = 1� γ
γ

� �
Hγ (10a)

and

W 0 Hð Þ = 1� γð ÞHγ�1: (10b)

With CRRA utility, relative risk aversion is given by r∗H = 1� γð Þ, and the elasticity of
utility with respect to health is ωH = γ: Further, r∗H þωH = 1: This simplified structure
allows us to easily calculate exact forms for the key GRACE parameters. Positive but
diminishing marginal utility requires that 0< γ< 1:

3.1.1. Nonstochastic parameters

First, as noted, with CRRA, ωH = γ. Now, consider R, the severity of illness multiplier, and
D, the adjustment to WTP for permanent disability. Since H1S =H0 1�ℓ∗ð Þ, using
Equation (10a), we can readily write R, the ratio of two marginal utilities, as

R =
H1S

H0

� �γ�1

=
H0

H0 1�ℓ∗ð Þ
� �1�γ

=
1

1�ℓ∗

� �1�γ

=
1

1�ℓ∗

� �r∗H
: (11a)

When r∗H = 0, the standard CEA assumption, then R = 1.
Next, D is a ratio of utilities, not marginal utilities, so where H1d =H0 1�d∗ð Þ, using

Equation (10a)

D =
H0

H0 1�d∗ð Þ
� �γ

=
1

1�d∗

� �γ

=
1

1�d∗

� �ωH

: (11b)

Therefore,D≥1and increases exponentially with the severity of disability, d*.When d∗ = 0,
the standard CEA assumption, then D = 1.

SinceωH = γwith CRRA utility, we can now directly compute the multiplier that adjusts
for diminishing returns to H. Combining these, the GRACE value per unit of health gain is

KD
GRACE = KωHDR = Kγ

1
1�d∗

� �γ 1
1�ℓ∗

� �1�γ

: (12)

Asymptotically, CRRA utility is linear in H when γ = 1, that is, standard CEA. In this case,
adopting the usual CEAperspective that d∗ = 0, the value per unit of health gain collapses toK.

3.1.2 Stochastic parameters

The MRS between LE and HRQoL. The general equation for this tradeoff is given in
Equation (8a). To fully specify this, we must first define the probability distribution of
outcomes for individuals who are sick but treated. Define each possible treated outcome as
HT

n for n = 1…. N, each with an associated probability πTn . Then, using Equation (8b),
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ρH0 =H0

X
n
πTn

W HT
n

� 	
W H0ð Þ

� �� �
: (13a)

When utility is CRRA

ρH0 =H0

X
n
πTn

W HT
n

� 	
W H0ð Þ

� �
=H0

X
n
πTn

HT
n

H0

� �γ

: (13b)

Defining HT
n =H0 1� t∗n

� 	
, then

ρH0 =H0

X
n
πTn ð

H0ð1� t∗nÞ
H0

Þ
γ

=H0

X
n
πTn ðð1� t∗nÞγÞ: (13c)

Note that when constant returns to H are specified, then, asymptotically, γ = 1 and

H0
P

nπ
T
n

HT
n

H0


 �γ
collapses to

P
nπ

T
n HT

n

� 	
, so ρH0 equals expected treated health in period

1, identified in Garber and Phelps asH1:GRACE differs fromCEA in this calculation, using
CRRA utility, by the effect of the power exponent γ:

Uncertain treatment outcomes. Adding the disability adjustment to Equation (7b), and

recalling that K = C
ωC

h i
1
H0

h i
, the value of the medical intervention (in units of consumption,

e.g., dollars) is

EV Bð Þ = KωHRD ETGf g: (14a)

To complete Equation (14a) using CRRA, define the possible treatment outcomes asHTi

and their associated probabilities, πTi : Similarly, define the possible outcomes in the
untreated state as H1Sj and their associated probabilities as πUj : Then, ETG, measured in
units of HRQoL gains, becomes

ETG =
X

i
πTi

W HTið Þ
W 0 H0ð Þ�

X
j
πUj

W H1Sj

� 	
W 0 H0ð Þ

� �
: (14b)

Finally, applying the CRRA definitions of W Hð ÞandW 0 Hð Þ from Equations (10a) and
(10b), we have

EV Bð Þ = KωHRD
X

πTi
H0

γ

� �
HTi

H0

� �γ

� H0

γ

� �X
πTj

H1Sj

H0

� �γ� �
: (14c)

When utility is CRRA, the term in curly braces,ETG, is an exactmeasure of the Taylor Series
approximation μBϵ, where the term ϵ is defined below in Equation (15).

Both HT i
H0


 �
and

H1Sj

H0


 �
are ratios between 0 and 1, and aremagnified as γ becomes smaller, as

also is H0
γ

h i
: In CRRA, γ = ωH , so treatment gains are larger, the faster utility of health declines

as H increases, that is, the lower the value of ωH . This matches intuition well.
If γ = 1, which asymptotically equates to linear utility in health in CRRA, the health gain

is simply
P

πTi H
T
i �

P
πTj H1Sj

n o
, the difference in expected health levels between the

treated and untreated states. Once again, this shows that CEA is a restricted version of
GRACE.
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For this specific GRACE parameter, the Taylor Series itself provides good intuition about
how GRACE works. In the Taylor Series, the mean gain in HRQoL is μB and it is adjusted
by the risk term ϵ, so the “certainty equivalent” health gain is approximately equal to μBϵ:
Lakdawalla and Phelps (2020) prove that

ϵ = 1þ½μH
μB

�½�1
2
r∗HΔ½σ2H �½

1
μ2H

�þ1
6
r∗Hπ

∗
HΔ½γ1σ3H �½

1
μ3H

�� 1
24

r∗Hπ
∗
Hτ

∗Δ½γ2σ4H �½
1
μ4H

�þ…: (15)

Since the risk adjustment terms are all multiplied by μH
μB

h i
, for any level of untreated

illness, μH , they become magnified as the mean gain in treatment, μB, shrinks. For relatively
large average treatment gains, ϵ≈1 in many cases, but for relatively small treatment gains, ϵ
can become quite important in assessing overall treatment value.

This illuminates the consequences of uncertain treatment outcomes in terms familiar to
the world of finance, but converted into risk about health outcomes rather than risk about
income or wealth. If utility is linear in H, so that all risk terms equal zero, then ϵ = 1.
Similarly, if the distributions of health outcomes are identical except for a shift in the mean,
so that Δσ2H and all higher terms show differences in the distributions of outcomes equal
0, then similarly, ϵ = 1:

The term 1
2r

∗
HΔ σ2H

� 
is exactly parallel to the standard “risk premium” in mean-variance

tradeoffs in the world of finance. It incorporates the changes in variance between treated and
untreated conditions, Δσ2H , weighted by the relative risk aversion term

1
2r

∗
H . This term can be

labeled as the “value of insurance” or the value of health risk-reduction; it is conceptually
similar to the value of financial insurance that reduces risks to financial assets or income
streams. If treatments reduce outcome uncertainty, Δσ2H < 0 and value rises.

In parallel, if the distribution of treated patient outcomes has an unusually high proportion
of very positive outcomes, this positive skewness in treatment outcomes also increases
treated patients’ expected utility. This is captured in the term 1

6r
∗
Hπ

∗
HΔ γ1σ

3
H

� 
, which

measures the changes in positive skewness of the outcome distribution, valued by the
product 1

6r
∗
Hπ

∗
H
4. This formulation shows that positive skewness is an economic “good”

for any given degree of variance. This term has been described as measuring “the value of
hope,” a phenomenon that has been observed in actual cancer patient preferences
(Lakdawalla et al., 2012).

The next Taylor Series term encompasses changes in kurtosis of the outcome distribu-
tions. Generally, kurtosis magnifies the effect of variance in the expected utility measure.

3.1.3 TVMI in CRRA

We can now summarize TVMI as a function of d∗, t∗,ℓ∗ and the CRRA power parameter γ,
which combine, along with the distributions of health outcomes, to give the GRACE
parameters ρ,R,andD: Starting with Equation (9a) and recalling that μBϵ approximates
ETG, we can write

TVMIGRACE = KDϕ ρH0μpþETGωHR
� 

: (16)

All parameters in Equation (16) are exactly specified in CRRA, as developed within this
section in Equations (11–14). The supplemental materials to this manuscript further explore

4 The term π∗H determines how rapidly r∗H changes as H changes.
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how alternative types of therapies and health states would affect GRACE valuations under
CRRA utility.

3.2. HARA utility

HARA utility generalizes CRRA utility functions, which are a special case of HARA. With
HARA utility

WðHÞ = ½1� γ
γ

�½ aH
1� γ

þb�
γ

: (17a)

Since 0 ≤H ≤ 1, we have no need to scale the values of H, and therefore we can set
a = 1� γð Þso:

W Hð Þ = 1� γ
γ

� �
Hþbð Þγ (17b)

and

W 0 Hð Þ = 1� γð Þ Hþbð Þγ�1: (17c)

Further, it is easy to prove that in HARA

r∗H = 1� γð Þ H
Hþb

� �
(17d)

and

ωH = γ
H

Hþbð Þ
� �

: (17e)

When b> 0, utility has increasing relative risk aversion (IRRA) and when b< 0, utility has
decreasing relative risk aversion (DRRA). Obviously, when b = 0, then utility has CRRA.

With CRRA utility, r∗H þωH = 1. Introducing nonzero values of b allows this total to
differ from 1.0. As we demonstrate below, this introduces a wider range of possible GRACE
valuations for any value of γ, which will in turn affect all GRACE parameters. HARA
generalizes CRRA by adding one extra parameter, b, increasing the formula’s complexity
but at the same time usefully increasing generalizability.

Figure 4. Relative risk-aversion and the health elasticity of utility rise with health for IRRA
utility but fall with health for DRRA utility.
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Figure 4(a,b) demonstrates the effects of positive and negative values of b. The intuition of

these effects is reasonably obvious. When b> 0, as health grows, the ratios H
Hþb

h i
in the

expressions for r∗H andωH shrink for any given value of γ, but the effect diminishes asHgrows.

For example, if b = 0:05, then as H approaches 1.0, the ratio H
Hþb

h i
approaches 1:0 and the

values of r∗H andωH increase from smaller values to those near comparable CRRA values.
When b> 0, utility is IRRA.When the utility is IRRA, r∗H þωH < 1, as in Figure 4(a). As

we show below, compared with CRRA utility, this generally reduces TVM IGRACE for any
given γ and severity of acute illness or disability.

The reverse is true if b< 0, as in Figure 4(b). As b grows in absolute value, the ratio H
Hþb

h i
grows, so r∗H andωH become larger, but asH grows toward 1.0 from lower values, r∗ andωH

approach the CRRA values from above.
When utility is DRRA, r∗H þωH > 1: As we demonstrate shortly, this combination of

parameters, when compared with CRRA utility, generally makes TVM IGRACE larger for any
given level of γ and degree of illness or disability.

The expression for R is slightly more complex, but easy to follow as an extension of
Equation (11a). The levels of health in the numerator and denominator are replaced with

Hþb, soR = H0þbð Þ
H0 1�ℓ∗ð Þþb

h i1�γ
.When b> 0, the ratio in square brackets becomes smaller as b

rises, that is, as the extent of IRRA increases. This occurs because b is a larger proportion of
the denominator than of the numerator.

Similarly, sinceωH = γ H
Hþbð Þ

h i
, when b> 0, the larger the value of b, the smaller isωH for

any given value of γ: Therefore, when b> 0, compared with CRRA utility, two of the key
parameters in KGRACE, ωH and R, shrink as b grows. Thus, before considering the disability
multiplier D, the value of KGRACE falls as the degree of IRRA increases.

The same is true symmetrically when b< 0, that is, when the utility is DRRA. Then both
R andωH rises as the degree of DRRA increases, before considering the disability multiplier
D, the value of KGRACE rises as the degree of DRRA increases.

We now turn to the effects of IRRA and DRRA on the disability multiplier D. In CRRA,

D = H0
H0 1�d∗ð Þ
h iγ

, which is similar to R except that the exponent changes from 1� γð Þ to γ and
ℓ∗ is replaced by d∗, so D = H0þb

H0 1�d∗ð Þþb

h iγ
: Therefore, the sign and magnitude of b have

similar effects onD as they do on R. Increasing IRRA dampens the Dmultiplier and DRRA
increases it, relative to CRRA.

Since ρ =
P

nπ
T
n

HT
n

H0


 �γ
when utility is CRRA, HT

n and H0 are replaced by HT
n þb

� 	
and

H0þbð Þ, so ρ =P
nπ

T
n

HT
nþb

H0þb


 �γ
. For b> 0,when utility is IRRA, HT

n þb
� 	

< H0þbð Þ, so ρ
increases as b grows. The reverse holds and ρ diminishes as < 0, when utility is DRRA.

3.3. Exponential and EP utility

Many previous health economics studies (e.g., Zeckhauser, 1970; Feldstein, 1973; Feldstein
& Friedman, 1977; Keeler et al., 1988; Manning & Marquis, 1996; Marquis & Holmer,
1996; Garber & Phelps, 1997) assumed CARA.We first discuss this simple form and then a
generalization of it, EP utility (Saha, 1993).
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3.3.1. Exponential utility

In exponential utility, which has CARA

U xð Þ = 1� e�βx, (18a)

U0 xð Þ = βxe�βx, (18b)

U00 xð Þ = �β2xe�βx, (18c)

r = �U00 xð Þ
U xð Þ = β, (18d)

r∗ = rx = βx: (18e)

Although CARA has seen widespread use for its analytic simplicity, it has been widely
rejected as appropriate in financial economics. In our setting, using CARA utility would
substantially shrink TVM IGRACE compared with using CRRA, since CARA has strong
IRRA, and the discussion of HARA with IRRA, that is, when b> 0, shows that all
component parts of KGRACE decline as IRRA becomes stronger.5

3.3.2. EP utility

EP utility replaces e�βx with e�βxγ , so that, in some sense, it is amixture of CARA andCRRA
utility. In EP utility,

U xð Þ = 1� e�βxγ , (19a)

U0 xð Þ = γβxγ�1e�βxγ , (19b)

U00 xð Þ = � γβxγ�1eγx
γ�1

γβxγ�1 1� γð Þx�1
� 	

, (19c)

r = �U00 xð Þ
U0 xð Þ =

γβxγþ 1� γð Þ½ �
x

, (19d)

r∗ = rx = γβxγþ 1� γð Þ: (19e)

When γ = 1, asymptotically, relative risk aversion collapses to exponential utility, where
r∗ = βx: As γ! 0 asymptotically, r∗ ! 1, the relative risk aversion when U xð Þ = ln xð Þ6.

Unlike the CRRA and HARA functions, no simple measures exist for the key GRACE
parameters such as R, D, and ρ:Nevertheless, it may be a very useful function to employ to
characterize GRACE value measures. Just as HARA generalizes CRRA by adding one extra

5 This would best be demonstrated in Equation (15), but the results generalize to all of our Taylor Series
expansions. In CRRA, π∗ = r∗þ1,τ∗ = r∗þ2,…whereas in CARA, π∗ = r∗ = τ∗…Therefore, CARA necessarily
shrinks all of the higher-order Taylor Series terms compared with CRRA.

6We use asymptotic language here becauseU xð Þ = 1� e�βxγ is invariant to xwhen γ = 0: In practice, EP utility is
“almost CRRA” once γ< 0:5 (Phelps, 2019).
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parameter, b, EP generalizes exponential utility by adding one parameter, γ, beyond the
simpler CARA model.

4. Multiperiod model

To round out the toolkit for exact estimation of GRACE,we extend Equation (9c) tomultiple
periods. DefineHTj as stochastic period j health in the treated sick state,Hsj as period j health
in the untreated sick state, Bj as the period j HRQoL benefit of the treatment, and
EWjðTÞ � E½WðHSjþBjÞ�WðHsjÞ�. Next, define pTj and pUj as the cumulative probabil-
ities of surviving from period zero to period j in the treated and untreated states, respectively,
and μpj � pTj �pUj .

Finally, define β as the single-period discount factor. The period j change in utility due to
the treatment can be defined as pTj EW HsjþBj

� 	�pUj EW Hsj

� 	
, and theWTP for this utility

change according to Equation (9a) is KϕH0
W H0 1�d∗ð Þð Þ pTj EW HsjþBj

� 	�pUj EW Hsj

� 	n o
. There-

fore, the long-run period zero TVMI is

TVMI =
ϕKH0

W H0 1�d∗ð Þð Þ
X∞
j = 0

βjU Cð Þ pTj EW HsjþBj
� 	�pUj EW Hsj

� 	n o
: (20a)

Notice that the summands mechanically represent the change in expected utility between
the treated and untreated states. Some algebraic manipulation transforms (20a)

TVMI =
ϕKH0

W H0 1�d∗ð Þð Þ
X∞
j = 0

βj μpj EW HsjþBj
� 	� þpUj EWj Tð Þ� n o

: (20b)

To put this into the context of previous GRACE parameters, we can also write
Equation (20b) as

TVMI = ϕKDωHR
X∞
j = 0

βj
μpj EW HsjþBj

� 	� þpUj EWj Tð Þ� 
W 0 Hsj

� 	
( )

, (20c)

where, of course, KDωHR = KGRACE, the WTP per unit of health gain in the full GRACE
model.

Incorporating costs is straightforward. Define CostTj and CostUj as period j costs in the
treated and untreated states, respectively. The expected (or per capita) incremental cost of the
technology at period zero is

ϕ
X∞
j = 0

βj pTj Cost
T
j �pUn Cost

U
j

n o
: (21a)

Define ΔCostj � CostTj �CostUj . With some algebraic manipulation, we can rewrite (21a)
as

X∞
j = 0

βj μpjCost
T
j þpUj ΔCostj

n o
: (21b)

Combining Equations (21a) and (21b) produces the multiperiod expected net monetary
benefit
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NMBGRACE= ϕ
X∞
j=0

βj μpj K
EW HsjþBj

� 	� 
W H0 1�d∗ð Þð Þ H0�CostTj

� ��

þ pUj K
EWj Tð Þ� 

W H0 1�d∗ð Þð ÞH0�ΔCostj

� �
g:

(22a)

Finally, to show the conditions under which NMBGRACE > 0, we identify the incremental
GRACE ratio. The technology should be adopted if and only if

K
H0

W H0 1�d∗ð Þð Þ>

P∞
j = 0

μpjCost
T
j þpUj ΔCostj

h i
P∞
j = 0

βj μpj EW HsjþBj
� 	� þpUj EW HsjþBj

� 	�EW Hsj

� 	� h in o :

(22b)

Multiplying both sides by the marginal utility of health in an arbitrary period i produces a
more easily interpretable expression

K
W 0 E Hsið Þð Þ

W H0 1�d∗ð Þð ÞH0 >

P∞
j = 0

μpjCost
T
j þpUj ΔCostj

h i
P∞
j = 0

βj W H0 1�d∗ð Þð Þ
W 0 E Hsið Þð Þ μpj

EW HsjþBjð Þ½ �
W H0 1�d∗ð Þð Þ þpUj

EW HsjþBjð Þ�EW Hsjð Þ½ �
W H0 1�d∗ð Þð Þ

� �� � :

(22c)

We note that if we multiply and divide K W 0 E Hsið Þð Þ
W H0 1�d∗ð Þð ÞH0 by WðH0ÞW 0ðH0Þ in

Equation (22c), then it equates to KωHRiD where Ri is the severity adjustment in period i
andωH is evaluated atH =H0: Thus, the left-hand side of Equation (22c) simply represents
the GRACE-adjusted to WTP, focusing on the index period i to compute the severity-
adjustment Ri:

Inwords, this simply states that theWTP for a health gain exceeds the ratio of incremental
costs to the present value of incremental benefits, all defined in terms of an exact utility
function. Substitution of the CRRA utility function into these equations would provide exact
measurements, a task left to the reader.

5. Eliminating discrimination according to disability

We now turn to a political question concerning the implementation of GRACE in the USA.
The passage of the Affordable Care Act (ACA) in the U.S. outlawed the use of cost-
effectiveness methods that discriminate against the disabled by devaluing life-years gained
by people with disability. Traditional cost-effectiveness always discriminates in the sense
that a marginal increase in LE is always worth less to disabled consumers, while a marginal
increase in HRQoL is worth the same to the disabled and nondisabled. GRACE provides a
path forward for value assessment that adheres to current US law and promotes equity for
people with disability.
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Recalling that μBϵ approximates ETG � E W Tð Þð Þ
W 0 μHð Þ , Equation (9a) can be rewritten as

TVM IGRACE = KϕDρμpH0þKϕDωHR
E W Tð Þð Þ
W 0 μHð Þ : (23)

The first term on the right-hand side represents the value of longevity gains, and the second is
the value of HRQoL gains. Inspecting the second term, when consumers are risk averse, the
marginal value of HRQoL gains is always higher for persons with disability than for those
without disability. In this case, D and W 0 μHð Þ are both higher for the disabled, and for a
technology producing a marginal increase in HRQoL, E W Tð Þð Þ is higher too. The other
parameters in the first term do not change with disability.

The effect of disability on the first term, the value of longevity gains, is more complex.
Observe thatD � W H0ð Þ

W HDð Þ is always higher for the disabled, while ρ � E W HTð Þð Þ
W H0ð Þ may be lower,

if the treated QoL state is lower for disabled consumers.
One case of note is that of a disability-reducing treatment. Here, ρD can exceed 1, which

means extending LE has greater value for disabled people than for nondisabled persons:This
situation is most easily presented using Equation (13b), with CRRA utility. Then,

ρH0 =H0
P

nπ
T
n

HT
n

H0


 �γ
: Noting that each HT

n =H0 1� t∗n
� 	

, this becomes

ρ =
P

nπ
T
n 1� t∗n
� 	γ

. Then, ρD =
P

nπ
T
n

1�t∗n
1�d∗

h iγ
. In the simplest case, when every t∗n < d∗, it

follows that ρD> 1. To be sure, there are cases – for example, involving negative skewness
on the treatment effects –where reductions in disability might coincide with ρD< 1. But for
many real-life treatments, reductions in average disability severity lead to ρD> 1. For
instance, this condition almost certainly obtains for assistive and adaptive devices for
disabled people such as wheelchairs, hearing aids, vision correction, and “public” interven-
tions such as ramps, self-opening doors, and elevators.

More generally, Lakdawalla and Phelps (2021, 2022) present plausible conditions under
which longevity gains are strictly more valuable to the disabled. However, regulators may
demand an ironclad guarantee of nondiscrimination. To solve this problem, analysts may
proceed just like they do with income inequity. More specifically, just as analysts routinely
calculate WTP for health improvement under the assumption that income is uniform, one
may analogously calculate WTP under the assumption that the initial health level is
uniform too.

Two approachesmay be pursued. The first guarantees “ex ante” equity, by calculating ρD
under the assumption that all consumers start out with perfect ex ante health,H0. In this case,
ρD = E W HTð Þð Þ

W H0ð Þ , and HT would be the same for the disabled and nondisabled. However, it
would still be true that longevity gains would be worth less to those suffering more severe
illness.

To address the latter point, one may adopt a more aggressive solution that also guarantees
“ex post” equity, by assuming that post-treatment health levels are uniform across all
patients. This would amount to using ρD = 1.

6. Parameter estimation

We know of two general approaches to estimate the necessary parameters: discrete choice
experiments (DCEs) and “happiness economics” regression approaches. We discuss these
in turn.

Journal of Benefit-Cost Analysis 61

https://doi.org/10.1017/bca.2023.6 Published online by Cambridge University Press

https://doi.org/10.1017/bca.2023.6


6.1. Discrete choice experiments

We begin with the simplest case, that of CRRA utility. Holt and Laury (2002) demonstrate
the key methodology, as shown in Table 1.

In this approach, people are presented with pairs of gambles that alter the risk/reward
tradeoffs. This can be done either by altering the payoffs or the probabilities of the gambles;
Holt and Laurymodified the probabilities, while Noussair et al. (2014)modified the gambles
with constant probabilities.

In Table 1, Option A, the “safe” choice, is less-risky than Option B. Moving down the
rows, as the probabilities shift, the expected payoff steadily increases, so that choosing
the riskier gamble, Option B, becomes increasingly attractive. At some point, respon-
dents switch from making “safe” choices to the riskier choices. Table 2 uses CRRA to
determine the expected utility of each gamble, and the switching point identifies the
CRRA power parameter γ: Once this is known, and CRRA is assumed, the exact utility
function expressions for TVMI are fully defined. For example, in Table 2, if the switch
occurs at the fifth gamble, then relative risk aversion is somewhere between 0.15 and
0.41.

Only 8 per cent of the subjects exhibited risk-loving behavior (the top three rows), and
two-thirds were clearly risk averse. The median number of safe choices was 5, indicating
relative risk aversion in the range of :15< r∗ < :41, with a midpoint of r∗≈:28:

Holt and Laury (2002) also estimated an EPmodel using their data, where, at mean values
of the data, the estimated value of r∗≈:28 and climbs slowly with the size of the gamble.

The same MLE approach can obviously be used for any specified utility function,
although the complexity will increase with the number of parameters necessary to define
utility. Just as with EP utility, HARA utility requires two parameters, the power parameter γ
and the risk aversion adjustment b.

Table 1. Discrete choice experiment structure using financial gambles.

Option A Option B

Expected
payoff

difference

$2.00 with p = 0.1 $1.60 with p = 0.9 $3.85 with p = 0.1 $0.10 with p = 0.9 $1.17
$2.00 with p = 0.2 $1.60 with p = 0.8 $3.85 with p = 0.2 $1.60 with p = 0.8 $0.83
$2.00 with p = 0.3 $1.60 with p = 0.7 $3.85 with p = 0.3 $1.60 with p = 0.7 $0.50
$2.00 with p = 0.4 $1.60 with p = 0.6 $3.85 with p = 0.4 $1.60 with p = 0.6 $0.16
$2.00 with p = 0.5 $1.60 with p = 0.5 $3.85 with p = 0.5 $1.60 with p = 0.5 �$0.18
$2.00 with p = 0.6 $1.60 with p = 0.4 $3.85 with p = 0.6 $1.60 with p = 0.4 �$0.51
$2.00 with p = 0.7 $1.60 with p = 0.3 $3.85 with p = 0.7 $1.60 with p = 0.3 �$0.85
$2.00 with p = 0.8 $1.60 with p = 0.2 $3.85 with p = 0.8 $1.60 with p = 0.2 �$1.18
$2.00 with p = 0.9 $1.60 with p = 0.1 $3.85 with p = 0.9 $1.60 with p = 0.1 �$1.52
$2.00 with p = 1 $1.60 with p = 0 $3.85 with p = 1 $1.60 with p = 0 �$1.85

Notes: From Holt and Laury (2002, Table 1). Option A has very low risk. Option B has higher risk. The final column shows the
expected difference between choosing Option A over Option B.
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6.2. Happiness economics models

While DCE experiments focus on gambles involving health states, Happiness Economics
models offer the ability to simultaneously estimate not only the parameters for the “health”
components of GRACE, but also the elasticity of utility with respect to consumption, ωC in
the same data set as is used to estimate the functional form and parameters of W Hð Þ:

Easterlin (2003) pioneered the Happiness economics approach, now widely used by the
United Nations using data from international Gallup polls. This approach requires (in our
case) three data elements from each respondent: (i) Their level of happiness on some fixed
scale, for example, 0–10 or 0–100; (ii) their income, and (iii) their level of health on a fixed
interval, for example, 0–10 or 0–100. These can be gathered using direct questions, visual
analog scales (“thermometer” scales) or other methods. This approach uses reported
happiness as a proxy for the economists’ concept of “utility.” With such data, one can
estimate a generic translog utility function (Christiansen et al., 1973) of the form

ln Happyið Þ = β1 ln Hið Þþ1
2
β2 ln Hið Þð Þ2þβ3 ln Cið Þþ1

2
β4 ln Cið Þð Þ2þ ϵi…: (24)

Of course, analysts can include other covariates that might affect happiness such as age,
sex, ethnicity, geographic region, and others. These would reduce residual variance, and
would avoid omitted variable bias if the omitted variables were correlated with H or C.

From such data, one can readily infer the key GRACE parameters such as ωH, r∗H (and
how these change with levels of H), and ωC and how it might change with C. Phelps and
Lakdawalla (2023, Chapter 8) provide details for this approach.

Assuming a specific utility function offers a different approach, however, namely to fit
the data from the “happiness” survey to a specific functional form. We use here the example
of HARA utility, although the approach generalizes to any specific form of the utility
function. Here again, the assumption of separability in utility simplifies the discussion.

Begin with the standard utility function in Equation (3), but with the specific assumption
that both U Cð Þ and W Hð Þ have HARA form. In what follow, we will ignore the possible
inclusion of covariates, which can generically be added as Xj values, each with their own

Table 2. Summary of risk aversion for CRRA utility.

Number of safe choices
Range of relative risk aversion (r*)
using CRRA utility function Descriptive phrase

0–1 Lower than �0.95 Highly risk loving
2 �0.95 to �0.49 Very risk loving
3 �0.49 to �0.15 Mildly risk loving
4 �0.15 to 0.15 Risk neutral
5 0.15 to 0.41 Mildly risk averse
6 0.41 to 0.68 Risk averse
7 0.68 to 0.97 Very risk averse
8 0.97 to 1.37 Highly risk averse
9 to 10 >1.37 Stay in bed!

Note: From Holt and Laury (2002, Table 3).
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appropriate functional form and parameterization. We add a generic error term, the details of
which would emerge in econometric analysis. For individual j,

Happiness =U Cj
� 	

W Hj
� 	

ϵj: (25a)

Applying CRRA utility from Equation (17b) gives

Happinessj =
1� γ
γ

� �
Cjþb
� γ 1�δ

δ

� �
Hjþβ
� δ

ϵj: (25b)

In logarithmic form,

ln Happinessj
� 	

= ln
1� γ
γ

� �
þ ln

1�δ
δ

� �
þ γ ln Cjþb

� þδ ln Hjþβ
� þ ln ϵj

� 	
: (25c)

From this, the log-likelihood function is readily composed, and maximized over the four
parameters γ,b,δ,and β, plus those associated with any other covariates included in the
model. One could readily test the hypotheses that the functionsU Cð Þ andW Hð Þwere CRRA
by testing whether (respectively) b and β equal zero. Econometric analysis would determine
the best possible transformation for ϵj, possibly using Box and Cox (1964) transformations
to normalize the distribution of the residuals. We leave these details to others.

One could obviously insert the EP function into Equation (25b) as an alternative to the
HARA function, which would have a more complicated appearance, but would still only
require maximization over two parameters each for U Cð Þ and W Hð Þ:

Adding covariates such as age, sex, ethnicity, and others could improve precision by
reducing the residual variance. One could compare across structural models by comparing
log-likelihood ratios from equations using HARA and EP. Unfortunately, HARA and EP are
not nested, so they cannot be compared in a single maximum likelihood estimation.

7. Conclusion

Previous presentations of GRACE have relied on Taylor series expansion methods to
develop estimates of the necessary GRACE parameters. Herein, we have developed the
GRACE model while assuming a specific utility function to replace the Taylor Series
coefficient estimates. The simple CRRA model seems to provide the most intuitive under-
standing of how the GRACEmodel adjusts WTP for three key GRACE parameters: the rate
at which utility changes with health,ωH, the disability adjustment,D, and the illness severity
adjustment, R.

Practitioners of CEA can now choose between the Taylor Series model and the exact
utility functionmodel, depending on the nature of data available to them.We emphasize here
that these parameters need not be estimated for every health technology assessment (HTA)
or study. Once the research community has come to some agreement about the values of the
key parameters, whether those in Taylor Series expansions or for specific utility functions,
then those parameters can be used in every HTA study. The normal data collected in such
studies, such as in randomized controlled trials and clinical assessments of health technol-
ogies suffice to complete the models by providing information on the distributions of health
outcomes for treated and untreated individuals, as summarized in Equation (16) in the simple
two-period model and in Equation (20b) in the complete multiperiod model.
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We have not dwelt herein on estimation of costs in HTA studies since the methods are the
same in our model as for those in standard CEA, and indeed, the same as would take place in
any BCA model of value for healthcare. Similarly, issues of discounting do not differ from
standard CEA and BCA models. GRACE focuses on new ways to measure value. This
article summarizes a new approach to measuring the differences in value for new medical
interventions, be they treatments, diagnostic tools, preventive medical interventions such as
vaccines, or public health measures such as provision of sanitary water.

This approach informs how BCA studies of medical interventions should be undertaken,
since BCA and CEA share similar roots. Indeed, many CEA practitioners now routinely
report their outcomes in terms of net monetary benefit (NMB) measures, which require
assuming a specific value for K, the WTP for improved health. The “near” equivalence of
CEA and BCA has been long-understood (Phelps & Mushlin, 1991) and the specific
conditions under which this equivalence arises have been fully developed elsewhere
(Bleichrodt & Quiggin, 1999). The GRACE model, with separable utility and additive
utility over time, fulfills these conditions.

If analysts wish to conduct BCA studies for health technologies, GRACE shows that
measuring aggregate health benefits in such studies does not suffice.When utility is linear in
health, as CEA assumes, then adding up health benefits across individuals is legitimate, but
when there are diminishing returns to health, then analyses must incorporate such measures
as untreated illness severity and severity of preexisting disabilities to be valid, and should
also account for uncertainty in treatment outcomes and aMRS between LE and HRQoL that
depends upon baseline conditions.

Parameter Definitions

H a,bð Þ the production function for producing health using a and b
H0

aandH
0
b the marginal products of a and b in producing H

pa and pb the market prices for health inputs a and b
C consumption, equals income minus medical care spending
H health, measuring the health-related quality of life (HRQoL)
U(C) and U0(C) utility and marginal utility of C
ωC the elasticity of utility with respect to C
W Hð ÞandW 0 Hð Þ the utility and marginal utility of H
ωH the elasticity of utility with respect to H
V(C, H) V(C,H) = U(C) W(H), the separable combined utility function
K the standard CEA measure of WTP for QALY gains
H0 baseline health, on a scale of 0 ≤H ≤ 1, H0 = 1, “perfect” health
ℓ∗ on a scale of 0 ≤ ℓ∗ ≤ 1, proportional health loss from untreated illness
H1S H1S =H0 1�ℓ∗ð Þ, the level of untread health with an illness
μH the mean of H1S

d* on a scale of 0 ≤ d∗ ≤ 1, the proportional loss in health from disability
HD, HD =H0 1�d∗ð Þ, the level of health with a permanent disability
R adjustment to WTP for illness severity; R = W 0ðμHÞ

W 0ðH0Þ
D adjustment to WTP for disability; D = WðH0Þ

WðHDÞ
μB average gain (benefit) in health from treatment, in units of H
μP average gain in LE from treatment, in units of probability of survival
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KD
GRACE WTP after GRACE adjustment; KD

GRACE =DRωHK
EW Tð Þ expected treatment gain, in units of W(H)
ETG expected value of treatment gains, measured in units ofH;ETG = EW Tð Þ

W 0 μHð Þ
ϕ probability of illness occurring in period 1
ϵ adjustment for treatment outcome uncertainty in Taylor Series
ρ ρH0 is the MRS between LE and HRQoL

Acronyms

CARA constant absolute risk aversion
CEA standard cost-effectiveness analysis
CRRA constant relative risk aversion
DRRA decreasing relative risk aversion
EP expo-power utility, a generalization of CARA utility
HARA hyperbolic absolute risk aversion, a generalization of CRRA
HRQoL health-related quality of life
ICER incremental cost-effectiveness ratio
IRRA increasing relative risk aversion
LE life expectancy
MRS marginal rate of substitution
QALY quality adjusted life-year – a standard measure of amounts of health
TVMI total value of a medical intervention
WTP willingness to pay, measured in terms of C per unit of H

Supplementary Materials. To view supplementary material for this article, please visit http://doi.org/10.1017/
bca.2023.6.
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