Canad. Math. Bull. Vol. **57** (2), 2014 pp. 245–253 http://dx.doi.org/10.4153/CMB-2013-024-8 © Canadian Mathematical Society 2013

Assouad–Nagata Dimension of Wreath Products of Groups

N. Brodskiy, J. Dydak, and U. Lang

Abstract. Consider the wreath product $H \wr G$, where $H \neq 1$ is finite and G is finitely generated. We show that the Assouad–Nagata dimension $\dim_{AN}(H \wr G)$ of $H \wr G$ depends on the growth of G as follows: if the growth of G is not bounded by a linear function, then $\dim_{AN}(H \wr G) = \infty$; otherwise $\dim_{AN}(H \wr G) = \dim_{AN}(G) \leq 1$.

1 Introduction

Asymptotic dimension was introduced by Gromov in [11] as a large scale invariant of a metric space. Any finitely generated group can be equipped with a word metric. The idea of Gromov was that asymptotic dimension is an invariant of the finitely generated group; *i.e.*, it does not depend on the word metric. An additional asymptotic invariant of the group of asymptotic dimension n introduced by Gromov is the asymptotic type of a certain function associated with the given asymptotic dimension (we call it an *n*-dimensional control function). The Assouad–Nagata dimension of a metric space X is the smallest integer n such that X has an n-dimensional control function that is a dilation.

Spaces of finite asymptotic Assouad–Nagata dimension have some extra properties that spaces of finite asymptotic dimension do not necessarily have. For example, if a metric space is of finite asymptotic Assouad–Nagata dimension, then it satisfies nice Lipschitz extension properties (see [2, 13]). It was proved in [6] that the asymptotic Assouad–Nagata dimension bounds the topological dimension of every asymptotic cone of a metric space. Also, every metric space of finite asymptotic Assouad– Nagata dimension has Hilbert space compression one [9].

P. Nowak [15] proved that the Assouad–Nagata dimension of some wreath products $H \wr G$ is infinite, where H is finite and G is a finitely generated amenable group whose Folner function grows sufficiently fast and satisfies some other conditions suitable for applying Erschler's result [8]. That result states that the Folner function $F(H \wr G)$ of $H \wr G$ is comparable to $F(H)^{F(G)}$ and the passage from it to Assouad– Nagata dimension of $H \wr G$ is fairly complicated as it includes Property A. Thus, the results of [15] apply only to amenable groups G and do not apply either to lamplighter groups (as the Folner function of **Z** is linear) or to wreath products with free non-Abelian groups (as those are not amenable).

Received by the editors June 6, 2012.

Published electronically August 10, 2013.

The second-named author was partially supported by the Center for Advanced Studies in Mathematics at Ben Gurion University of the Negev (Beer-Sheva, Israel).

AMS subject classification: 54F45, 55M10, 54C65.

Keywords: Assouad-Nagata dimension, asymptotic dimension, wreath product, growth of groups.

In this paper we show that the Assouad–Nagata dimension of $H \wr G$ completely depends on the linearity of the growth of *G*. If *G* is finite, then $H \wr G$ is also finite and $\dim_{AN}(H \wr G) = 0 = \dim_{AN}(G)$. If *G* is virtually cyclic (*i.e.*, has linear growth), then $\dim_{AN}(H \wr G) = \dim_{AN}(G) = 1$. If the growth of *G* is not bounded by a linear function and $H \neq 1$, then $\dim_{AN}(H \wr G) = \infty$.

In particular, the lamplighter groups are not finitely presented and are of Assouad– Nagata dimension 1, which answers positively the following question of [6].

Question 1.1 Is there a finitely generated group of Assouad–Nagata dimension 1 that is not finitely presented?

2 Assouad–Nagata Dimension

Let X be a metric space and $n \ge 0$. An *n*-dimensional control function of X is a function D_X^n : $\mathbf{R}_+ \to \mathbf{R}_+ \cup \infty$ with the following property. For any r > 0 there is a cover $\{X_0, \ldots, X_n\}$ of X whose Lebesgue number is at least r (that means every open r-ball B(x, r) is contained in some X_i) and every r-component of X_i is of diameter at most $D_X^n(r)$. Two points x and y belong to the same r-component of X_i if there is a sequence $x_0 = x, x_1, \ldots, x_k = y$ in X_i such that $dist(x_j, x_{j+1}) < r$ (such a sequence will be called an *r*-path).

The *asymptotic dimension* asdim(X) is the smallest integer such that X has an *n*-dimensional control function whose values are finite.

The Assouad–Nagata dimension dim_{AN}(X) of a metric space X is the smallest integer n such that X has an n-dimensional control function that is a dilation (*i.e.*, $D_X^n(r) = C \cdot r$ for some C > 0).

The asymptotic Assound–Nagata dimension $\operatorname{asdim}_{AN}(X)$ of a metric space X is the smallest integer *n* such that X has an *n*-dimensional control function that is linear (*i.e.*, $D_X^n(r) = C \cdot r + C$ for some C > 0).

In the case of metrically discrete spaces X (that means there is $\epsilon > 0$ such that every two distinct points have the distance at least ϵ) asdim_{AN}(X) = dim_{AN}(X) (see [2]). In particular, in case of finitely generated groups we can talk about Assouad– Nagata dimension instead of asymptotic Assouad–Nagata dimension.

A countable group *G* is called *locally finite* if every finitely generated subgroup of *G* is finite. A group *G* has asymptotic dimension 0 if and only if it is locally finite [16].

Notice that $\dim_{AN}(X) = 0$ if and only if there is C > 0 such that for any r > 0 and for every *r*-path the distance between its end-points is less than $C \cdot r$. In the case of groups one has the following useful criterion of being 0-dimensional.

Proposition 2.1 Let (G, d_G) be a group equipped with a proper left-invariant metric d_G (that means bounded sets are finite). If G is locally finite, then the following conditions are equivalent:

- (i) $\dim_{AN}(G, d_G) = 0;$
- (ii) there is a constant c > 0 such that for each r > 0 the subgroup of G generated by B(1,r) is contained in $B(1, c \cdot r)$.

Proof (i) \Rightarrow (ii). Consider a constant K > 0 such that for each r > 0 all *r*-components of *G* have diameter less than $K \cdot r$. Notice that if $g \in G$ belongs to *r*-component

of 1 and $h \in B(1, r)$, then $d_G(g, gh) = d_G(1, h) < r$, so gh lies in the *r*-component of 1. Therefore the subgroup generated by B(1, r) is contained in $B(1, K \cdot r)$.

(ii) \Rightarrow (i). Let G_r be the subgroup of G generated by B(1, r). Consider two different left cosets $y \cdot G_r$ and $z \cdot G_r$ of G_r in G. If $d_G(yg, zh) < r$ for some $g, h \in G_r$, then $f = h^{-1}z^{-1}yg \in B(1, r) \subset G_r$, so $y = z(hfg^{-1})$, a contradiction. That means each r-component of G is contained in a left coset of G_r and its diameter is less than 2cr, *i.e.*, dim_{AN}(G, d_G) = 0.

Let us generalize *r*-paths as follows. By an *r*-cube in a metric space X we mean an injective function $f: \{0, 1, ..., k\}^n \to X$ with the property that the distance between f(x) and $f(x + e_i)$ is less than r for all $x \in \{0, 1, ..., k\}^n$ such that $x + e_i \in \{0, 1, ..., k\}^n$. Here e_i belongs to the standard basis of \mathbb{R}^n .

A sufficient condition for $\dim_{AN}(X)$ being positive is the existence for every C > 0of an *r*-path joining points of distance at least $C \cdot r$. The purpose of the remainder of this section is to find a similar sufficient condition for $\dim_{AN}(X) \ge n$.

Lemma 2.2 Consider the set $X = \{0, 1, ..., k\}^n$ equipped with the l_1 -metric. Suppose $X = X_1 \cup \cdots \cup X_n$. If the open (n + 1)-ball of every point of X is contained in some X_i , then a 2-component of some X_i contains two points whose *i*-coordinates differ by k.

Proof Let us proceed by contradiction and assume that all 2-components of each X_i do not contain points whose *i*-coordinates differ by *k*. Create the cover A_i , $1 \le i \le n$, of the solid cube $[0, k]^n$ by adding unit cubes to A_i whenever all of its vertices are contained in X_i . Given $i \in \{1, ..., n\}$ consider the two faces L_i and R_i of $[0, k]^n$ consisting of points whose *i*-th coordinates are 0 and *k*, respectively. Let B_i be the complement of the $\frac{1}{4}$ -neighborhood of $A_i \cup L_i \cup R_i$. Notice that B_i separates between L_i and R_i . Indeed, if $L_i \cup R_i$ belongs to the same component of the $\frac{1}{4}$ -neighborhood of $A_i \cup L_i \cup R_i$. Notice that B_i coordinates differ by *k*. Picking points in X_i in the same unit cubes as vertices of the path, one gets a 2-path in X_i between points in X_i whose *i*-th coordinates differ by *k*.

Now we get a contradiction, as $\bigcap_{i=1}^{n} B_i = \emptyset$ in violation of the well-known result in dimension theory about separation (see [7, Theorem 1.8.1]).

Corollary 2.3 Suppose X is a metric space with an (n-1)-dimensional control function D_X^{n-1} : $\mathbf{R}_+ \to \mathbf{R}_+ \cup \infty$. For any r-cube

$$f: \{0, 1, \ldots, k\}^n \to X$$

there exist two points a and b in $\{0, 1, ..., k\}^n$ whose *i*-th coordinates differ by k for some *i* and dist $(f(a), f(b)) \leq D_X^{n-1}(n \cdot r)$.

Proof Consider a cover $X = X_1 \cup \cdots \cup X_n$ of X of Lebesgue number at least $n \cdot r$ such that $(n \cdot r)$ -components of each X_i are of diameter at most $D_X^{n-1}(n \cdot r)$. The cover $\{0, 1, \ldots, k\}^n = f^{-1}(X_1) \cup \cdots \cup f^{-1}(X_n)$ has the property that the open (n + 1)-ball of every point is contained in some $f^{-1}(X_i)$, so by Lemma 2.2 a 2-component (in the l_1 -metric) of some $f^{-1}(X_i)$ contains two points a and b whose i-coordinates differ by k. Therefore f(a) and f(b) belong to the same r-component of X_i and $dist(f(a), f(b)) \leq D_X^{n-1}(n \cdot r)$.

We need an upper bound on the size of *r*-cubes f in terms of dimension control functions and the Lipschitz constant of f^{-1} . One should view the next result as a discrete analog of the fact that one cannot embed I^n into an (n - 1)-dimensional topological space.

Corollary 2.4 Suppose X is a metric space with an (n-1)-dimensional control function $D_X^{n-1}: \mathbf{R}_+ \to \mathbf{R}_+ \cup \infty$. If $f: \{0, 1, \ldots, k\}^n \to X$ is an r-cube, then $k \leq D_X^{n-1}(n \cdot r) \cdot \operatorname{Lip}(f^{-1})$.

Proof By Corollary 2.3 there is an index $i \le n$ and points *a* and *b* whose *i*-coordinates differ by *k* such that dist $(f(a), f(b)) \le D_X^{n-1}(n \cdot r)$. Since

$$k \leq \operatorname{dist}(a, b) \leq \operatorname{Lip}(f^{-1}) \cdot \operatorname{dist}(f(a), f(b)) \leq D_X^{n-1}(n \cdot r) \cdot \operatorname{Lip}(f^{-1}),$$

we are done.

3 Wreath Products

Let *A* and *B* be groups. Define the action of *B* on the direct product A^B (functions have finite support) by

$$bf(\gamma) := f(b^{-1}\gamma),$$

for any $f \in A^B$ and $\gamma \in B$. The *wreath product* of A and B, denoted $A \wr B$, is the semidirect product $A^B \rtimes B$ of groups A^B and B. That means it consists of ordered pairs $(f, b) \in A^B \times B$ and $(f_1, b_1) \cdot (f_2, b_2) = (f_1(b_1f_2), b_1b_2)$.

We will identify (1, b) with $b \in B$ and $(f_a, 1)$ with $a \in A$, where f_a is the function sending $1 \in B$ to a and $B \setminus \{1\}$ to 1. This way both A and B are subgroups of $A \wr B$, which is generated by B and elements of the form $b \cdot a \cdot b^{-1}$. That way the union of generating sets of A and B generates $A \wr B$.

The *lamplighter group* L_n is the wreath product $\mathbb{Z}/n \wr \mathbb{Z}$ of \mathbb{Z}/n and \mathbb{Z} .

Consider the wreath product $H \wr G$, where H is finite and G is finitely generated. Let K be the kernel of $H \wr G \to G$. The group K is locally finite (the direct product of |G| copies of H). In case H is finite we choose as a set of generators of $H \wr G$ the union of $H \setminus \{1\}$ and a set of generators of G. A *length* of an element of a finitely generated group (with a fixed set of generators) is the smallest number of the generating elements needed to make the given element of the group.

If $g \in G$ and $a \in H \setminus \{1\}$, then $g \cdot a \cdot g^{-1} \in K$ will be called the *a*-bulb indexed by g or the (g, a)-bulb. A bulb is a (g, a)-bulb for some $a \in H$ and some $g \in G$.

Lemma 3.1 Suppose n > 1. Any product of bulbs indexed by mutually different elements $g_i \in G$, $i \in \{1, ..., n\}$, has length at least n.

Proof Consider $x = (g_1a_1g_1^{-1}) \cdots (g_na_ng_n^{-1}) \in K$. If its length is smaller than *n*, then $x = x_1 \cdot b_1 \cdot x_2 \cdot b_2 \cdots x_k \cdot b_k \cdot x_{k+1}$, where k < n and $b_i \in H$, $x_i \in G$ for all *i*. We can rewrite *x* as $(y_1 \cdot b_1 \cdot y_1^{-1}) \cdot (y_2 \cdot b_2 \cdot y_2^{-1}) \cdots (y_k \cdot b_k \cdot y_k^{-1}) \cdot y$, where $y_1 = x_1$. Since $x \in K$, y = 1. Now we arrive at a contradiction by looking at projections of *K* onto its summands.

Assouad–Nagata Dimension of Wreath Products of Groups

Lemma 3.2 Suppose r > 1. Any element of K of length less than r is a product of bulbs indexed by elements of G of length less than r.

Proof Consider a minimal representation $x_1a_1x_2a_2 \cdots x_ka_kz$ of an element of *K* of length less than *r*, where $x_i \in G$ and $a_i \in H \setminus \{1\}$. One can write this element as

 $(x_1a_1x_1^{-1})(x_1x_2a_2x_2^{-1}x_1^{-1})\cdots(x_1\cdots x_ka_kx_k^{-1}\cdots x_1^{-1}).$

Therefore the bulbs involved are indexed by elements of *G* of length less than *r*.

In case of the lamplighter group L_2 there is a precise calculation of length of its elements in [4]. We need a generalization of those calculations.

Lemma 3.3 Let H be finite and let G be virtually cyclic. Suppose the subgroup Z generated by $t \in G$ is of finite index n and there are generators $\{t, g_1, \ldots, g_n\}$ of G such that every element g of G can be expressed as $g_i \cdot t^{e(g)}$ for some i.

- (i) Every element of K can be expressed as a product of (h_i, a_i) -bulbs, i = 1, ..., k, such that $h_i \neq h_i$ for $i \neq j$.
- (ii) The length of such product is at most $n(k + 2 + 4 \max\{|e(h_i)|\})$.

Proof Observe that the product of the (g, a)-bulb and the (g, b)-bulb is the $(g, a \cdot b)$ -bulb, so every product of bulbs can be represented as a product of (h_i, a_i) -bulbs, i = 1, ..., k, such that $h_i \neq h_j$ for $i \neq j$. We will divide those bulbs into classes determined by $h_i \cdot t^{-e(h_i)}$. Since there are at most *n* classes, it suffices to show that if $h_i \cdot t^{-e(h_i)} = g$ for all *i*, then the length of the product x of (h_i, a_i) -bulbs is at most $k + 2 + 4 \max\{|e(h_i)|\}$. We may order h_i so that the function $i \rightarrow e(h_i)$ is strictly increasing. Now,

$$g^{-1} \cdot x \cdot g = \prod_{i=1}^{k} t^{e(h_i)} \cdot a_i \cdot t^{-e(h_i)} = t^{e(h_1)} \cdot a_1 \cdot t^{-e(h_1)+e(h_2)} \cdot a_2 \cdot \cdots \cdot a_k \cdot t^{-e(h_k)},$$

and its length is at most $k + |e(h_1)| + e(h_k) - e(h_1) + |e(h_k)| \le k + 4 \max\{|e(h_i)|\}$.

4 Dimension Control Functions of Wreath Products

Recall that the *growth* γ of *G* is the function counting the number of points in the open ball B(1, r) of *G* for all r > 0. Notice that γ being bounded by a linear function is independent of the choice of generators of *G*.

The next result relates the growth function of *G* to dimension control functions of the kernel of the projection $H \wr G \to G$.

Theorem 4.1 Suppose G and H are finitely generated and K is the kernel of the projection $H \wr G \to G$ equipped with the metric induced from $H \wr G$. If γ is the growth function of G and D_K^{n-1} is an (n-1)-dimensional control function of K, then the integer part of $\frac{\gamma(r)}{r}$ is at most $D_K^{n-1}(3nr)$.

249

Proof Given $k \ge 1$ we will construct a 3r-cube $f: \{0, k\}^n \to K$ similarly to the way paths in the Cayley graph of K are constructed. There it suffices to label the beginning vertex and all the edges, since that induces labeling of all the vertices. In the case of our 3r-cube we label the origin by $1 \in K$ and each edge from x to $x + e_i$, e_i being an element of the standard basis of \mathbb{R}^n , will be labeled by x(j, i), where j is the i-th coordinate of x. It remains to choose $x(j, i), 1 \le i \le n$ and $0 \le j \le k - 1$. Given r > 0, consider mutually different elements $g(j, i), 1 \le i \le n$ and $0 \le j \le k - 1$ of G whose length is smaller than r, where k is the integer part of $\frac{\gamma(r)}{n}$. Pick $u \in H \setminus \{1\}$ and put $x(j, i) = g(j, i) \cdot u \cdot g(j, i)^{-1}$. By Lemma 3.1 one has $\operatorname{Lip}(f^{-1}) \le 1$, so $k \le D_K^{n-1}(3nr)$ by Corollary 2.4.

If *H* is finite, then the kernel *K* of the projection $H \wr G \to G$ is locally finite and it has a 0-dimensional control function D_K^0 attaining finite values (*K* is equipped with the metric induced from $H \wr G$). Let us relate D_K^0 to the growth of *G*.

Theorem 4.2 Suppose G is finitely generated and $H \neq \{1\}$ is finite. Let K be the kernel of the projection $H \wr G \rightarrow G$ equipped with the metric induced from $H \wr G$. If γ is the growth function of G, then $D_K^0(r) := (2r + 1)\gamma(r)$ is a 0-dimensional control function of K.

Proof It suffices to show that *r*-component of 1 in *K* is of diameter at most $(2r + 1)\gamma(r)$, as any *r*-component of *K* is a shift of the *r*-component containing 1. By Lemma 3.2 any element of B(1, r) in *K* is a product of bulbs indexed by elements of *G* of length less than *r*. Therefore any product of elements in B(1, r) is a product of bulbs indexed by elements of *G* of length less than *r*, and such product can be reduced to a product of at most $\gamma(r)$ such bulbs. Each of them is of length at most 2r + 1, so the length of the product is at most $(2r + 1) \cdot \gamma(r)$.

Theorem 4.3 (cf. [5, Proposition 4.2]) Suppose G is finitely generated and $\pi: G \to I$ is a retraction onto its subgroup I with kernel K. Assume that K is equipped with the metric induced from a word metric on G such that generators of I are included in the set of generators of G. If D_I^n is an n-dimensional control function of I and D_K^0 is a 0-dimensional control function of K, then

$$D_I^n(r) + D_K^0(r + 2D_I^n(r))$$

is an n-dimensional control function of G.

Proof Given r > 0 express I as $I_0 \cup \cdots \cup I_n$ so that r-components of I_i have diameter at most $D_I^n(r)$. Consider $G_i = \pi^{-1}(I_i)$. If $g_1 \cdot 1, \ldots, g_1 \cdot x_m$ is an r-path in G_i , then $h_1 = \pi(g_1) \cdot 1, \ldots, h_m = \pi(g_1) \cdot y_m$ form an r-path in I_i (here $y_j = \pi(x_j)$), so $l(y_j) \le D_I^n(r)$ for all j. Consider $z_j = x_j \cdot y_j^{-1} \in K$. Notice that $dist(z_j, z_{j+1}) < r + 2D_I^n(r)$. Therefore, $dist(1, z_m) \le D_K^0(r + 2D_I^n(r))$, resulting in $l(x_m) \le D_K^0(r + 2D_I^n(r)) + D_I^n(r)$ and $dist(g_1, g_1 \cdot x_m) \le D_I^n(r) + D_K^0(r + 2D_I^n(r))$, which completes the proof.

Definition 4.4 (cf. [12, Section VI.B]) Let f and g be functions from \mathbf{R}_+ to \mathbf{R}_+ . We say that f weakly dominates g if there exist constants $\lambda \ge 1$ and $C \ge 0$ such that $g(t) \le \lambda f(\lambda t + C) + C$ for all $t \in \mathbf{R}_+$.

Two functions are *weakly equivalent* if each weakly dominates the other.

Notice that the functions 2^t and $t2^t$ are weakly equivalent.

Theorem 4.5 Suppose G is finitely generated infinite group and $H \neq \{1\}$ is finite. Let γ be the growth function of G and D_G^n be an n-dimensional control function of G. Then for any $k \ge n$ there is a k-dimensional control function of $H \wr G$ that is weakly dominated by $(D_G^n(t) + t) \cdot \gamma(D_G^n(t) + t)$. Also, for any $k \ge n$ every k-dimensional control function of $H \wr G$ weakly dominates the function γ .

Proof Notice that γ dominates a linear function and combine Theorems 4.2 and 4.3. To get the estimate from below, notice that a *k*-dimensional control function of $H \wr G$ works as a *k*-dimensional control function of the kernel *K* and apply Theorem 4.1.

Our next result gives a better solution to Question 2 in [15].

Corollary 4.6 Suppose G is a finitely generated group of exponential growth and $H \neq \{1\}$ is finite. If dim_{AN}(G) $\leq n$, then for any $k \geq n$ the k-dimensional control function of $H \wr G$ is weakly equivalent to the function 2^t (i.e., there is a k-dimensional control function of $H \wr G$ weakly dominated by 2^t , and every such control function weakly dominates 2^t).

Corollary 4.7 Let F_2 be the free non-Abelian group of two generators. For every $n \ge 1$ the n-dimensional control function of $\mathbb{Z}/2 \wr F_2$ is weakly equivalent to the function 2^t (i.e., there is an n-dimensional control function of $\mathbb{Z}/2 \wr F_2$ weakly dominated by 2^t , and every such control function weakly dominates 2^t).

Proof Notice that the function $f(t) = 2^t$ is weakly equivalent to the growth function of F_2 and $\dim_{AN}(F_2) = 1$.

5 Assouad–Nagata Dimension of Wreath Products

Suppose that *G* is finitely generated and $H \neq 1$ is finite. If dim_{AN}(*G*) = 0, then *G* is finite and so is $H \wr G$. In such a case dim_{AN}($H \wr G$) = 0 = dim_{AN}(*G*). Therefore it remains to consider the case of infinite groups *G*.

Theorem 5.1 Suppose G is an infinite finitely generated group and H is a finite group. Let K be the kernel of $H \wr G \to G$. If the growth of G is bounded by a linear function, then $\dim_{AN}(K) = 0$ and $\dim_{AN}(H \wr G) = \dim_{AN}(G) = 1$.

Proof Notice that Theorem 4.2 provides a 0-dimensional control function for *K*. However, it may not be bounded by a linear function, so we have to do more precise calculations.

The group *G* is a virtually nilpotent group by Gromov's Theorem (see [10] or [14, Theorem 97]). Let *F* be a nilpotent subgroup of *G* of finite index. Pick elements $a_i, i = 1, ..., k$, of *G* such that $G = \bigcup_{i=1}^k a_i \cdot F$ and pick a natural *n* satisfying $|a_i| \le n$ for all $i \le k$. Every two elements of *F* can be connected in *G* by a 2-path. From each point of the path (other than initial and terminal points) one can move to *F* by a distance at most *n* (by representing that point as $a_i \cdot x$ for some $x \in F$). Therefore we

can create a (2n + 2)-path in *F* joining the original points. That means *F* is generated by its elements of length at most 2n + 1.

Let $\{F_i\}$ be the lower central series of *F* and let d_i be the rank of F_i/F_{i+1} , $i \ge 0$. Since the growth of *F* is also linear, Bass' Theorem (see [1] or [14, Theorem 103]) stating that the growth of *F* is polynomial of degree $d = \sum_{i=0}^{\infty} (i+1) \cdot d_i$ implies that $d_0 = 1$ and all the other ranks d_i are 0. Hence the abelianization of *F* is of the form $\mathbb{Z} \times A$, *A* being a finite group, and the commutator group of *F* is finite. Therefore *F* is virtually \mathbb{Z} , and that means *G* is virtually \mathbb{Z} as well.

Now let *n* be the index of **Z** in *G* and pick elements g_1, \ldots, g_n of *G* such that any element of *G* can be expressed as $g_i \cdot t^k$ for some $i \leq n$ and some *k*, where *t* is the generator of **Z** \subset *G*. Without loss of generality we may assume that the set of generators of *G* chosen to compute the word length l(w) of elements $w \in H \wr G$ is t, g_1, \ldots, g_n . For *H* we choose all of $H \setminus \{1\}$ as the set of generators.

We need the existence of C > 0 such that $\frac{|k|}{C} \le l(t^k) \le |k|$ for all k. It suffices to consider k > 0. Since the number of points in $B(1_G, 4)$ is finite, there is C > 0such that $t^u \in B(1_G, 4)$ implies $|u| \le C$. Now, if $l(t^k) = m$ and $t^k = x_1 \cdots x_m$, where $l(x_i) = 1$, then there are u(i) such that $dist(x_1 \cdots x_i, t^{u(i)}) \le 1$ for all $i \le k$ (we choose u(m) = k obviously). Therefore $dist(t^{u(i)}, t^{u(i+1)}) \le 3$ and $u(i+1) - u(i) \le C$. Now $k = u(m) = (u(m) - u(m-1)) + \cdots + (u(2) - u(1)) + u(1) \le C \cdot m$, implying $l(t^k) = m \ge \frac{k}{C}$.

By Lemma 3.2 any element of *K* of length less than *r* is a product of bulbs indexed by elements of *G* of length less than r > 1. If $l(g_i \cdot t^k) < r$, then $l(t^k) < r + 1 < 2r$ and $|k| \le C \cdot l(t^k) \le 2Cr$. Therefore there are at most $n \cdot 4Cr$ such words and any product of such bulbs is of length at most $n(4Crn + 2 + 2Cr) \le r(4Cn^2 + 2n + 2Cn)$ by Lemma 3.3.

Therefore the group generated by B(1, r) in K is contained in B(1, Lr), where $L = 4Cn^2+2n+2Cn$, and $\dim_{AN}(K) = 0$ by Proposition 2.1. Using the Hurewicz Theorem for Assouad–Nagata dimension from [3] we get $\dim_{AN}(H \wr G) \leq \dim_{AN}(G) = 1$ (one can also use Theorem 4.3). Since $H \wr G$ is infinite, its Assouad–Nagata dimension is positive and $\dim_{AN}(H \wr G) = \dim_{AN}(G) = 1$.

Corollary 5.2 If the growth of G is not bounded by a linear function and $H \neq 1$, then $\dim_{AN}(H \wr G) = \infty$.

Proof Let γ be the growth of *G* in some set of generators. Suppose dim_{*AN*}(*K*) < *n* < ∞ , so it has an (n - 1)-dimensional function of the form $D_K^{n-1}(r) = C \cdot r$ for some C > 0. By Theorem 4.1 one has $\gamma(r)/n \le C \cdot 3nr + 1$. Thus $\gamma(r) \le n \cdot (3nCr + 1)$, and the growth of *G* is bounded by a linear function, a contradiction.

Problem 5.3 Suppose *G* is a locally finite group equipped with a proper left-invariant metric d_G . If dim_{AN}(G, d_G) > 0, is dim_{AN}(G, d_G) infinite?

References

- H. Bass, The degree of polynomial growth of finitely generated nilpotent groups. Proc. London Math. Soc. (3) 25(1972), 603–614. http://dx.doi.org/10.1112/plms/s3-25.4.603
- [2] N. Brodskiy, J. Dydak, J. Higes, and A. Mitra, Assouad-Nagata dimension via Lipschitz extensions. Israel J. Math. 171(2009), 405–423. http://dx.doi.org/10.1007/s11856-009-0056-3

Assouad–Nagata Dimension of Wreath Products of Groups

- [3] N. Brodskiy, J. Dydak, M. Levin, and A. Mitra, A Hurewicz theorem for the Assouad-Nagata dimension. J. Lond. Math. Soc. (2) 77(2008), no. 3, 741–756. http://dx.doi.org/10.1112/jlms/jdn005
- [4] S. Cleary and J. Taback, Dead end words in lamplighter groups and other wreath products. Q. J. Math. 56(2005), no. 2, 165–178. http://dx.doi.org/10.1093/qmath/hah030
- [5] A. N. Dranishnikov, Groups with a polynomial dimension growth. Geom. Dedicata 119(2006), 1–15. http://dx.doi.org/10.1007/s10711-005-9026-z
- [6] J. Dydak and J. Higes, Asymptotic cones and Assouad-Nagata dimension. Proc. Amer. Math. Soc. 136(2008), no. 6, 2225–2233. http://dx.doi.org/10.1090/S0002-9939-08-09149-1
- [7] R. Engelking, *Dimension theory*. North-Holland Mathematical Library, 19, North-Holland Publishing Co., Amsterdam-Oxford-New York; PWN–Polish Scientific Publishers, Warsaw, 1978.
- [8] A. Erschler, On isoperimetric profiles of finitely generated groups. Geom. Dedicata 100(2003), 157–171. http://dx.doi.org/10.1023/A:1025849602376
- [9] S. R. Gal, Asymptotic dimension and uniform embeddings. Groups Geom. Dyn. 2(2008), no. 1, 63–84.
- [10] M. Gromov, Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. No. 53(1981), 53–73.
- [11] _____, Asymptotic invariants for infinite groups. In: Geometric group theory, vol. 2, London Math. Soc. Lecture Note Ser., 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.
- [12] P. de la Harpe, *Topics in geometric group theory*. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000.
- [13] U. Lang and T. Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions. Int. Math. Res. Not. 2005, no. 58, 3625–3655.
- [14] M. Kapovich, *Lectures on geometric group theory*. preprint (as of September 28, 2005). https://www.math.ucdavis.edu/~kapovich/EPR/kapovich_drutu.pdf.
- [15] P. W. Nowak, On exactness and isoperimetric profiles of discrete groups. J. Funct. Anal. 243(2007), no. 1, 323–344. http://dx.doi.org/10.1016/j.jfa.2006.10.011
- [16] J. Smith, On asymptotic dimension of countable abelian groups. Topology Appl. 153(2006), no. 12, 2047–2054. http://dx.doi.org/10.1016/j.topol.2005.07.011

Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA e-mail: brodskiy@math.utk.edu dydak@math.utk.edu

Eidgen Technische Hochschule Zentrum, CH-8092 Zürich, Switzerland e-mail: lang@math.ethz.ch