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Assouad–Nagata Dimension of Wreath
Products of Groups
N. Brodskiy, J. Dydak, and U. Lang

Abstract. Consider the wreath product H o G, where H 6= 1 is finite and G is finitely generated. We
show that the Assouad–Nagata dimension dimAN (H o G) of H o G depends on the growth of G as
follows: if the growth of G is not bounded by a linear function, then dimAN (H o G) = ∞; otherwise
dimAN (H o G) = dimAN (G) ≤ 1.

1 Introduction

Asymptotic dimension was introduced by Gromov in [11] as a large scale invariant
of a metric space. Any finitely generated group can be equipped with a word met-
ric. The idea of Gromov was that asymptotic dimension is an invariant of the finitely
generated group; i.e., it does not depend on the word metric. An additional asymp-
totic invariant of the group of asymptotic dimension n introduced by Gromov is the
asymptotic type of a certain function associated with the given asymptotic dimen-
sion (we call it an n-dimensional control function). The Assouad–Nagata dimension
of a metric space X is the smallest integer n such that X has an n-dimensional control
function that is a dilation.

Spaces of finite asymptotic Assouad–Nagata dimension have some extra proper-
ties that spaces of finite asymptotic dimension do not necessarily have. For example,
if a metric space is of finite asymptotic Assouad–Nagata dimension, then it satisfies
nice Lipschitz extension properties (see [2, 13]). It was proved in [6] that the asymp-
totic Assouad–Nagata dimension bounds the topological dimension of every asymp-
totic cone of a metric space. Also, every metric space of finite asymptotic Assouad–
Nagata dimension has Hilbert space compression one [9].

P. Nowak [15] proved that the Assouad–Nagata dimension of some wreath prod-
ucts H o G is infinite, where H is finite and G is a finitely generated amenable group
whose Folner function grows sufficiently fast and satisfies some other conditions suit-
able for applying Erschler’s result [8]. That result states that the Folner function
F(H o G) of H o G is comparable to F(H)F(G) and the passage from it to Assouad–
Nagata dimension of H o G is fairly complicated as it includes Property A. Thus, the
results of [15] apply only to amenable groups G and do not apply either to lamp-
lighter groups (as the Folner function of Z is linear) or to wreath products with free
non-Abelian groups (as those are not amenable).
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In this paper we show that the Assouad–Nagata dimension of H o G completely
depends on the linearity of the growth of G. If G is finite, then H o G is also finite
and dimAN (H o G) = 0 = dimAN (G). If G is virtually cyclic (i.e., has linear growth),
then dimAN (H o G) = dimAN (G) = 1. If the growth of G is not bounded by a linear
function and H 6= 1, then dimAN (H o G) =∞.

In particular, the lamplighter groups are not finitely presented and are of Assouad–
Nagata dimension 1, which answers positively the following question of [6].

Question 1.1 Is there a finitely generated group of Assouad–Nagata dimension 1
that is not finitely presented?

2 Assouad–Nagata Dimension

Let X be a metric space and n ≥ 0. An n-dimensional control function of X is a
function Dn

X : R+ → R+ ∪ ∞ with the following property. For any r > 0 there is a
cover {X0, . . . ,Xn} of X whose Lebesgue number is at least r (that means every open
r-ball B(x, r) is contained in some Xi) and every r-component of Xi is of diameter at
most Dn

X(r). Two points x and y belong to the same r-component of Xi if there is a
sequence x0 = x, x1, . . . , xk = y in Xi such that dist(x j , x j+1) < r (such a sequence
will be called an r-path).

The asymptotic dimension asdim(X) is the smallest integer such that X has an
n-dimensional control function whose values are finite.

The Assouad–Nagata dimension dimAN (X) of a metric space X is the smallest in-
teger n such that X has an n-dimensional control function that is a dilation (i.e.,
Dn

X(r) = C · r for some C > 0).
The asymptotic Assouad–Nagata dimension asdimAN (X) of a metric space X is the

smallest integer n such that X has an n-dimensional control function that is linear
(i.e., Dn

X(r) = C · r + C for some C > 0).
In the case of metrically discrete spaces X (that means there is ε > 0 such that

every two distinct points have the distance at least ε) asdimAN (X) = dimAN (X) (see
[2]). In particular, in case of finitely generated groups we can talk about Assouad–
Nagata dimension instead of asymptotic Assouad–Nagata dimension.

A countable group G is called locally finite if every finitely generated subgroup of
G is finite. A group G has asymptotic dimension 0 if and only if it is locally finite [16].

Notice that dimAN (X) = 0 if and only if there is C > 0 such that for any r > 0
and for every r-path the distance between its end-points is less than C · r. In the case
of groups one has the following useful criterion of being 0-dimensional.

Proposition 2.1 Let (G, dG) be a group equipped with a proper left-invariant metric
dG (that means bounded sets are finite). If G is locally finite, then the following condi-
tions are equivalent:

(i) dimAN (G, dG) = 0;
(ii) there is a constant c > 0 such that for each r > 0 the subgroup of G generated by

B(1, r) is contained in B(1, c · r).

Proof (i)⇒ (ii). Consider a constant K > 0 such that for each r > 0 all r-compo-
nents of G have diameter less than K · r. Notice that if g ∈ G belongs to r-component
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of 1 and h ∈ B(1, r), then dG(g, gh) = dG(1, h) < r, so gh lies in the r-component
of 1. Therefore the subgroup generated by B(1, r) is contained in B(1,K · r).

(ii)⇒ (i). Let Gr be the subgroup of G generated by B(1, r). Consider two different
left cosets y · Gr and z · Gr of Gr in G. If dG(yg, zh) < r for some g, h ∈ Gr, then
f = h−1z−1 yg ∈ B(1, r) ⊂ Gr, so y = z(h f g−1), a contradiction. That means each
r-component of G is contained in a left coset of Gr and its diameter is less than 2cr,
i.e., dimAN (G, dG) = 0.

Let us generalize r-paths as follows. By an r-cube in a metric space X we mean
an injective function f : {0, 1, . . . , k}n → X with the property that the distance be-
tween f (x) and f (x + ei) is less than r for all x ∈ {0, 1, . . . , k}n such that x + ei ∈
{0, 1, . . . , k}n. Here ei belongs to the standard basis of Rn.

A sufficient condition for dimAN (X) being positive is the existence for every C > 0
of an r-path joining points of distance at least C · r. The purpose of the remainder of
this section is to find a similar sufficient condition for dimAN (X) ≥ n.

Lemma 2.2 Consider the set X = {0, 1, . . . , k}n equipped with the l1-metric. Suppose
X = X1 ∪ · · · ∪ Xn. If the open (n + 1)-ball of every point of X is contained in some Xi ,
then a 2-component of some Xi contains two points whose i-coordinates differ by k.

Proof Let us proceed by contradiction and assume that all 2-components of each Xi

do not contain points whose i-coordinates differ by k. Create the cover Ai , 1 ≤ i ≤ n,
of the solid cube [0, k]n by adding unit cubes to Ai whenever all of its vertices are
contained in Xi . Given i ∈ {1, . . . , n} consider the two faces Li and Ri of [0, k]n

consisting of points whose i-th coordinates are 0 and k, respectively. Let Bi be the
complement of the 1

4 -neighborhood of Ai ∪ Li ∪Ri . Notice that Bi separates between
Li and Ri . Indeed, if Li∪Ri belongs to the same component of the 1

4 -neighborhood of
Ai∪Li∪Ri , then one can find a 1

2 -path in Ai between points in Xi whose i-coordinates
differ by k. Picking points in Xi in the same unit cubes as vertices of the path, one
gets a 2-path in Xi between points in Xi whose i-th coordinates differ by k.

Now we get a contradiction, as
⋂n

i=1 Bi = ∅ in violation of the well-known result
in dimension theory about separation (see [7, Theorem 1.8.1]).

Corollary 2.3 Suppose X is a metric space with an (n− 1)-dimensional control func-
tion Dn−1

X : R+ → R+ ∪∞. For any r-cube

f : {0, 1, . . . , k}n → X

there exist two points a and b in {0, 1, . . . , k}n whose i-th coordinates differ by k for
some i and dist( f (a), f (b)) ≤ Dn−1

X (n · r).

Proof Consider a cover X = X1 ∪ · · · ∪ Xn of X of Lebesgue number at least n · r
such that (n · r)-components of each Xi are of diameter at most Dn−1

X (n · r). The cover
{0, 1, . . . , k}n = f−1(X1)∪· · ·∪ f−1(Xn) has the property that the open (n + 1)-ball
of every point is contained in some f−1(Xi), so by Lemma 2.2 a 2-component (in
the l1-metric) of some f−1(Xi) contains two points a and b whose i-coordinates
differ by k. Therefore f (a) and f (b) belong to the same r-component of Xi and
dist( f (a), f (b)) ≤ Dn−1

X (n · r).
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We need an upper bound on the size of r-cubes f in terms of dimension control
functions and the Lipschitz constant of f−1. One should view the next result as a
discrete analog of the fact that one cannot embed In into an (n − 1)-dimensional
topological space.

Corollary 2.4 Suppose X is a metric space with an (n − 1)-dimensional control
function Dn−1

X : R+ → R+ ∪ ∞. If f : {0, 1, . . . , k}n → X is an r-cube, then k ≤
Dn−1

X (n · r) · Lip( f−1).

Proof By Corollary 2.3 there is an index i ≤ n and points a and b whose i-coordina-
tes differ by k such that dist( f (a), f (b)) ≤ Dn−1

X (n · r). Since

k ≤ dist(a, b) ≤ Lip( f−1) · dist
(

f (a), f (b)
)
≤ Dn−1

X (n · r) · Lip( f−1),

we are done.

3 Wreath Products

Let A and B be groups. Define the action of B on the direct product AB (functions
have finite support) by

b f (γ) := f (b−1γ),

for any f ∈ AB and γ ∈ B. The wreath product of A and B, denoted A o B, is the
semidirect product AB o B of groups AB and B. That means it consists of ordered
pairs ( f , b) ∈ AB × B and ( f1, b1) · ( f2, b2) = ( f1(b1 f2), b1b2).

We will identify (1, b) with b ∈ B and ( fa, 1) with a ∈ A, where fa is the function
sending 1 ∈ B to a and B \ {1} to 1. This way both A and B are subgroups of A o B,
which is generated by B and elements of the form b · a · b−1. That way the union of
generating sets of A and B generates A o B.

The lamplighter group Ln is the wreath product Z/n o Z of Z/n and Z.
Consider the wreath product H o G, where H is finite and G is finitely generated.

Let K be the kernel of H o G → G. The group K is locally finite (the direct product
of |G| copies of H). In case H is finite we choose as a set of generators of H o G the
union of H \{1} and a set of generators of G. A length of an element of a finitely gen-
erated group (with a fixed set of generators) is the smallest number of the generating
elements needed to make the given element of the group.

If g ∈ G and a ∈ H \ {1}, then g · a · g−1 ∈ K will be called the a-bulb indexed by
g or the (g, a)-bulb. A bulb is a (g, a)-bulb for some a ∈ H and some g ∈ G.

Lemma 3.1 Suppose n > 1. Any product of bulbs indexed by mutually different
elements gi ∈ G, i ∈ {1, . . . , n}, has length at least n.

Proof Consider x = (g1a1g−1
1 ) · · · · · (gnang−1

n ) ∈ K. If its length is smaller than n,
then x = x1 · b1 · x2 · b2 · · · · · xk · bk · xk+1, where k < n and bi ∈ H, xi ∈ G for all i. We
can rewrite x as (y1 · b1 · y−1

1 ) · (y2 · b2 · y−1
2 ) · · · · · (yk · bk · y−1

k ) · y, where y1 = x1.
Since x ∈ K, y = 1. Now we arrive at a contradiction by looking at projections of K
onto its summands.
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Lemma 3.2 Suppose r > 1. Any element of K of length less than r is a product of bulbs
indexed by elements of G of length less than r.

Proof Consider a minimal representation x1a1x2a2 · · · xkakz of an element of K of
length less than r, where xi ∈ G and a j ∈ H \ {1}. One can write this element as

(x1a1x−1
1 )(x1x2a2x−1

2 x−1
1 ) · · · (x1 · · · xkakx−1

k · · · x
−1
1 ).

Therefore the bulbs involved are indexed by elements of G of length less than r.

In case of the lamplighter group L2 there is a precise calculation of length of its
elements in [4]. We need a generalization of those calculations.

Lemma 3.3 Let H be finite and let G be virtually cyclic. Suppose the subgroup Z
generated by t ∈ G is of finite index n and there are generators {t, g1, . . . , gn} of G such
that every element g of G can be expressed as gi · te(g) for some i.

(i) Every element of K can be expressed as a product of (hi , ai)-bulbs, i = 1, . . . , k,
such that hi 6= h j for i 6= j.

(ii) The length of such product is at most n(k + 2 + 4 max{|e(hi)|}).

Proof Observe that the product of the (g, a)-bulb and the (g, b)-bulb is the (g, a · b)-
bulb, so every product of bulbs can be represented as a product of (hi , ai)-bulbs,
i = 1, . . . , k, such that hi 6= h j for i 6= j. We will divide those bulbs into classes
determined by hi · t−e(hi ). Since there are at most n classes, it suffices to show that if
hi · t−e(hi ) = g for all i, then the length of the product x of (hi , ai)-bulbs is at most
k + 2 + 4 max{|e(hi)|}. We may order hi so that the function i → e(hi) is strictly
increasing. Now,

g−1 · x · g =
k∏

i=1
te(hi ) · ai · t−e(hi ) = te(h1) · a1 · t−e(h1)+e(h2) · a2 · · · · · ak · t−e(hk),

and its length is at most k + |e(h1)| + e(hk) − e(h1) + |e(hk)| ≤ k + 4 max{|e(hi)|}.
Therefore the length of x is at most k + 2 + 4 max{|e(hi)|}.

4 Dimension Control Functions of Wreath Products

Recall that the growth γ of G is the function counting the number of points in the
open ball B(1, r) of G for all r > 0. Notice that γ being bounded by a linear function
is independent of the choice of generators of G.

The next result relates the growth function of G to dimension control functions of
the kernel of the projection H o G→ G.

Theorem 4.1 Suppose G and H are finitely generated and K is the kernel of the projec-
tion H oG→ G equipped with the metric induced from H oG. If γ is the growth function
of G and Dn−1

K is an (n− 1)-dimensional control function of K, then the integer part of
γ(r)

n is at most Dn−1
K (3nr).
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Proof Given k ≥ 1 we will construct a 3r-cube f : {0, k}n → K similarly to the way
paths in the Cayley graph of K are constructed. There it suffices to label the beginning
vertex and all the edges, since that induces labeling of all the vertices. In the case of
our 3r-cube we label the origin by 1 ∈ K and each edge from x to x + ei , ei being
an element of the standard basis of Rn, will be labeled by x( j, i), where j is the i-th
coordinate of x. It remains to choose x( j, i), 1 ≤ i ≤ n and 0 ≤ j ≤ k − 1. Given
r > 0, consider mutually different elements g( j, i), 1 ≤ i ≤ n and 0 ≤ j ≤ k − 1 of
G whose length is smaller than r, where k is the integer part of γ(r)

n . Pick u ∈ H \ {1}
and put x( j, i) = g( j, i) · u · g( j, i)−1. By Lemma 3.1 one has Lip( f−1) ≤ 1, so
k ≤ Dn−1

K (3nr) by Corollary 2.4.

If H is finite, then the kernel K of the projection H o G→ G is locally finite and it
has a 0-dimensional control function D0

K attaining finite values (K is equipped with
the metric induced from H o G). Let us relate D0

K to the growth of G.

Theorem 4.2 Suppose G is finitely generated and H 6= {1} is finite. Let K be the
kernel of the projection H o G → G equipped with the metric induced from H o G. If
γ is the growth function of G, then D0

K (r) := (2r + 1)γ(r) is a 0-dimensional control
function of K.

Proof It suffices to show that r-component of 1 in K is of diameter at most
(2r + 1)γ(r), as any r-component of K is a shift of the r-component containing 1.
By Lemma 3.2 any element of B(1, r) in K is a product of bulbs indexed by elements
of G of length less than r. Therefore any product of elements in B(1, r) is a product of
bulbs indexed by elements of G of length less than r, and such product can be reduced
to a product of at most γ(r) such bulbs. Each of them is of length at most 2r + 1, so
the length of the product is at most (2r + 1) · γ(r).

Theorem 4.3 (cf. [5, Proposition 4.2]) Suppose G is finitely generated and π : G→ I
is a retraction onto its subgroup I with kernel K. Assume that K is equipped with the
metric induced from a word metric on G such that generators of I are included in the
set of generators of G. If Dn

I is an n-dimensional control function of I and D0
K is a

0-dimensional control function of K, then

Dn
I (r) + D0

K

(
r + 2Dn

I (r)
)

is an n-dimensional control function of G.

Proof Given r > 0 express I as I0∪ · · ·∪ In so that r-components of Ii have diameter
at most Dn

I (r). Consider Gi = π−1(Ii). If g1 · 1, . . . , g1 · xm is an r-path in Gi , then
h1 = π(g1) ·1, . . . , hm = π(g1) · ym form an r-path in Ii (here y j = π(x j)), so l(y j) ≤
Dn

I (r) for all j. Consider z j = x j · y−1
j ∈ K. Notice that dist(z j , z j+1) < r + 2Dn

I (r).

Therefore, dist(1, zm) ≤ D0
K (r + 2Dn

I (r)), resulting in l(xm) ≤ D0
K (r + 2Dn

I (r)) + Dn
I (r)

and dist(g1, g1 · xm) ≤ Dn
I (r) + D0

K (r + 2Dn
I (r)), which completes the proof.

Definition 4.4 (cf. [12, Section VI.B]) Let f and g be functions from R+ to R+. We
say that f weakly dominates g if there exist constants λ ≥ 1 and C ≥ 0 such that
g(t) ≤ λ f (λt + C) + C for all t ∈ R+.

Two functions are weakly equivalent if each weakly dominates the other.
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Notice that the functions 2t and t2t are weakly equivalent.

Theorem 4.5 Suppose G is finitely generated infinite group and H 6= {1} is finite. Let
γ be the growth function of G and Dn

G be an n-dimensional control function of G. Then
for any k ≥ n there is a k-dimensional control function of H oG that is weakly dominated
by (Dn

G(t) + t) · γ(Dn
G(t) + t). Also, for any k ≥ n every k-dimensional control function

of H o G weakly dominates the function γ.

Proof Notice that γ dominates a linear function and combine Theorems 4.2 and 4.3.
To get the estimate from below, notice that a k-dimensional control function of H oG
works as a k-dimensional control function of the kernel K and apply Theorem 4.1.

Our next result gives a better solution to Question 2 in [15].

Corollary 4.6 Suppose G is a finitely generated group of exponential growth and
H 6= {1} is finite. If dimAN (G) ≤ n, then for any k ≥ n the k-dimensional control
function of H o G is weakly equivalent to the function 2t (i.e., there is a k-dimensional
control function of H oG weakly dominated by 2t , and every such control function weakly
dominates 2t ).

Corollary 4.7 Let F2 be the free non-Abelian group of two generators. For every n ≥ 1
the n-dimensional control function of Z/2oF2 is weakly equivalent to the function 2t (i.e.,
there is an n-dimensional control function of Z/2 oF2 weakly dominated by 2t , and every
such control function weakly dominates 2t ).

Proof Notice that the function f (t) = 2t is weakly equivalent to the growth function
of F2 and dimAN (F2) = 1.

5 Assouad–Nagata Dimension of Wreath Products

Suppose that G is finitely generated and H 6= 1 is finite. If dimAN (G) = 0, then G is
finite and so is H o G. In such a case dimAN (H o G) = 0 = dimAN (G). Therefore it
remains to consider the case of infinite groups G.

Theorem 5.1 Suppose G is an infinite finitely generated group and H is a finite group.
Let K be the kernel of H o G → G. If the growth of G is bounded by a linear function,
then dimAN (K) = 0 and dimAN (H o G) = dimAN (G) = 1.

Proof Notice that Theorem 4.2 provides a 0-dimensional control function for K.
However, it may not be bounded by a linear function, so we have to do more precise
calculations.

The group G is a virtually nilpotent group by Gromov’s Theorem (see [10] or
[14, Theorem 97]). Let F be a nilpotent subgroup of G of finite index. Pick elements

ai , i = 1, . . . , k, of G such that G =
⋃k

i=1 ai ·F and pick a natural n satisfying |ai | ≤ n
for all i ≤ k. Every two elements of F can be connected in G by a 2-path. From each
point of the path (other than initial and terminal points) one can move to F by a
distance at most n (by representing that point as ai · x for some x ∈ F). Therefore we
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can create a (2n + 2)-path in F joining the original points. That means F is generated
by its elements of length at most 2n + 1.

Let {Fi} be the lower central series of F and let di be the rank of Fi/Fi+1, i ≥ 0.
Since the growth of F is also linear, Bass’ Theorem (see [1] or [14, Theorem 103])
stating that the growth of F is polynomial of degree d =

∑∞
i=0(i + 1) · di implies that

d0 = 1 and all the other ranks di are 0. Hence the abelianization of F is of the form
Z × A, A being a finite group, and the commutator group of F is finite. Therefore F
is virtually Z, and that means G is virtually Z as well.

Now let n be the index of Z in G and pick elements g1, . . . , gn of G such that
any element of G can be expressed as gi · tk for some i ≤ n and some k, where t is
the generator of Z ⊂ G. Without loss of generality we may assume that the set of
generators of G chosen to compute the word length l(w) of elements w ∈ H o G is
t, g1, . . . , gn. For H we choose all of H \ {1} as the set of generators.

We need the existence of C > 0 such that |k|C ≤ l(tk) ≤ |k| for all k. It suffices
to consider k > 0. Since the number of points in B(1G, 4) is finite, there is C > 0
such that tu ∈ B(1G, 4) implies |u| ≤ C . Now, if l(tk) = m and tk = x1 · · · xm, where
l(xi) = 1, then there are u(i) such that dist(x1 · · · xi , tu(i)) ≤ 1 for all i ≤ k (we choose
u(m) = k obviously). Therefore dist(tu(i), tu(i+1)) ≤ 3 and u(i + 1)− u(i) ≤ C . Now
k = u(m) = (u(m) − u(m − 1)) + · · · + (u(2) − u(1)) + u(1) ≤ C · m, implying
l(tk) = m ≥ k

C .
By Lemma 3.2 any element of K of length less than r is a product of bulbs indexed

by elements of G of length less than r > 1. If l(gi · tk) < r, then l(tk) < r + 1 < 2r
and |k| ≤ C · l(tk) ≤ 2Cr. Therefore there are at most n · 4Cr such words and any
product of such bulbs is of length at most n(4Crn + 2 + 2Cr) ≤ r(4Cn2 + 2n + 2Cn)
by Lemma 3.3.

Therefore the group generated by B(1, r) in K is contained in B(1, Lr), where L =
4Cn2+2n+2Cn, and dimAN (K) = 0 by Proposition 2.1. Using the Hurewicz Theorem
for Assouad–Nagata dimension from [3] we get dimAN (H oG) ≤ dimAN (G) = 1 (one
can also use Theorem 4.3). Since H o G is infinite, its Assouad–Nagata dimension is
positive and dimAN (H o G) = dimAN (G) = 1.

Corollary 5.2 If the growth of G is not bounded by a linear function and H 6= 1, then
dimAN (H o G) =∞.

Proof Let γ be the growth of G in some set of generators. Suppose dimAN (K) < n <
∞, so it has an (n − 1)-dimensional function of the form Dn−1

K (r) = C · r for some
C > 0. By Theorem 4.1 one has γ(r)/n ≤ C · 3nr + 1. Thus γ(r) ≤ n · (3nCr + 1),
and the growth of G is bounded by a linear function, a contradiction.

Problem 5.3 Suppose G is a locally finite group equipped with a proper left-inva-
riant metric dG. If dimAN (G, dG) > 0, is dimAN (G, dG) infinite?
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