# Assouad-Nagata Dimension of Wreath Products of Groups 

N. Brodskiy, J. Dydak, and U. Lang

Abstract. Consider the wreath product $H \imath G$, where $H \neq 1$ is finite and $G$ is finitely generated. We show that the Assouad-Nagata dimension $\operatorname{dim}_{A N}(H / G)$ of $H$ 乙 $G$ depends on the growth of $G$ as follows: if the growth of $G$ is not bounded by a linear function, then $\operatorname{dim}_{A N}(H / G)=\infty$; otherwise $\operatorname{dim}_{A N}(H \backslash G)=\operatorname{dim}_{A N}(G) \leq 1$.

## 1 Introduction

Asymptotic dimension was introduced by Gromov in [11] as a large scale invariant of a metric space. Any finitely generated group can be equipped with a word metric. The idea of Gromov was that asymptotic dimension is an invariant of the finitely generated group; i.e., it does not depend on the word metric. An additional asymptotic invariant of the group of asymptotic dimension $n$ introduced by Gromov is the asymptotic type of a certain function associated with the given asymptotic dimension (we call it an $n$-dimensional control function). The Assouad-Nagata dimension of a metric space $X$ is the smallest integer $n$ such that $X$ has an $n$-dimensional control function that is a dilation.

Spaces of finite asymptotic Assouad-Nagata dimension have some extra properties that spaces of finite asymptotic dimension do not necessarily have. For example, if a metric space is of finite asymptotic Assouad-Nagata dimension, then it satisfies nice Lipschitz extension properties (see [2,13]). It was proved in [6] that the asymptotic Assouad-Nagata dimension bounds the topological dimension of every asymptotic cone of a metric space. Also, every metric space of finite asymptotic AssouadNagata dimension has Hilbert space compression one [9].
P. Nowak [15] proved that the Assouad-Nagata dimension of some wreath products $H$ 〕 $G$ is infinite, where $H$ is finite and $G$ is a finitely generated amenable group whose Folner function grows sufficiently fast and satisfies some other conditions suitable for applying Erschler's result [8]. That result states that the Folner function $F(H \succ G)$ of $H \succ G$ is comparable to $F(H)^{F(G)}$ and the passage from it to AssouadNagata dimension of $H_{2} G$ is fairly complicated as it includes Property A. Thus, the results of [15] apply only to amenable groups $G$ and do not apply either to lamplighter groups (as the Folner function of $\mathbf{Z}$ is linear) or to wreath products with free non-Abelian groups (as those are not amenable).

[^0]In this paper we show that the Assouad-Nagata dimension of $H$ て $G$ completely depends on the linearity of the growth of $G$. If $G$ is finite, then $H$ < $G$ is also finite and $\operatorname{dim}_{A N}(H \backslash G)=0=\operatorname{dim}_{A N}(G)$. If $G$ is virtually cyclic (i.e., has linear growth), then $\operatorname{dim}_{A N}(H / G)=\operatorname{dim}_{A N}(G)=1$. If the growth of $G$ is not bounded by a linear function and $H \neq 1$, then $\operatorname{dim}_{A N}(H \succ G)=\infty$.

In particular, the lamplighter groups are not finitely presented and are of AssouadNagata dimension 1, which answers positively the following question of [6].

Question 1.1 Is there a finitely generated group of Assouad-Nagata dimension 1 that is not finitely presented?

## 2 Assouad-Nagata Dimension

Let $X$ be a metric space and $n \geq 0$. An $n$-dimensional control function of $X$ is a function $D_{X}^{n}: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+} \cup \infty$ with the following property. For any $r>0$ there is a cover $\left\{X_{0}, \ldots, X_{n}\right\}$ of $X$ whose Lebesgue number is at least $r$ (that means every open $r$-ball $B(x, r)$ is contained in some $X_{i}$ ) and every $r$-component of $X_{i}$ is of diameter at most $D_{X}^{n}(r)$. Two points $x$ and $y$ belong to the same $r$-component of $X_{i}$ if there is a sequence $x_{0}=x, x_{1}, \ldots, x_{k}=y$ in $X_{i}$ such that $\operatorname{dist}\left(x_{j}, x_{j+1}\right)<r$ (such a sequence will be called an $r$-path).

The asymptotic dimension $\operatorname{asdim}(X)$ is the smallest integer such that $X$ has an $n$-dimensional control function whose values are finite.

The Assouad-Nagata dimension $\operatorname{dim}_{\text {AN }}(X)$ of a metric space $X$ is the smallest integer $n$ such that $X$ has an $n$-dimensional control function that is a dilation (i.e., $D_{X}^{n}(r)=C \cdot r$ for some $\left.C>0\right)$.

The asymptotic Assouad-Nagata dimension $\operatorname{asdim}_{A N}(X)$ of a metric space $X$ is the smallest integer $n$ such that $X$ has an $n$-dimensional control function that is linear (i.e., $D_{X}^{n}(r)=C \cdot r+C$ for some $C>0$ ).

In the case of metrically discrete spaces $X$ (that means there is $\epsilon>0$ such that every two distinct points have the distance at least $\epsilon$ ) $\operatorname{asdim}_{A N}(X)=\operatorname{dim}_{A N}(X)$ (see [2]). In particular, in case of finitely generated groups we can talk about AssouadNagata dimension instead of asymptotic Assouad-Nagata dimension.

A countable group $G$ is called locally finite if every finitely generated subgroup of $G$ is finite. A group $G$ has asymptotic dimension 0 if and only if it is locally finite [16].

Notice that $\operatorname{dim}_{A N}(X)=0$ if and only if there is $C>0$ such that for any $r>0$ and for every $r$-path the distance between its end-points is less than $C \cdot r$. In the case of groups one has the following useful criterion of being 0 -dimensional.
Proposition 2.1 Let $\left(G, d_{G}\right)$ be a group equipped with a proper left-invariant metric $d_{G}$ (that means bounded sets are finite). If $G$ is locally finite, then the following conditions are equivalent:
(i) $\operatorname{dim}_{A N}\left(G, d_{G}\right)=0$;
(ii) there is a constant $c>0$ such that for each $r>0$ the subgroup of $G$ generated by $B(1, r)$ is contained in $B(1, c \cdot r)$.

Proof (i) $\Rightarrow$ (ii). Consider a constant $K>0$ such that for each $r>0$ all $r$-components of $G$ have diameter less than $K \cdot r$. Notice that if $g \in G$ belongs to $r$-component
of 1 and $h \in B(1, r)$, then $d_{G}(g, g h)=d_{G}(1, h)<r$, so $g h$ lies in the $r$-component of 1 . Therefore the subgroup generated by $B(1, r)$ is contained in $B(1, K \cdot r)$.
(ii) $\Rightarrow$ (i). Let $G_{r}$ be the subgroup of $G$ generated by $B(1, r)$. Consider two different left cosets $y \cdot G_{r}$ and $z \cdot G_{r}$ of $G_{r}$ in $G$. If $d_{G}(y g, z h)<r$ for some $g, h \in G_{r}$, then $f=h^{-1} z^{-1} y g \in B(1, r) \subset G_{r}$, so $y=z\left(h f g^{-1}\right)$, a contradiction. That means each $r$-component of $G$ is contained in a left coset of $G_{r}$ and its diameter is less than $2 c r$, i.e., $\operatorname{dim}_{A N}\left(G, d_{G}\right)=0$.

Let us generalize $r$-paths as follows. By an $r$-cube in a metric space $X$ we mean an injective function $f:\{0,1, \ldots, k\}^{n} \rightarrow X$ with the property that the distance between $f(x)$ and $f\left(x+e_{i}\right)$ is less than $r$ for all $x \in\{0,1, \ldots, k\}^{n}$ such that $x+e_{i} \in$ $\{0,1, \ldots, k\}^{n}$. Here $e_{i}$ belongs to the standard basis of $\mathbf{R}^{n}$.

A sufficient condition for $\operatorname{dim}_{A N}(X)$ being positive is the existence for every $C>0$ of an $r$-path joining points of distance at least $C \cdot r$. The purpose of the remainder of this section is to find a similar sufficient condition for $\operatorname{dim}_{A N}(X) \geq n$.

Lemma 2.2 Consider the set $X=\{0,1, \ldots, k\}^{n}$ equipped with the $l_{1}$-metric. Suppose $X=X_{1} \cup \cdots \cup X_{n}$. If the open $(n+1)$-ball of every point of $X$ is contained in some $X_{i}$, then a 2-component of some $X_{i}$ contains two points whose $i$-coordinates differ by $k$.

Proof Let us proceed by contradiction and assume that all 2-components of each $X_{i}$ do not contain points whose $i$-coordinates differ by $k$. Create the cover $A_{i}, 1 \leq i \leq n$, of the solid cube $[0, k]^{n}$ by adding unit cubes to $A_{i}$ whenever all of its vertices are contained in $X_{i}$. Given $i \in\{1, \ldots, n\}$ consider the two faces $L_{i}$ and $R_{i}$ of $[0, k]^{n}$ consisting of points whose $i$-th coordinates are 0 and $k$, respectively. Let $B_{i}$ be the complement of the $\frac{1}{4}$-neighborhood of $A_{i} \cup L_{i} \cup R_{i}$. Notice that $B_{i}$ separates between $L_{i}$ and $R_{i}$. Indeed, if $L_{i} \cup R_{i}$ belongs to the same component of the $\frac{1}{4}$-neighborhood of $A_{i} \cup L_{i} \cup R_{i}$, then one can find a $\frac{1}{2}$-path in $A_{i}$ between points in $X_{i}$ whose $i$-coordinates differ by $k$. Picking points in $X_{i}$ in the same unit cubes as vertices of the path, one gets a 2-path in $X_{i}$ between points in $X_{i}$ whose $i$-th coordinates differ by $k$.

Now we get a contradiction, as $\bigcap_{i=1}^{n} B_{i}=\varnothing$ in violation of the well-known result in dimension theory about separation (see [7, Theorem 1.8.1]).

Corollary 2.3 Suppose $X$ is a metric space with an $(n-1)$-dimensional control function $D_{X}^{n-1}: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+} \cup \infty$. For any $r$-cube

$$
f:\{0,1, \ldots, k\}^{n} \rightarrow X
$$

there exist two points $a$ and $b$ in $\{0,1, \ldots, k\}^{n}$ whose $i$-th coordinates differ by $k$ for some $i$ and $\operatorname{dist}(f(a), f(b)) \leq D_{X}^{n-1}(n \cdot r)$.

Proof Consider a cover $X=X_{1} \cup \cdots \cup X_{n}$ of $X$ of Lebesgue number at least $n \cdot r$ such that $(n \cdot r)$-components of each $X_{i}$ are of diameter at most $D_{X}^{n-1}(n \cdot r)$. The cover $\{0,1, \ldots, k\}^{n}=f^{-1}\left(X_{1}\right) \cup \cdots \cup f^{-1}\left(X_{n}\right)$ has the property that the open $(n+1)$-ball of every point is contained in some $f^{-1}\left(X_{i}\right)$, so by Lemma 2.2 a 2 -component (in the $l_{1}$-metric) of some $f^{-1}\left(X_{i}\right)$ contains two points $a$ and $b$ whose $i$-coordinates differ by $k$. Therefore $f(a)$ and $f(b)$ belong to the same $r$-component of $X_{i}$ and $\operatorname{dist}(f(a), f(b)) \leq D_{X}^{n-1}(n \cdot r)$.

We need an upper bound on the size of $r$-cubes $f$ in terms of dimension control functions and the Lipschitz constant of $f^{-1}$. One should view the next result as a discrete analog of the fact that one cannot embed $I^{n}$ into an $(n-1)$-dimensional topological space.

Corollary 2.4 Suppose $X$ is a metric space with an ( $n-1$ )-dimensional control function $D_{X}^{n-1}: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+} \cup \infty$. If $f:\{0,1, \ldots, k\}^{n} \rightarrow X$ is an $r$-cube, then $k \leq$ $D_{X}^{n-1}(n \cdot r) \cdot \operatorname{Lip}\left(f^{-1}\right)$.

Proof By Corollary 2.3 there is an index $i \leq n$ and points $a$ and $b$ whose $i$-coordinates differ by $k$ such that $\operatorname{dist}(f(a), f(b)) \leq D_{X}^{n-1}(n \cdot r)$. Since

$$
k \leq \operatorname{dist}(a, b) \leq \operatorname{Lip}\left(f^{-1}\right) \cdot \operatorname{dist}(f(a), f(b)) \leq D_{X}^{n-1}(n \cdot r) \cdot \operatorname{Lip}\left(f^{-1}\right)
$$

we are done.

## 3 Wreath Products

Let $A$ and $B$ be groups. Define the action of $B$ on the direct product $A^{B}$ (functions have finite support) by

$$
b f(\gamma):=f\left(b^{-1} \gamma\right)
$$

for any $f \in A^{B}$ and $\gamma \in B$. The wreath product of $A$ and $B$, denoted $A \backslash B$, is the semidirect product $A^{B} \rtimes B$ of groups $A^{B}$ and $B$. That means it consists of ordered pairs $(f, b) \in A^{B} \times B$ and $\left(f_{1}, b_{1}\right) \cdot\left(f_{2}, b_{2}\right)=\left(f_{1}\left(b_{1} f_{2}\right), b_{1} b_{2}\right)$.

We will identify $(1, b)$ with $b \in B$ and $\left(f_{a}, 1\right)$ with $a \in A$, where $f_{a}$ is the function sending $1 \in B$ to $a$ and $B \backslash\{1\}$ to 1 . This way both $A$ and $B$ are subgroups of $A \backslash B$, which is generated by $B$ and elements of the form $b \cdot a \cdot b^{-1}$. That way the union of generating sets of $A$ and $B$ generates $A$ 亿 .

The lamplighter group $L_{n}$ is the wreath product $\mathbf{Z} / n \imath \mathbf{Z}$ of $\mathbf{Z} / n$ and $\mathbf{Z}$.
Consider the wreath product $H \succ G$, where $H$ is finite and $G$ is finitely generated. Let $K$ be the kernel of $H \succ G \rightarrow G$. The group $K$ is locally finite (the direct product of $|G|$ copies of $H)$. In case $H$ is finite we choose as a set of generators of $H \succ G$ the union of $H \backslash\{1\}$ and a set of generators of $G$. A length of an element of a finitely generated group (with a fixed set of generators) is the smallest number of the generating elements needed to make the given element of the group.

If $g \in G$ and $a \in H \backslash\{1\}$, then $g \cdot a \cdot g^{-1} \in K$ will be called the $a$-bulb indexed by $g$ or the $(g, a)$-bulb. A bulb is a $(g, a)$-bulb for some $a \in H$ and some $g \in G$.

Lemma 3.1 Suppose $n>1$. Any product of bulbs indexed by mutually different elements $g_{i} \in G, i \in\{1, \ldots, n\}$, has length at least $n$.

Proof Consider $x=\left(g_{1} a_{1} g_{1}^{-1}\right) \cdots \cdots\left(g_{n} a_{n} g_{n}^{-1}\right) \in K$. If its length is smaller than $n$, then $x=x_{1} \cdot b_{1} \cdot x_{2} \cdot b_{2} \cdots \cdots x_{k} \cdot b_{k} \cdot x_{k+1}$, where $k<n$ and $b_{i} \in H, x_{i} \in G$ for all $i$. We can rewrite $x$ as $\left(y_{1} \cdot b_{1} \cdot y_{1}^{-1}\right) \cdot\left(y_{2} \cdot b_{2} \cdot y_{2}^{-1}\right) \cdots \cdots\left(y_{k} \cdot b_{k} \cdot y_{k}^{-1}\right) \cdot y$, where $y_{1}=x_{1}$. Since $x \in K, y=1$. Now we arrive at a contradiction by looking at projections of $K$ onto its summands.

Lemma 3.2 Suppose $r>1$. Any element of $K$ of length less than $r$ is a product of bulbs indexed by elements of $G$ of length less than $r$.

Proof Consider a minimal representation $x_{1} a_{1} x_{2} a_{2} \cdots x_{k} a_{k} z$ of an element of $K$ of length less than $r$, where $x_{i} \in G$ and $a_{j} \in H \backslash\{1\}$. One can write this element as

$$
\left(x_{1} a_{1} x_{1}^{-1}\right)\left(x_{1} x_{2} a_{2} x_{2}^{-1} x_{1}^{-1}\right) \cdots\left(x_{1} \cdots x_{k} a_{k} x_{k}^{-1} \cdots x_{1}^{-1}\right)
$$

Therefore the bulbs involved are indexed by elements of $G$ of length less than $r$.
In case of the lamplighter group $L_{2}$ there is a precise calculation of length of its elements in [4]. We need a generalization of those calculations.

Lemma 3.3 Let $H$ be finite and let $G$ be virtually cyclic. Suppose the subgroup Z generated by $t \in G$ is of finite index $n$ and there are generators $\left\{t, g_{1}, \ldots, g_{n}\right\}$ of $G$ such that every element $g$ of $G$ can be expressed as $g_{i} \cdot t^{e(g)}$ for some $i$.
(i) Every element of $K$ can be expressed as a product of $\left(h_{i}, a_{i}\right)$-bulbs, $i=1, \ldots, k$, such that $h_{i} \neq h_{j}$ for $i \neq j$.
(ii) The length of such product is at most $n\left(k+2+4 \max \left\{\left|e\left(h_{i}\right)\right|\right\}\right)$.

Proof Observe that the product of the $(g, a)$-bulb and the $(g, b)$-bulb is the $(g, a \cdot b)$ bulb, so every product of bulbs can be represented as a product of $\left(h_{i}, a_{i}\right)$-bulbs, $i=1, \ldots, k$, such that $h_{i} \neq h_{j}$ for $i \neq j$. We will divide those bulbs into classes determined by $h_{i} \cdot t^{-e\left(h_{i}\right)}$. Since there are at most $n$ classes, it suffices to show that if $h_{i} \cdot t^{-e\left(h_{i}\right)}=g$ for all $i$, then the length of the product $x$ of $\left(h_{i}, a_{i}\right)$-bulbs is at most $k+2+4 \max \left\{\left|e\left(h_{i}\right)\right|\right\}$. We may order $h_{i}$ so that the function $i \rightarrow e\left(h_{i}\right)$ is strictly increasing. Now,

$$
g^{-1} \cdot x \cdot g=\prod_{i=1}^{k} t^{e\left(h_{i}\right)} \cdot a_{i} \cdot t^{-e\left(h_{i}\right)}=t^{e\left(h_{1}\right)} \cdot a_{1} \cdot t^{-e\left(h_{1}\right)+e\left(h_{2}\right)} \cdot a_{2} \cdots a_{k} \cdot t^{-e\left(h_{k}\right)}
$$

and its length is at most $k+\left|e\left(h_{1}\right)\right|+e\left(h_{k}\right)-e\left(h_{1}\right)+\left|e\left(h_{k}\right)\right| \leq k+4 \max \left\{\left|e\left(h_{i}\right)\right|\right\}$. Therefore the length of $x$ is at most $k+2+4 \max \left\{\left|e\left(h_{i}\right)\right|\right\}$.

## 4 Dimension Control Functions of Wreath Products

Recall that the growth $\gamma$ of $G$ is the function counting the number of points in the open ball $B(1, r)$ of $G$ for all $r>0$. Notice that $\gamma$ being bounded by a linear function is independent of the choice of generators of $G$.

The next result relates the growth function of $G$ to dimension control functions of the kernel of the projection $H$ 乙 $\rightarrow G$.

Theorem 4.1 Suppose $G$ and $H$ are finitely generated and $K$ is the kernel of the projection $H \succ G \rightarrow$ Gequipped with the metric induced from $H \succ G$. If $\gamma$ is the growth function of $G$ and $D_{K}^{n-1}$ is an $(n-1)$-dimensional control function of $K$, then the integer part of $\frac{\gamma(r)}{n}$ is at most $D_{K}^{n-1}(3 n r)$.

Proof Given $k \geq 1$ we will construct a $3 r$-cube $f:\{0, k\}^{n} \rightarrow K$ similarly to the way paths in the Cayley graph of $K$ are constructed. There it suffices to label the beginning vertex and all the edges, since that induces labeling of all the vertices. In the case of our $3 r$-cube we label the origin by $1 \in K$ and each edge from $x$ to $x+e_{i}, e_{i}$ being an element of the standard basis of $\mathbf{R}^{n}$, will be labeled by $x(j, i)$, where $j$ is the $i$-th coordinate of $x$. It remains to choose $x(j, i), 1 \leq i \leq n$ and $0 \leq j \leq k-1$. Given $r>0$, consider mutually different elements $g(j, i), 1 \leq i \leq n$ and $0 \leq j \leq k-1$ of $G$ whose length is smaller than $r$, where $k$ is the integer part of $\frac{\gamma(r)}{n}$. Pick $u \in H \backslash\{1\}$ and put $x(j, i)=g(j, i) \cdot u \cdot g(j, i)^{-1}$. By Lemma 3.1 one has $\operatorname{Lip}\left(f^{-1}\right) \leq 1$, so $k \leq D_{K}^{n-1}(3 n r)$ by Corollary 2.4.

If $H$ is finite, then the kernel $K$ of the projection $H$ 乙 $G \rightarrow G$ is locally finite and it has a 0 -dimensional control function $D_{K}^{0}$ attaining finite values ( $K$ is equipped with the metric induced from $H / G)$. Let us relate $D_{K}^{0}$ to the growth of $G$.

Theorem 4.2 Suppose $G$ is finitely generated and $H \neq\{1\}$ is finite. Let $K$ be the kernel of the projection $H \ G \rightarrow G$ equipped with the metric induced from $H$ l $G$. If $\gamma$ is the growth function of $G$, then $D_{K}^{0}(r):=(2 r+1) \gamma(r)$ is a 0 -dimensional control function of $K$.
Proof It suffices to show that $r$-component of 1 in $K$ is of diameter at most $(2 r+1) \gamma(r)$, as any $r$-component of $K$ is a shift of the $r$-component containing 1 . By Lemma 3.2 any element of $B(1, r)$ in $K$ is a product of bulbs indexed by elements of $G$ of length less than $r$. Therefore any product of elements in $B(1, r)$ is a product of bulbs indexed by elements of $G$ of length less than $r$, and such product can be reduced to a product of at most $\gamma(r)$ such bulbs. Each of them is of length at most $2 r+1$, so the length of the product is at most $(2 r+1) \cdot \gamma(r)$.

Theorem 4.3 (cf. [5, Proposition 4.2]) Suppose $G$ is finitely generated and $\pi: G \rightarrow I$ is a retraction onto its subgroup I with kernel K. Assume that $K$ is equipped with the metric induced from a word metric on $G$ such that generators of I are included in the set of generators of $G$. If $D_{I}^{n}$ is an n-dimensional control function of $I$ and $D_{K}^{0}$ is a 0 -dimensional control function of $K$, then

$$
D_{I}^{n}(r)+D_{K}^{0}\left(r+2 D_{I}^{n}(r)\right)
$$

is an $n$-dimensional control function of $G$.
Proof Given $r>0$ express $I$ as $I_{0} \cup \cdots \cup I_{n}$ so that $r$-components of $I_{i}$ have diameter at most $D_{I}^{n}(r)$. Consider $G_{i}=\pi^{-1}\left(I_{i}\right)$. If $g_{1} \cdot 1, \ldots, g_{1} \cdot x_{m}$ is an $r$-path in $G_{i}$, then $h_{1}=\pi\left(g_{1}\right) \cdot 1, \ldots, h_{m}=\pi\left(g_{1}\right) \cdot y_{m}$ form an $r$-path in $I_{i}$ (here $\left.y_{j}=\pi\left(x_{j}\right)\right)$, so $l\left(y_{j}\right) \leq$ $D_{I}^{n}(r)$ for all $j$. Consider $z_{j}=x_{j} \cdot y_{j}^{-1} \in K$. Notice that $\operatorname{dist}\left(z_{j}, z_{j+1}\right)<r+2 D_{I}^{n}(r)$. Therefore, $\operatorname{dist}\left(1, z_{m}\right) \leq D_{K}^{0}\left(r+2 D_{I}^{n}(r)\right)$, resulting in $l\left(x_{m}\right) \leq D_{K}^{0}\left(r+2 D_{I}^{n}(r)\right)+D_{I}^{n}(r)$ and $\operatorname{dist}\left(g_{1}, g_{1} \cdot x_{m}\right) \leq D_{I}^{n}(r)+D_{K}^{0}\left(r+2 D_{I}^{n}(r)\right)$, which completes the proof.

Definition 4.4 (cf. [12, Section VI.B]) Let $f$ and $g$ be functions from $\mathbf{R}_{+}$to $\mathbf{R}_{+}$. We say that $f$ weakly dominates $g$ if there exist constants $\lambda \geq 1$ and $C \geq 0$ such that $g(t) \leq \lambda f(\lambda t+C)+C$ for all $t \in \mathbf{R}_{+}$.

Two functions are weakly equivalent if each weakly dominates the other.

Notice that the functions $2^{t}$ and $t 2^{t}$ are weakly equivalent．
Theorem 4．5 Suppose $G$ is finitely generated infinite group and $H \neq\{1\}$ is finite．Let $\gamma$ be the growth function of $G$ and $D_{G}^{n}$ be an n－dimensional control function of $G$ ．Then for any $k \geq n$ there is a $k$－dimensional control function of $H \backslash G$ that is weakly dominated by $\left(D_{G}^{n}(t)+t\right) \cdot \gamma\left(D_{G}^{n}(t)+t\right)$ ．Also，for any $k \geq n$ every $k$－dimensional control function of $H$ l $G$ weakly dominates the function $\gamma$ ．

Proof Notice that $\gamma$ dominates a linear function and combine Theorems 4.2 and 4．3． To get the estimate from below，notice that a $k$－dimensional control function of $H$ 乙 $G$ works as a $k$－dimensional control function of the kernel $K$ and apply Theorem 4．1．

Our next result gives a better solution to Question 2 in［15］．
Corollary 4．6 Suppose $G$ is a finitely generated group of exponential growth and $H \neq\{1\}$ is finite．If $\operatorname{dim}_{A N}(G) \leq n$ ，then for any $k \geq n$ the $k$－dimensional control function of $H \geqslant G$ is weakly equivalent to the function $2^{t}$（i．e．，there is a $k$－dimensional control function of $H \backslash G$ weakly dominated by $2^{t}$ ，and every such control function weakly dominates $2^{t}$ ）．

Corollary 4．7 Let $F_{2}$ be the free non－Abelian group of two generators．For every $n \geq 1$ the $n$－dimensional control function of $\mathbf{Z} / 2\left\langle F_{2}\right.$ is weakly equivalent to the function $2^{t}$（i．e．， there is an $n$－dimensional control function of $\mathbf{Z} / 2\left\langle F_{2}\right.$ weakly dominated by $2^{t}$ ，and every such control function weakly dominates $2^{t}$ ）．

Proof Notice that the function $f(t)=2^{t}$ is weakly equivalent to the growth function of $F_{2}$ and $\operatorname{dim}_{A N}\left(F_{2}\right)=1$ ．

## 5 Assouad－Nagata Dimension of Wreath Products

Suppose that $G$ is finitely generated and $H \neq 1$ is finite．If $\operatorname{dim}_{A N}(G)=0$ ，then $G$ is finite and so is $H$ 亿 $G$ ．In such a case $\operatorname{dim}_{A N}(H / G)=0=\operatorname{dim}_{A N}(G)$ ．Therefore it remains to consider the case of infinite groups $G$ ．

Theorem 5．1 Suppose $G$ is an infinite finitely generated group and $H$ is a finite group． Let $K$ be the kernel of $H \geqslant G \rightarrow G$ ．If the growth of $G$ is bounded by a linear function， then $\operatorname{dim}_{A N}(K)=0$ and $\operatorname{dim}_{A N}\left(H\right.$ 亿G）$=\operatorname{dim}_{A N}(G)=1$ ．

Proof Notice that Theorem 4.2 provides a 0 －dimensional control function for $K$ ． However，it may not be bounded by a linear function，so we have to do more precise calculations．

The group $G$ is a virtually nilpotent group by Gromov＇s Theorem（see［10］or ［14，Theorem 97］）．Let $F$ be a nilpotent subgroup of $G$ of finite index．Pick elements $a_{i}, i=1, \ldots, k$ ，of $G$ such that $G=\bigcup_{i=1}^{k} a_{i} \cdot F$ and pick a natural $n$ satisfying $\left|a_{i}\right| \leq n$ for all $i \leq k$ ．Every two elements of $F$ can be connected in $G$ by a 2－path．From each point of the path（other than initial and terminal points）one can move to $F$ by a distance at most $n$（by representing that point as $a_{i} \cdot x$ for some $x \in F$ ）．Therefore we
can create a $(2 n+2)$-path in $F$ joining the original points. That means $F$ is generated by its elements of length at most $2 n+1$.

Let $\left\{F_{i}\right\}$ be the lower central series of $F$ and let $d_{i}$ be the rank of $F_{i} / F_{i+1}, i \geq 0$. Since the growth of $F$ is also linear, Bass' Theorem (see [1] or [14, Theorem 103]) stating that the growth of $F$ is polynomial of degree $d=\sum_{i=0}^{\infty}(i+1) \cdot d_{i}$ implies that $d_{0}=1$ and all the other ranks $d_{i}$ are 0 . Hence the abelianization of $F$ is of the form $\mathbf{Z} \times A, A$ being a finite group, and the commutator group of $F$ is finite. Therefore $F$ is virtually $\mathbf{Z}$, and that means $G$ is virtually $\mathbf{Z}$ as well.

Now let $n$ be the index of $\mathbf{Z}$ in $G$ and pick elements $g_{1}, \ldots, g_{n}$ of $G$ such that any element of $G$ can be expressed as $g_{i} \cdot t^{k}$ for some $i \leq n$ and some $k$, where $t$ is the generator of $\mathbf{Z} \subset G$. Without loss of generality we may assume that the set of generators of $G$ chosen to compute the word length $l(w)$ of elements $w \in H$ 亿 is $t, g_{1}, \ldots, g_{n}$. For $H$ we choose all of $H \backslash\{1\}$ as the set of generators.

We need the existence of $C>0$ such that $\frac{|k|}{C} \leq l\left(t^{k}\right) \leq|k|$ for all $k$. It suffices to consider $k>0$. Since the number of points in $B\left(1_{G}, 4\right)$ is finite, there is $C>0$ such that $t^{u} \in B\left(1_{G}, 4\right)$ implies $|u| \leq C$. Now, if $l\left(t^{k}\right)=m$ and $t^{k}=x_{1} \cdots x_{m}$, where $l\left(x_{i}\right)=1$, then there are $u(i)$ such that $\operatorname{dist}\left(x_{1} \cdots x_{i}, t^{u(i)}\right) \leq 1$ for all $i \leq k$ (we choose $u(m)=k$ obviously). Therefore $\operatorname{dist}\left(t^{u(i)}, t^{u(i+1)}\right) \leq 3$ and $u(i+1)-u(i) \leq C$. Now $k=u(m)=(u(m)-u(m-1))+\cdots+(u(2)-u(1))+u(1) \leq C \cdot m$, implying $l\left(t^{k}\right)=m \geq \frac{k}{C}$.

By Lemma 3.2 any element of $K$ of length less than $r$ is a product of bulbs indexed by elements of $G$ of length less than $r>1$. If $l\left(g_{i} \cdot t^{k}\right)<r$, then $l\left(t^{k}\right)<r+1<2 r$ and $|k| \leq C \cdot l\left(t^{k}\right) \leq 2 C r$. Therefore there are at most $n \cdot 4 C r$ such words and any product of such bulbs is of length at most $n(4 C r n+2+2 C r) \leq r\left(4 C n^{2}+2 n+2 C n\right)$ by Lemma 3.3.

Therefore the group generated by $B(1, r)$ in $K$ is contained in $B(1, L r)$, where $L=$ $4 C n^{2}+2 n+2 C n$, and $\operatorname{dim}_{A N}(K)=0$ by Proposition 2.1. Using the Hurewicz Theorem for Assouad-Nagata dimension from [3] we get $\operatorname{dim}_{A N}(H / G) \leq \operatorname{dim}_{A N}(G)=1$ (one can also use Theorem 4.3). Since $H$ 亿 $G$ is infinite, its Assouad-Nagata dimension is positive and $\operatorname{dim}_{A N}(H \backslash G)=\operatorname{dim}_{A N}(G)=1$.
Corollary 5.2 If the growth of $G$ is not bounded by a linear function and $H \neq 1$, then $\operatorname{dim}_{A N}(H / G)=\infty$.
Proof Let $\gamma$ be the growth of $G$ in some set of generators. Suppose $\operatorname{dim}_{A N}(K)<n<$ $\infty$, so it has an $(n-1)$-dimensional function of the form $D_{K}^{n-1}(r)=C \cdot r$ for some $C>0$. By Theorem 4.1 one has $\gamma(r) / n \leq C \cdot 3 n r+1$. Thus $\gamma(r) \leq n \cdot(3 n C r+1)$, and the growth of $G$ is bounded by a linear function, a contradiction.

Problem 5.3 Suppose $G$ is a locally finite group equipped with a proper left-invariant metric $d_{G}$. If $\operatorname{dim}_{A N}\left(G, d_{G}\right)>0$, is $\operatorname{dim}_{A N}\left(G, d_{G}\right)$ infinite?

## References

[1] H. Bass, The degree of polynomial growth of finitely generated nilpotent groups. Proc. London Math. Soc. (3) 25(1972), 603-614. http://dx.doi.org/10.1112/plms/s3-25.4.603
[2] N. Brodskiy, J. Dydak, J. Higes, and A. Mitra, Assouad-Nagata dimension via Lipschitz extensions. Israel J. Math. 171(2009), 405-423. http://dx.doi.org/10.1007/s11856-009-0056-3
[3] N. Brodskiy, J. Dydak, M. Levin, and A. Mitra, A Hurewicz theorem for the Assouad-Nagata dimension. J. Lond. Math. Soc. (2) 77(2008), no. 3, 741-756. http://dx.doi.org/10.1112/jlms/jdn005
[4] S. Cleary and J. Taback, Dead end words in lamplighter groups and other wreath products. Q. J. Math. 56(2005), no. 2, 165-178. http://dx.doi.org/10.1093/qmath/hah030
[5] A. N. Dranishnikov, Groups with a polynomial dimension growth. Geom. Dedicata 119(2006), 1-15. http://dx.doi.org/10.1007/s10711-005-9026-z
[6] J. Dydak and J. Higes, Asymptotic cones and Assouad-Nagata dimension. Proc. Amer. Math. Soc. 136(2008), no. 6, 2225-2233. http://dx.doi.org/10.1090/S0002-9939-08-09149-1
[7] R. Engelking, Dimension theory. North-Holland Mathematical Library, 19, North-Holland Publishing Co., Amsterdam-Oxford-New York; PWN-Polish Scientific Publishers, Warsaw, 1978.
[8] A. Erschler, On isoperimetric profiles of finitely generated groups. Geom. Dedicata 100(2003), 157-171. http://dx.doi.org/10.1023/A:1025849602376
[9] S. R. Gal, Asymptotic dimension and uniform embeddings. Groups Geom. Dyn. 2(2008), no. 1, 63-84.
[10] M. Gromov, Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. No. 53(1981), 53-73.
[11] Asymptotic invariants for infinite groups. In: Geometric group theory, vol. 2, London Math. Soc. Lecture Note Ser., 182, Cambridge University Press, Cambridge, 1993, pp. 1-295.
[12] P. de la Harpe, Topics in geometric group theory. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000.
[13] U. Lang and T. Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions. Int. Math. Res. Not. 2005, no. 58, 3625-3655.
[14] M. Kapovich, Lectures on geometric group theory. preprint (as of September 28, 2005). https://www.math.ucdavis.edu/~kapovich/EPR/kapovich_drutu.pdf.
[15] P. W. Nowak, On exactness and isoperimetric profiles of discrete groups. J. Funct. Anal. 243(2007), no. 1, 323-344. http://dx.doi.org/10.1016/j.jfa.2006.10.011
[16] J. Smith, On asymptotic dimension of countable abelian groups. Topology Appl. 153(2006), no. 12, 2047-2054. http://dx.doi.org/10.1016/j.topol.2005.07.011

Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
e-mail: brodskiy@math.utk.edu dydak@math.utk.edu
Eidgen Technische Hochschule Zentrum, CH-8092 Zürich, Switzerland
e-mail: lang@math.ethz.ch


[^0]:    Received by the editors June 6, 2012.
    Published electronically August 10, 2013.
    The second-named author was partially supported by the Center for Advanced Studies in Mathematics at Ben Gurion University of the Negev (Beer-Sheva, Israel).

    AMS subject classification: 54F45, 55M10, 54C65.
    Keywords: Assouad-Nagata dimension, asymptotic dimension, wreath product, growth of groups.

