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1. Introduction

The first counterexample to the conjecture that all non abelian simple groups
have doubly transitive permutation representations was pointed out by Parker
in (1954), where he showed that the unitary group PSU(4,4) had no doubly trans-
itive representations. In this paper we generalize Parker's result to give an infinite
class of simple groups having no doubly transitive permutation representations.
Specifically, we prove

THEOREM 1. The projective symplectic group PSp(4,q) has no doubly
transitive permutation representation for q>2.

Using the results of Srinivasan (1968) on characters of symplectic groups
one could prove this result quite quickly. However, it may be of interest to give
a proof not relying on the character table of Sp (4, q). Our proof may be genera-
lized to deal with a slightly larger class of groups.

2. Notation and Preliminaries

Throughout this paper G* will denote the symplectic group Sp(4, q), the
subgroup of the general linear group GL(4, q) consisting of all matrices A satis-
ying A'JA = J, where

0 1 0 0
- 1 0 0 0

0 0 0 1
0 0 - 1 0

We write q = p' with p prime.
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130 R. J. Clarke [2]

Factoring this group by its centre, the subgroup of scalar matrices, gives
the projective symplectic group G = PSp(4,q). We denote elements of G by
matrices surmounted by a bar.

The order of G* is q4(q2 - l)(q4 - 1) and that of G is q\q2 - l)(q 4 - 1)1 d,
where d = (2, q -1).

If H is any finite group, a character of H means a non-negative integral
combination of the complex irreducible characters of H. The trivial character
of H is denoted by 1H. If H is a subgroup of G and (j> is a character of /f, <£G

denotes the character of G induced from $.
If S c H, the centralizer of S is denoted by CH(S) and the normalizer of S

by NH(S). Finally, the order of any set X is denoted by | X |.
We now give various small results which we shall require.

LEMMA 1. Let AeK = GL(m,q) have the following form:

A =

each Ct e GL(mh q), C; and Cs for i ^ j not conjugate in any linear group and
each C; of order rt dividing q"" — 1 but not dividing

m i - l

= n («"-
PROOF. By considering the possible conjugacy classes of matrices of order

prime to q we see that C; is a power of an element of GL(mhq) of order qm' — 1.
The result now follows from Schur's lemma and Theorem 7.3 on page 187 of
Huppert (1967).

LEMMA 2. Let K be a finite group having a k—ply transitive permutation
representation of degree n on a set £1. Let L be the subgroup of K fixing k points
and let U be a subgroup of L. Let T be the subset of Q consisting of all point
fixed by U and suppose that | F | = m. Then

\NK{U)\ ^ m(m - l ) - ( m -k+ 1)\NL(U)\.

Equality holds if and only if every subgroup of L conjugate to U in G is
conjugate to U in L. In this case

and NK(U) acts k — ply transitively on the set F.
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[3] A class of simple groups 131

PROOF. The first statement results from the fact that NK(U) acts as a group
of permutations on F, and NL(U) is the subgroup of NK(U) fixing k points. The
second part is the Lemma of Witt (1937; Satz 3.).

Clearly, if U is pronormal in K the conditions of equality hold. So equality
holds if U is a Sylow subgroup of L.

LEMMA 3. Letl the finite group K have a doubly transitive permutation
representation of degree n on a set Q. Let a, p* e Q and write KaP for the subgroup
of K fixing a and p. Suppose there exists a prime p dividing n — 1 and \Kxp\.
If Q is a Sylow p-subgroup of K^ then Q = Op(NK(Q)), that is Q is the maximal
normal p-subgroup of its normalizer.

PROOF. Let P = OP(NK(Q)) and suppose Q fixes exactly m points of Ci.
NK(Q) acts doubly transitively on these m points and, as P<iNK(Q), P acts
either trivially or transitively on them. Now m s n = 1 (mod p). Hence P,
being a p — group, cannot act transitively on m points. Hence P acts trivially
on them, which means P c Kaf. Thus P = P n Kafi = Q.

LEMMA 4. Let a group K have a permutation representation on a set Q
and let F be an orbit of some yeK. Let s be a power of a prime s0 such that s
divides the order of y and let y" have order s. Then if y"fixes any point of F it
fixes all points ofT, while otherwise s0 | F | .

The proof of this lemma is straightforward.

3. Symplectic Groups as Chevalley Groups

G is isomorphic to the Chevalley group C2(q), and we identify the two
groups. We shall use freely the papers of Carter (1965) and Tits (1964) on Lie
algebras, Chevalley groups and groups with a iW-pair. We shall also need the
following results of Curtis (1966).

THEOREM A. Let G be the Chevalley group L(q). Let £ be the set of funda-
mental roots of L and 3,K <= £. Define the subgroup Wj of W to be the group
generated by the fundamental reflections for the roots in J and put Gj = BWjB.
Write \j/j = (lWJ)

w and Xj = (1 G J )° - Then the mapping

J J

is an isometry between the complex vector spaces generated by the \j/j and the Xi-
In fact the scalar product

(XJ>XK) = number of (Gj,GK) double cosets in G

= number of (Wj, W^) double cosets in W
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The Lie algebra C2 has fundamental roots pt and p2 and positive roots
PuPi,Pi + P2 a nd 2pt + p2. For the corresponding elements xr(0 of C2(q) we
may write

1 0 t 0
0 1 0 0
0 0 1 0
0 -* 0 1

1 0 0 0
0 1 0 0
0 0 1 t
0 0 0 1

1 0 t 0
0 1 0 0
0 0 1 0
0 - / 0 1

and

*2Pl+Pi(0 =

1 t 0 0
0 1 0 0
0 0 1 0
0 0 0 1

The subgroup [7 generated by the root subgroup Xr, for r a positive root, is
a Sylow p-subgroup of G. \u\ = q4. The subgroup B = NG(l/) has order
q*(q — I)2Id. B = UH, where H is the subgroup of G consisting of elements of
form

X
0
0
0

0
A"1

0
0

0
0

0

0
0
0
u

where X and jt are non zero elements of GF(q).

The Weyl group W of C2 is (cojjO^ ; o)x = co| = (wiO)2)
4 = 1>- Here

<»lG>l) = ~ Pi, <

We now apply Theorem A to find some characters of G.

They Weyl group of C2 has subgroups W+ = {1}, Wz = W, Wlpi) =
and W{J>2) = <co2>.Using the notation of Theorem A, write \j/x for i / ^ , , and so on.
The conjugacy classes of W are Co = {1}, Cj = {(a^ci^)2}, C2 = {o*ico2,co2a>1},
C3 = {cou co2co1co2} and C4 = { ^ . ( U i ^ C i } . For the characters \pj,
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[5] A class of simple groups 133

•As
<Ai
<A2
*̂

c0

l
4
4
8

c,

1
0
0
0

c2

1
0
0
0

c3

1
2
0
0

c4

1
0
2
0

The entries in the following table are the scalar products of these characters.

•As
<Ai
<A2
•A.

<Ai

l
l
l
l

<Ai

l
3
2
4

•Ax

l
2
3
4

"A*

1
4
4
8

By Theorem A a similar table is valid for the characters xr, Xu Xi a n ( i X*
of G. Using it we see that there are irreducible characters (j>,\j/,\j/' and x of G such
that

and X,* = In + 2<̂  + ij/ + i^' + x>

so that

X = #0 ~ Xi ~ X2 + XT. •

It is well known and easy to show that degx = g4.

Consider K = G{p2i = pB,nw a. By Carter (1965; page 214) we have

1
0
0
0

0
1
0
0

0
0
0

- 1

0
0
1
0

Now G may be considered as the group of all collineations of a 3 dimensional
projective space P over GF(q) which commute with a certain skew symmetric
form on P. We see from the form of B and na2 that K fixes the point
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134 R. J. Clarke [6]

1 -
0
0
0

x =

of P. As K is maximal, it must be the subgroup of G fixing x. Now G has rank
3 action on P. The orbits of K consists of the point x, the q + q2 points other
than x on the orthogonal hyperplane to x and the q3 points of P outside this
hyperplane. See for these results Higman and McLaughlin (1965).

We shall use the results of Higman (1964) to obtain the degrees of characters
<f> and ip', the non trivial irreducible constituents of (lK)a.

In the notation of Higman (1964; page 146), k = q + q2, I = q1 and k < I.
We calculate the parameters X and /i. We have by Higman (1964; page 148),

Hl = k(k-X- 1).

Hence
Hq3 = (q + q2-X-l)

and
q2\(q-X-l).

As X g k, X = q + q2 - 1 or X = q — 1. In the former case \i = 0. But as K
is maximal in G, the rank 3 representation of G is primitive. Hence n ^ 0
Higman (1964; page 149). So we have

X = q-\, n = q+l.

Write D = (X - n)2 +4(k - n) = 4q2. For the degrees f2 and f3 of 4> and $'
we have in some order

h,h = [2fc + (X - n) (k + I) + J5(k + /)]/(

Hence as q > 2, p | / 2 , / 3 . Thus p divides the degrees of the irreducible non trivial
constituents of (1B)G.

4. The Proof of the Main Theorem

We prove Theorem 1 in several stages. We have G = PSp(4, q), q = p' > 2,
p a prime, as before. Suppose G has a doubly transitive permutation represen-
tation p on a set Q with | £11 = «. G* has an action on Q via the map G*-*G
which it will at times be convenient to consider. If aeQ. and geG we write go.
for p(g)a. Let Ga be the subgroup of G fixing a.

(A) If p J(- n then Ga is a maximal parabolic subgroup of G.
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[7] A class of simple groups 135

PROOF. We recall that a parabolic subgroup of a group G with a BiV-pair
(B, N) is a subgroup conjugate to one containing B. As p \ n we may take the
Sylow p-subgroup U of G to be contained in Ga. As HGX Si HI/ = B, HGa is a
parabolic subgroup of G. Now Ga is maximal in G as G acts doubly transitively
on Q. Hence either HGa = Gx or HGX = G. In the first case we have the required
result. In the second case, H acts transitively on fi. Now H normalises each root
subgroup Xr, and if r is a positive root, Xr <= U <= Gx.

Let 0 e fi. Then there is an ft e H such that jS = ha. Then

Thus Xr <= n^aGB = {1}, as G is a simple group, contradiction. We note that
this result holds for an arbitrary Chevalley group.

( B ) p | n

PROOF. If p\n, Ga is a maximal parabolic subgroup of G. Hence Ga is
conjugate either to G{Pl) or G{P2). But as G acts doubly transitively on Q, there
are two Gx double cosets in G, that is (1CJG = 1G + £ for some irreducible
character £. This contradicts our information about the characters Xi an<i li
above.

(C) n\ \B\ = q\q-\fld.

PROOF. We have that (lGa)
G = 1G + £ and

(1B)G = l o + 20 + .A + ^ + X,

where £, (j),^,^' and % are irreducible characters. Now £ has degree n — 1 coprime
to p. But we know that 4>,^I,^I' and % each have degree divisible by p. Hence £ is
distinct from these characters, so we have

This is equivalent to BGa = G. Hence n = (G: GJ | \B\.

(D) n = 1 or 2 (mod(q2 +

PROOF. Write GL = GL(4,q), GL = GL(4,g4) and G = Sp(4,q*). Let K

be a primitive q* — 1 th root of unity in the Galois field GF{qA). Put £ = K ? 2 - 1 .

Write

"£

X = E G L , Y =
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Finally, put

R. J. Clarke [8]

A =

0
0
0
1

0
0
1
0

1
0
0
0

0
1
0
0

eG.

We have AX A'1 - Xq. Given any matrix EeGL, write Z(q) for the matrix
obtained from Z by raising all its entries to the qth power. Using a theorem of
Lang (1956) we see that 3BeG such that A"1 = B l { \

Put x = BXB~\ y = BYB~ 1,a = BAB'1. Then

, as = Xq

= BXB~l

= x.

Thus xeGL. Similarly y and aeGL. In fact y and a are in GL nG = G*.
Write N = <j>, a>. Then JV has defining relations

y y ' ^ y " , a4 =

If fc is any integer not divisible by (q2 + i)/d,

Cc,{yb)=G*nCGL(yb)

= G* O<x>, by Lemma 1,

for xm e G* if and only if xm e C which happens if and only if m is divisible by
q2 ~ 1, that is xm e <;>>. Hence iV = NG.(yb).

To complete the proof of (D) we consider the action of G* on fi. Let s be a
prime power dividing (q2 + \)jd and write s = SQ for s0 a prime. Now s0 is prime
to (G*: <>>», so the Sylow s0-subgroup of <><>, which is cyclic, is a Sylow s0-
subgroup of G*. If S = <j>6> is the unique subgroup of order s of <y>, S is the
unique subgroup of order s of any Sylow subgroup of G* containing S. Hence S is
a pronormal subgroup of G*.

Let r , be the set of points of £2 fixed by S. If | Ts | = ms and ms ^ 2, we see
from Lemma 2 that N = NG.(S) acts doubly transitively on Ts.

LEMMA 5. Let N have a [doubly transitive permutation representation a of
degree m on a set F such F such that a4 e ker a. Then either,
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[9] A class of simple groups 137

(i) m = 2 and kera = (y,a2y or
(ii) m = 3 or 5, m | (q2 + Y)jd, ym e kera and <y> acts transitively on F.

PROOF, a((yy) is a normal subgroup of a doubly transitive group, so is
either trivial or transitive.

If a(y) = 1, the abelian group iV/<_y> acts doubly transitively on F. Hence
m = 2 and we have case (i).

Suppose ff(O» is transitive. As <y> is abelian, y acts regularly on F. Hence
m\(q2 + l)/d and /"eker<r. Now \a(N)\ divides (iV: O m , a 4 » = Am and
m ( m - l ) divides \a{N)\. Thus ( m - l ) | 4 and m # 2 as (q2 + \)jd is odd.
This gives case (ii) and proves the lemma.

We see from Lemma 5 that we have one of the following cases for ms:
(1) ms = 0.
(2) ms = 1. Then y fixes exactly one point of Q.
(3) ms = 2 and y fixes Fs. Then y fixes no other point of F.
(4) ms = 3 or 5 and <j> acts transitively on Fs. Then y fixes no points of £2.
If (1) holds we have from Lemma 4 that s0 | n. But \B | and (g2 + V)jd are

coprime, s0 | (q
2 + l)jd and n || B | , contradiction.

If (2) holds it is clear that ma = 1 for every prime power u dividing (q2 + l)/d.
Let A be an S-orbit of Q of length greater than one. Suppose s Jf | A | . Then
| A | = si for some f <e. But then yhsof has order s%~f and fixes all points of A,
contradiction. Hence s | A . Thus s | (n — 1). As this holds for every prime
power dividing (q2 + \)jd we have, as required,

(q2 + l ) /d |(n - 1).

If (3) holds it is clear that mu = 2 for every prime power u dividing (g2 + l)/d.)
Reasoning similar to that of case (2) gives

(q2+l)ld\(n-2).

Suppose (4) holds and write u = ms. As u is a prime dividing (q2 + l)jd,
mu = 3 or 5. Now Fs and Fu are each j-orbits of ii. We have two cases.

(i) F5 = F u . Then u = mu and, as u [ (n — mu) by Lemma 4, we have u | n,
contradiction.

(ii) Fs 56 F u . Let be the l.c.m. of ms and mu. Then y* fixes all points of
Fs UFU. So no odd prime divides the order of yh, for otherwise yh would fix
only the points in one j-orbit. Thus y2h = 1. But then (q2 + l)\2h ^ 2.3.5.
Hence q = 2 or 3. But in neither of these cases is (q2 + \)jd divisible by two
distinct primes, contradiction. This completes the proof of (D).

(E) We have the following two possibilities:
(a) q = 3,4,5, 8 or 11 and n = | n |
(b) n = \a\ = q\
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138 R. J. Clarke [10]

PROOF. We have

n = c(mod(q2 + \)jd),

where c = 1 or 2, q = p', p a prime. We may write

n = q'p~bm,

where 1 ^ i ^ 4, 0 | fc< (, P^m, and

i = 21 -j,

where 1 g / g 2 and 0 g ; < 2. Now

Hence

m = nq-2

Write

m = /c(<ai2

Then m\(q — \)2jd from part(C). We must consider various cases.

Case (1): / = 2. Then fc^O.

(i) Suppose k = 0.
We have m = cqJpb and m is coprime to p. Hence b = j = 0 and m = c.

Thus
n = cq*.

If c = 1 we have (6). If c = 2,

n - 1 = (2«< - 1) | (q - lY(q + l)2(q2 + l)/d,

since «(« - 1) || G | . But

n - 2 = 2( ?
4 - 1) = 2(q-l)(q + l)(q2 + 1).

Thus (n - 1) | Ijd. So n = 2, and G is the cyclic group of order 2, contradiction,

(ii) Suppose k < 0.

As m > 0 we have g2 + 1 < cdq'pb ^ cdqJ+i/p. Thus p < cdq'~l. The only
possibility, as j ^ 1, is p = 3, j = 1, c = d = 2 and fe = / — 1. Then

2m = - (q2 + 1) + V / 3 = (g2 - 3)/3,

which must divide {q — I)2. Therefore q = 3, m = 1 and

n = q2'-Jp-bm = 27.
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[11] A class of simple groups 139

However then n - 1 = 26 X \PSp(4,3) |, contradiction.

Case (2): / = 1. Then as m > 0 we have k > 0. Now

dm = [k(q2 + 1) - cdqJpb] \(q - I)2 = q2 - 2q + 1.

Hence, as k ^ 1, 2q <S cdqJpb ^ cdqJ+1/p. Hence p ^ c d * ^ , so j = 1.

(i) Let k = 1.

dm = (g2 + 1 - cdqpb) | (g - I)2.

Thus dm | (q - I)2 - dm = (cdpb - 2)q. Evidently cdpb ^ 2, for otherwise
dm>(q- I)2.

(a) Suppose cdpb = 2. Then

dm = s 2 + 1 - 2q = (q - I)2,

n = q(q- I)2/dp".

Now if dpb = 1, « = q(q - I)2. But (n — 1) | G |, and n - 1 is coprime to q(q — 1)
and q2 + 1. Thus (n - 1) | (q + I)2, which is false for all q > 2. Hence dpb = 2
and c = 1. Then n = fcffa - I)2. As n(n — 1) [| G |, (n - 1) | (q + l)2(q2 + 1). But
« - 1 = i(q ~ 2) (q2 + 1). Thus (q - 2) 12(q + I)2. So, as h.c.f. (q - 2, g + 1) 13,
(g - 2) 12.32. Hence

q = 3,4,5,8 or 11.

This gives case (a).

()3) Suppose cdpb > 2. Then

dm = (q2 + 1 - crf/q) | M p 6 - 2)q.

But (dm, ^) = 1, so that dm \ (cdpb - 2). Hence dm ^ cdpb - 2. Thus

(q2 + 3)/(q + 1) g cdp6 ^ cdg/p.

But we have dm ^ 0, so cdpb ^ (g2 + Y)jq. Hence

g - 1 + 4/(3 + 1) S cdp" ^q + 1/q.

Since cdpb is an integer we have cdpb = q. Then

dm = q2 + 1 - cdpbq = 1.

Thus d = m = I and n = mqp~b = c = 2, contradiction,

(ii) Let k>l. Then

dm = (k- l)(q2 + 1) + «(« - cdp") + 1 | ( « - I)2.
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140 R. J. Clarke [12]

Therefore q < cdpb, from which follows c = d = 2, p = 3, pb = g/3. Then we
have

2m = 2(q2 + 1) - V / 3

= 2(q2 + 3)/3\(q-l)2.

Now (q2 + 3,q-l) 4 and so 2(q2 + 3)/3 142, that is (q2 + 3) 124. But then

2m = 2(32 + 3)/31 (3 - I)2, which is false.

We have now proven (E). We complete the proof of Theorem 1 by eliminating
the remaining possibilities.

1. q = 3, n = 6.

\PSp(4,3)\ = 2<*345, and | S 6 | = 6! = 24325. If G had a doubly transitive
permutation representation of degree 6 it would be isomorphic to a subgroup
of S6, which it is not.

2. q = 5, n = 40, or q = 11, n = 550.

Let a and /? be distinct elements of Q. Then

\G\ = 26325413, q = 5,

\G\ = 26325211461, q = 11,

| G . , | = 2 3 3 - 5 3 , q = 5,

\Ga,\= 2 5 1 1 3 , 4 = 11.

Let Q be a Sylow q-subgroup of G^ and let Q fix exactly m points of Q..
(Ga:NojiQy) = (Gaf:NGmf(Q))(n-l)l(m-l) is integral and by Sylow's
Theorem

{Gaf:NGm,(Q)) = l or 6, q = 5,

Consider # = 11. m = life for some k < 50, and by integrality (llfc - 1)|
(550 — 1). There is no such k. Hence this case does not occur.

Consider q = 5. m = 5k for some k < 8, and either (5fc - 1) | (40 - 1) or
(5fc - 1) 16(40 - 1).
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[13] A class of simple groups 141

Hence k = 2 and (Gxp: NG_f(Q)) = 6. Now

\NG(Q)\ = \NGJQ)\m(m-l)

= 225310-9

= 233254,

by Lemma 2. Now | Q | = 53 and | U | = 54. Hence we may assume that Q is a
normal subgroup of U with cyclic factor group. We have that the derived group
C/'cQ.

From the Chevalley commutator formula (Carter (1965; page 211)), we have
that

So

Q = ( [ / ' .XpAKife)) ,

where tu t2 e GF(q) are not both zero.

We consider two cases.

(1) Suppose h # 0. Then Q' = X2pi+P2 and CU(Q') = Xpi+P2X2pi+P2.
These groups are each characteristic in Q, so

JVG(0 <= NG(X2pi+P2)nNG(Xpi+P2X2pi+P2) = M.

Now using the formula nmXrn~l = Xa^r) of Carter (1965; page 214) we see
that M = B. Thus

| JVG(Q) 11B | = 2354, a contradiction.

(2) Suppose t1 = 0. Then Q = XplXpi+P2X2pi+P2. It is easily calculated
that

Now I-Bn̂ .-Bl = |£ |g m , where m is the number of positive roots of C2 trans-
formed by (Oj into negative roots (Carter (1965; page 220)). Thus

\NG(Q)\ = \B\(l + q)

= i 5 4 ( 5 -

= 283 • 54,
a contradiction.

3. q = 4, n = 18

Let a and j? be distinct elements of £2. Then

|G| = 27325217, |Ga,|
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142 R. J. Clarke [14]

Let P be a Sylow 5-subgroup of GxP and suppose P fixes exactly m points of £2.
Then as m s l 8 ( m o d 5 ) , m = 3 or 8. By Sylow's Theorem (Ga/!: N^P)) = 1
or 24. Now (G. : NGXP)) = (Gxfi : NGJP))(n - l)/(m - 1) is integral, so we
have m = 3 and GaP: NG^(P)) = 24. By Lemma 2

= 243 • 52.

Since G = G* = Sp (4,4) we are in fact working with matrices. P, being a Sylow
5-subgroup of G may be considered as generated by matrices

Lo /J

where A e SL(2,4) has order 5. By Lemma 1 we have | CGL(4A)(ab2) | = (42 - I)2

In fact the centralizer of ab2 consists of matrices

-r °i
Lo DJ

where C, DeCCL(2>4)(,4), a group generated by a matrix of order 15 with de-
terminant a primitive cube root of unity. Now c e G if and only if C, D e SL(2,4).
Thus | CG{ab2) | = 52 and | CG{P) \ = 52. So CG{P) = P.

The only elements of P with the same eigenvalues as a are a,b,a-1 and
ft"1. Thus if geNG(P), gag~l = a,b,a~l or b " 1 . There are the same choices
for gbg~l. Since gag*1 and ^fcfiT1 generate P we see that (NG(P):P) ^ 8. This is
a contradiction.

4. q = 8, n = 196

Let a and /? be distinct elements of Q. Then

| G | = 212345 • 7213, |G . , | = 2 l 0 3 3 .

Let Q be a Sylow 3-subgroup of Ga/S and P a Sylow 3-sub-group of G con-
taining Q. We may take P = <a,i»>, where

L o /, J o
with ^4eSL(2,8) an element of order 9. As in the preceding case we have
CG(P) = P. In fact CG(a'bj) = P unless 3 | i, 3 | ; or 3 |(i - j ) . Clearly Q must
contain elements other than those of form a\ bl and (ab)1. Hence CG(Q) = P.
Thus NG(Q) <= NG(CG(Q)) = NG(P) and so P<iiVG(g), contradicting Lemma 3.
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5. n = 1, any q.

A class of simple groups 143

Let a e Q and let U be the upper unitriangular subgroup of G. U is a Sylow
p-subgroup of G, and G = UGX. We take the elements of U as a transversal for
Ga in G.

Let 0 e GF (q) be of maximal multiplicative order such that

1
0
0
0

0
1
0
0

0
0

e
0

0
0
0
6'1

is in some Gx. 9 # 1, as (q — i)2/d \\GX\. NOW h normalizes U, so if u e U,
hUGa - huh'^c. Thus the number of points of Q fixed by h is | Cm(h) \. Put

" = Xpi(h)xP2(t2)xpi+pl(t3)x2pi+P2(t4).

Then

huh'1 =

Thus either 92 # 1 and h fixes exactly q points of il or 62 — 1 and h fixes exactly
q2 points of Q. In the latter case it is clear that q = 3. We consider this case
later.

(1) Suppose 62 # 1. Write S = </i>. By Lemma 2,

| JVG(S) | ^ | NL(S) | q(q - 1), L = G,,, /? # a

But /J is centralised by the elements

A
0
0

0
0

0
0
A
0

0
0
0
A"1

of G, where A e SL(2, g), X e GF(g), A ̂  0. Thus

\CG(S)\Z(q-l)\PSL(2,q)\
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Also the element

1
0
0
0

R.

0
1
0
0

J. Clarke

0
0
0

- 1

0
0
1
0

[16]

normalises S. Thus we have a contradiction.

(2) Suppose 62 = 1, q = 3. Then Then h fixes 9 points of il and, writing
S = </i> and L = Gxfi with fl ^ a, we have as in (1)

But ft is centralised by the elements

0 1
B \

of G, where i,BeSL(2,3). Hence

As in (1) we deduce | NG(S) | > 2532, a contradiction. This proves Theorem 1.

Our proof may be generalised to give a similar result for a slightly larger
class of groups. In fact one can prove

THEOREM 2. The group PSp(2r,q) has no doubly transitive permutation
representation for r ^ 2, excepting for each r at most a finite number of values
of q-

Many parts of the above proof need only slight modification. To prove the
corresponding part (C) we need the unpublished result of D. G. Higman that
the degrees of the non trivial irreducible constituents of (1 )̂ G are almost always
divisible by p. More complex manipulation with special subgroups of G is needed
to eliminate certain special cases which arise.

The material in this paper was part of my thesis submitted for the degree of
Ph.D. at the University of Warwick. I should like to express my gratitude to
Professor J. A. Green for his help and encouragement.
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