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Abstract

We show that if X is a smooth complex projective surface with torsion-free cohomology, then the Hilbert scheme

- [=] has torsion-free cohomology for every natural number n. This extends earlier work by Markman on the case

of Poisson surfaces. The proof uses Gholampour-Thomas’s reduced obstruction theory for nested Hilbert schemes

of surfaces.
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The Hilbert scheme - [=] of = points on a smooth complex surface - is a complex manifold of

dimension 2= that can be viewed as a resolution of singularities of the symmetric product (=- . The

rational cohomology of - [=] is known, but the integral cohomology is more subtle. Any torsion in

cohomology or other invariants could conceivably be useful for rationality problems.

In this paper, we show that if - is a smooth complex projective surface with torsion-free cohomology,

then the Hilbert scheme - [=] has torsion-free cohomology for every = ≥ 0. (Since we know the Betti

numbers of - [=] by Göttsche (stated in Theorem 1.1), this amounts to an additive calculation of

�∗(- [=] ,Z).) We also show that if the integral Chow motive of - is trivial (a finite direct sum of Tate

motives), then the integral Chow motive of - [=] is trivial for all = (Theorem 4.1).

There are some earlier results in this direction. When - is the complex projective plane, Ellingsrud

and Strømme found an algebraic cell decomposition of the Hilbert scheme - [=] , which implies that its

integral cohomology is torsion-free [6, Theorem 1.1]. Markman showed that the integral cohomology

of the Hilbert scheme - [=] is torsion-free for a smooth projective surface - with a nontrivial Poisson

structure, or equivalently when the anticanonical bundle − - has a nonzero section [11, Theorem 1].

That includes the important case where - is a K3 surface, so that - [=] is hyperkähler. In this paper,

we show that the Poisson assumption can be dropped completely. The fact that �∗(-,Z) torsion-free
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implies �∗(- [2] ,Z) torsion-free was shown (in fact, for - of any dimension) in [12, Theorem 2.2].

Finally, for - , a smooth projective surface with first Betti number zero, Li and Qin gave an explicit basis

for �∗(- [=] ,Z) modulo torsion [10, Theorem 1.2].

Our proofs combine Markman’s ideas with the reduced obstruction theory for nested Hilbert schemes

of surfaces found by Gholampour and Thomas [7].

Several related questions remain open. First, do the results of this paper extend to compact complex

surfaces, or even to noncompact complex surfaces? (For the Hilbert square - [2] , the answer is yes,

by [12, Theorem 2.2].) Second, say for a smooth projective surface - , is the graded abelian group

�∗(- [=] ,Z) determined by the graded abelian group �∗(-,Z) when �∗(-,Z) has torsion? (We know

that the graded vector space �∗(- [2] ,F2) is not determined by the graded vector space �∗(-,F2), by

[12, Example 2.5].) Analogously, is the integral Chow motive of - [=] determined by that of -? Finally,

for a complex manifold - of any dimension, does�∗(-,Z) torsion-free imply�∗(- [3] ,Z) torsion-free?

1. Betti numbers of the Hilbert scheme

We recall here the calculation of the Betti numbers of the Hilbert schemes of points on a surface [9,

equation (2.1)]. This was proved for smooth projective surfaces by Göttsche and generalized to all smooth

complex analytic surfaces with finite Betti numbers by de Cataldo and Migliorini [4, Theorem 5.2.1].

Define the Poincaré polynomial of a space . by ?(., C) =
∑

9 1 9 (. )C
9 .

Theorem 1.1. For a smooth complex analytic surface - with finite Betti numbers, the Betti numbers of

the Hilbert schemes - [=] are given by the generating function

∑

=≥0

?(- [=] , C)@= =

∏

:≥1

4∏

9=0

(1 − (−C)2:−2+ 9@: ) (−1) 9+11 9 (- ) .

2. Gholampour-Thomas’s reduced obstruction theory

Gholampour and Thomas constructed the following ‘reduced’ obstruction theory for nested Hilbert

schemes of surfaces [7, Theorem 6.3]. This is easy when �1(-,$) = �2(-,$) = 0, and in general

they show how to remove the contributions of those two cohomology groups.

I would guess that the same obstruction theory exists on any complex manifold of dimension 2. If

so, then the results of this paper would extend to compact complex surfaces. Also, Gholampour and

Thomas consider surfaces over the complex numbers, but their proof works verbatim over any field.

For natural numbers =1 ≥ =2, let c be the projection

- [=1 ] × - [=2 ] × - → - [=1 ] × - [=2 ] ,

with the two universal subschemes Z1,Z2. (That is, the fiber of Z1 over a point (�1, �2) of - [=1 ] ×- [=2 ]

is the 0-dimensional subscheme �1 of - , and the fiber of Z2 is the 0-dimensional subscheme �2.) Write

I1 and I2 for the ideal sheaves of Z1 and Z2 on - [=1 ] × - [=2 ] × - . Finally, define

'H><c (I1, I2) := 'c∗'H><(I1, I2)

in the derived category of - [=1 ] × - [=2 ] .

Theorem 2.1. Let - be a smooth geometrically connected projective surface over a field : . For any

=1 ≥ =2, the 2-step nested Hilbert scheme - [=1 ,=2 ] (of 0-dimensional subschemes of degree =1 containing

a subscheme of degree =2) carries a natural perfect obstruction theory whose virtual cycle

[- [=1 ,=2 ]]vir ∈ ��=1+=2
(- [=1 ,=2 ])
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has pushforward to the Chow groups of - [=1 ] × - [=2 ] equal to the Chern class

2=1+=2
('H><c (I1, I2) [1]).

We only need the case =1 = =2 of Theorem 2.1. That is:

Corollary 2.2. Let - be a smooth geometrically connected projective surface over a field : . Then the

Hilbert scheme - [=] carries a natural perfect obstruction theory whose virtual cycle

[- [=]]vir ∈ ��2= (-
[=])

has pushforward by the diagonal morphism to - [=] × - [=] equal to the Chern class

22= ('H><c (I1, I2) [1]).

Here��2= (-
[=]) is Z times the class of - [=] , and it follows from Gholampour-Thomas’s construction

that the class of the virtual cycle in Corollary 2.2 is the integer 1 times the class of - [=] . Namely, the

perfect obstruction theory on - [=1 ,=2 ] in Theorem 2.1 can be written as

{) (- [=1 ] × - [=2 ]) |- [=1 ,=2 ] → EGC1? (I1, I2)0}
∨ → !- [=1 ,=2 ]

in the derived category of - [=1 ,=2 ] [7, Corollary 6.33]. Here !. denotes the cotangent complex of. , and

? denotes the projection - [=1 ,=2 ] ×- → - [=1 ,=2 ] . Since I1 and I2 are flat over - [=1 ]×- [=2 ] , they restrict

to ideal sheaves on - [=1 ,=2 ] × - , which we also call I1 and I2. At a point (�1, �2) in - [=1 ,=2 ] , we define

EGC1? (I1, I2)0 = coker(�1 (-,$) → Ext1- (�1, �2)),

where that map is associated with the given inclusion �1 → �2.

Here, EGC1? (I1, I2)0 is the tangent sheaf to - [=1 ,=2 ] . Therefore, the perfect obstruction theory on - [=]

in Corollary 2.2 is

{)- [=] ⊕ )- [=] → EGC1? (I1, I2)0}
∨ → !- [=] .

In this case, I1 and I2 are the same, and the map is the sum of two isomorphisms )- [=] → EGC1? (I, I)0.

So this perfect obstruction theory is equivalent to the obvious one on the smooth variety - [=] , and so

the resulting virtual cycle is 1 times the fundamental class of - [=] .

3. Torsion-freeness

Theorem 3.1. Let - be a smooth complex projective surface. If �∗(-,Z) is torsion-free, then

�∗(- [=] ,Z) is torsion-free for every = ≥ 0.

More generally, for any prime number ?, the same proof works ?-locally. That is, if �∗(-,Z) has

no ?-torsion, then �∗(- [=] ,Z) has no ?-torsion for every = ≥ 0.

Proof. We follow Markman’s argument on Poisson surfaces, with the extra input of Corollary 2.2 [11,

proof of Theorem 1]. Bott periodicity says that topological  -theory is 2-periodic. The differentials in

the Atiyah-Hirzebruch spectral sequence from �∗(-,Z) to  ∗(-) are always torsion [2, Section 2.4].

Since �∗(-,Z) is torsion-free, the spectral sequence degenerates at the �2 page. Also, the abelian group

�∗(-,Z) is finitely generated because - is a closed manifold. Therefore,  ∗(-) is a finitely generated

free abelian group, with  0(-) of rank 12(-) + 2 and  1(-) of rank 211 (-). In this situation, the

Künneth formula holds for  -theory:

 0(- × . ) �
[
 0(-) ⊗Z  

0(. )
]
⊕
[
 1(-) ⊗Z  

1(. )
]

for every finite CW-complex . [1, Corollary 2.7.15].
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Let {G1, . . . , G<} be a homogeneous basis for  0(-) ⊕  1(-). Write D ↦→ D∨ for the involution on

 0 of a space that takes a vector bundle to its dual, also known as the Adams operation k−1. (For a

coherent sheaf � on a smooth scheme. , we interpret �∨ to mean RHom(�,$. ) in the derived category

of . , so it defines the same operation on  0(. ).) Consider the Künneth decomposition

I =

<∑

8=1

G8 ⊗ 48

of the class of the universal ideal sheaf I in  0(- × - [=]). Here, the 48 are some (homogeneous)

elements of  ∗(- [=]). Likewise, write

(I)∨ =

<∑

8=1

4′8 ⊗ G8

in  0(- [=] × -) for some (homogeneous) elements 4′8 ∈  
∗(- [=]). Write j :  ∗(-) → Z for pushfor-

ward to a point (which is defined because - is a compact complex manifold). For a coherent sheaf � ,

this is given by j(�) =
∑

9 (−1) 9ℎ 9 (-, �).

Write c8 9 for the projection from - [=] × - × - [=] to the product of the 8th and 9 th factors. Then we

have the equality in  0(- [=] × - [=]):

(c13)∗ [c
∗
12 (I)

∨ ⊗! c∗23 (I)] =

<∑

8=1

<∑

9=1

(c13)∗(4
′
8 ⊗ (G8G 9 ) ⊗ 4 9 ).

For G, H ∈  ∗(-), define (G, H) = −j(GH) ∈ Z, the sign being conventional for the Mukai pairing. Using

the projection formula, we have

(c13)∗ [c
∗
12 (I)

∨ ⊗! c∗23 (I)] = −

<∑

8=1

<∑

9=1

(G8 , G 9 )4
′
8 ⊗ 4 9 .

We need Markman’s definition of the Chern classes of an element of  1(. ), say for a finite CW

complex . [11, Definition 19]. First, identify  1(. ) with  ̃0(Σ.+), where .+ means the union of .

with a disjoint base point, and  ̃ is the reduced  -theory of a pointed space. For D ∈  1(. ) and

8 ≥ 1/2 congruent to 1/2 modulo Z, define the Chern class 28 (D) as the image in �28 (.,Z) of 28+1/2(D̃),

where D̃ is the corresponding element of  ̃0(Σ.+), and we identify �28 (.,Z) with �̃28+1(Σ.+,Z). For

D, E ∈  1(. ), Markman showed that the Chern classes of DE ∈  0(. ) can be written as polynomials

with integer coefficients in the even-dimensional classes 28 (D)2 9 (E) [11, Lemma 21].

By Corollary 2.2, it follows that the diagonal Δ ∈ �4= (- [=] × - [=] ,Z) is given by

Δ = 22=

( <∑

8=1

<∑

9=1

(G8 , G 9 )4
′
8 ⊗ 4 9

)
.

By the formulas for the Chern classes of direct sums and tensor products of elements of  0, together

with the result above on Chern classes of the product of two elements of  1, it follows that Δ can be

expressed as a sum

Δ =

∑

9∈�

U 9 ⊗ V 9 ,

where each U 9 and V 9 is a polynomial with integer coefficients in the Chern classes of

41, . . . , 4<, 4
′
1
, . . . , 4′<.
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Viewed as a correspondence, the diagonal acts as the identity on integral cohomology. That is, for

any element D ∈ �∗(- [=] ,Z), we have

D = (?1)∗(Δ · ?∗2 (D)).

Combining this with the decomposition of the diagonal above, we find that D is a Z-linear combination

of the elements U 9 :

D =

∑

9∈�

( ∫

- [=]

DV 9

)
U 9 .

If D is torsion, then all the intersection numbers
∫
DV 9 ∈ Z are zero, and so D = 0. That is, �∗(- [=] ,Z)

is torsion-free, as we want. �

4. Integral Chow motive

Finally, we show that if the Chow motive with integral coefficients of a smooth projective surface -

over a field : is trivial (a direct sum of Tate motives), then the same holds for all Hilbert schemes - [=] .

The analogous statement with rational coefficients is known, by de Cataldo and Migliorini’s general

description of the motive of - [=] with rational coefficients [5, Theorem 6.2.1].

The Chow motive with integral coefficients is a direct sum of Tate motives for every smooth complex

projective rational surface, but also for some Barlow surfaces, which are of general type [3, Proposition

1.9], [13, Theorem 4.1].

Theorem 4.1. Let - be a smooth projective surface over a field : . Let ' be a PID of characteristic zero,

meaning that Z is a subring of '. If the Chow motive of - with coefficients in ' is a finite direct sum of

Tate motives '(0), then the Hilbert scheme - [=] has the same property for every = ≥ 0.

Proof. By Gorchinsky and Orlov, since the Chow motive of - with coefficients in ' is a finite direct

sum of Tate motives and Z is a subring of ', the  -motive of - with coefficients in ' is a finite direct

sum of  -motives of points [8, Proposition 4.1]. It follows that the Künneth formula holds for algebraic

 -theory of products with - , meaning that for every smooth projective variety . , the product map

 0(-) ⊗Z  0(. ) ⊗Z ' →  0(- × . ) ⊗Z '

is an isomorphism.

Given that, the proof of Theorem 3.1 produces elements 48 , 4
′
8 in  0(-

[=]) ⊗ ' using the Künneth

formula on - × - [=] . The argument then shows that the diagonal in the Chow group ��2= (- [=] ×

- [=]) ⊗ ' is completely decomposable as a sum
∑

9 U 9 ⊗ V 9 . Using that ' is a PID, it follows that the

Chow motive of - [=] with coefficients in ' is a finite direct sum of Tate motives '(0) [13, proof of

Theorem 4.1]. �

Acknowledgements. I thank Stefan Schreieder for useful discussions. This work was supported by NSF grant DMS-1701237.

Conflict of Interest: None.

References

[1] M. Atiyah, K-Theory (W. A. Benjamin, New York, 1967).

[2] M. Atiyah and F. Hirzebruch, ‘Vector bundles and homogeneous spaces’, in Proc. Sympos. Pure Math., vol. 3 (American

Mathematical Society, 1961), 7–38.

[3] A. Auel, J.-L. Colliot-Thélène, and R. Parimala, ‘Universal unramified cohomology of cubic fourfolds containing a plane’,

in Brauer Groups and Obstruction Problems (Palo Alto, 2013) (Birkhäuser, 2017), 29–56.

[4] M. A. de Cataldo and L. Migliorini, ‘The Douady space of a complex surface’, Adv. Math. 151 (2000), 283–312.

https://doi.org/10.1017/fms.2020.35 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.35


6 Burt Totaro

[5] M. A. de Cataldo and L. Migliorini, ‘The Chow groups and the motive of the Hilbert scheme of points on a surface’, J. Alg.

251 (2002), 824–848.

[6] G. Ellingsrud and S. Strømme, ‘On the homology of the Hilbert scheme of points in the plane’, Invent. Math. 87 (1987),

343–352.

[7] A. Gholampour and R. P. Thomas, ‘Degeneracy loci, virtual cycles and nested Hilbert schemes. I’, Tunisian J. Math. 2

(2020), 633–665.

[8] S. Gorchinskiy and D. Orlov, ‘Geometric phantom categories’, Publ. Math. IHES 117 (2013), 329–349.

[9] L. Göttsche, ‘Hilbert schemes of points on surfaces’, in Proceedings of the International Congress of Mathematicians

(Beijing, 2002), vol. 2 (Higher Education Press, Beijing, 2002), 483–494.

[10] Wei-Ping Li and Zhenbo Qin, ‘Integral cohomology of Hilbert schemes of points on surfaces’, Comm. Anal. Geom. 16

(2008), 969–988.

[11] E. Markman, ‘Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces’, Adv. Math.

208 (2007), 622–646.

[12] B. Totaro, ‘The integral cohomology of the Hilbert scheme of two points’, Forum Math. Sigma 4 (2016), e8, 20 pp.

[13] B. Totaro, ‘The motive of a classifying space’, Geometry and Topology 20-4 (2016), 2079–2133.

https://doi.org/10.1017/fms.2020.35 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.35

	1 Betti numbers of the Hilbert scheme
	2 Gholampour-Thomas's reduced obstruction theory
	3 Torsion-freeness
	4 Integral Chow motive

