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Abstract

We propose and analyse an alternate approach to a priori error estimates for the
semidiscrete Galerkin approximation to a time-dependent parabolic integro-differential
equation with nonsmooth initial data. The method is based on energy arguments
combined with repeated use of time integration, but without using parabolic-type duality
techniques. An optimal L?-error estimate is derived for the semidiscrete approximation
when the initial data is in L2. A superconvergence result is obtained and then used to
prove a maximum norm estimate for parabolic integro-differential equations defined on
a two-dimensional bounded domain.
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1. Introduction

In this paper, we discuss an alternate approach to a priori L>-error estimates for a
semidiscrete finite element Galerkin approximation to the following parabolic integro-
differential equation (PIDE):

w+A(Ou = [} Bt u(s)ds in QxJ,
u=0 on 9Q x J, (L.1)
u(-,0) = ug in Q,
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with ug € L*(Q), where Q c R?, d € {2, 3} is a bounded convex polygon or polyhedron,
J=(0,T], 0<T <oo. Here u=u(x,t) is a real-valued function in Q X J and
u; = Ou/ot. Further, A(?) is a second-order self-adjoint, uniformly positive-definite
elliptic operator of the form

Lo d
A = - ]Zl e (a5 )+ ao(x. 1),
and B(t, s) is a general second-order elliptic differential operator,
d

0
B(t,s) = ; 6x]( st 5) o ) Zb (ot s) - b )1
Equations of the type described above arise naturally in nonlocal flows in porous
media [4, 5] and heat conduction through materials with memory [19].
We use the usual notations for L?, H, and H* spaces and their norms. Let A(7 ; -, -)
and B(¢, s ; -,-) be bilinear forms on Hé X Hé corresponding to the operators A(¢) and
B(t, 5), respectively. That is,

d
At; ¢, ¥) = f (Z a;j(x,1) ¢a—w ao(x,t)fﬁw)dx
ij=1

and

B(t, 5:¢(5),¥)

[(Shin 0% S

i,j=1

)ax.

The weak formulation for (1.1) may be stated as follows: find u : J — Hé such that

{(ut, $) + A u, ) = [ B(t, s;u(s), $)ds, $eHlre)

u(0) = uy. 1:2)

Now we define a semidiscrete Galerkin approximation of u. Let A withO </ < 1 be
the discretizing parameter of a regular triangulation of Q. Let S, be the corresponding
finite-dimensional subspace of H(l) such that the following approximation properties
hold for all v e Hy N H?, k € {1,2}:

inf [v = gall; < pohIvlle, j € (0,1}, (1.3)
PhES )
where p is independent of 4.

The semidiscrete Galerkin approximation to a solution « of (1.1) is to find u,(¢) € S},
for ¢ € J satisfying

(uht’ ¢h) + ﬂ(l, Up, ¢h) = f(; B(t’ A\ Mh(s), ¢/’l) ds’ ¢h € Shs t> 07 (14)

with u;,(0) = Pjuo, where Py is an L>-projection of 1 onto S .
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Below we present our main result on [*-error estimates of e = u — uj,, when the
initial data ug € L?.

Tueorem 1.1. Let u and uy, be the solutions of (1.2) and (1.4), respectively, with
u(0) = ug and uy(0) = Prug. Then there exists a positive constant C independent of
h such that the following estimate holds for t > 0:

llu(r) = un ()]l < Ch*tlugl-

Yanik and Fairweather [23] have derived optimal error estimates for smooth
solutions to a class of nonlinear problems with only the first-order partial differential
operator B. Cannon and Lin [2, 3], Lin et al. [10], Lin and Zhang [11] and Pani
et al. [18] have proved a priori error estimates for PIDEs for smooth initial data using
Ritz—Volterra projection, in place of elliptic projection, which is normally used for
the derivation of optimal error estimates for Galerkin approximations to parabolic-
type equations. Thomée and Zhang [21] have obtained optimal L?-error estimates for
smooth and nonsmooth initial data using a semigroup theoretic approach combined
with a use of the inverse of an associated elliptic operator, when A is independent of
time. Subsequently, based on an energy argument and parabolic-type duality, Pani
and Sinha [16] have proved an optimal L’-estimate for the semidiscrete Galerkin
approximation to a more general time-dependent PIDE with nonsmooth initial data.
Pani and Peterson [13] and Pani and Sinha [17] have discussed the effect of quadrature
for nonsmooth initial data using a combination of integration in time and a use of the
inverse of an associated elliptic operator. For a completely discrete scheme based on
the backward Euler method, optimal error estimates are derived by Pani and Sinha [15]
and Thomée and Zhang [22].

In order to continue our investigation on an alternate approach, which started with
optimal L?-estimates for semidiscrete Galerkin approximations to parabolic problems
with nonsmooth data [6], in this paper we extend this approach to prove Theorem 1.1
for PIDEs (1.4) when initial data uy € L?. Again our approach is based on an energy
argument combined with repeated use of a time integral operator

o(t) = fo ¢(s)ds, (1.5)

instead of using the inverse of an associated discrete elliptic operator along with
a semigroup theoretic approach as per Thomée and Zhang [21] or using energy
arguments with parabolic-type duality techniques as per Pani and Sinha [16].
Essentially, our proof technique depends mainly on an energy argument which follows
the standard pattern of error analysis related to PIDEs with smooth data. Therefore,
as per Goswami and Pani [6], we believe that our approach unifies both these theories,
one for smooth data and the other for nonsmooth data, under one umbrella. While the
technique of using integration in time for nonsmooth data is not new, it has not been
used to its full potential (see Goswami and Pani [6] for some comments on related
papers [8, 14, 16]). Moreover, our superconvergence result, Theorem 4.4, is new in
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the context of PIDEs with nonsmooth data and, as a consequence, a maximum norm
estimate is derived (Corollary 4.5). Further, superconvergence analysis can be used
for better recovery of the gradient of the solution under a uniform mesh. Compared to
the work of Goswami and Pani [6], the analysis of the present article becomes quite
involved due to the presence of the integral term and the repeated use of the time
integral operator under the integral term. For example, we need a careful analysis of
the Ritz—Volterra projection and the related estimates using the time integral operator
(1.5), especially for the time integral term in (1.1). The essential idea is to bring
out the interaction of the time integral operator and the integral term and to use it
judiciously to the advantage of optimal error estimates for the present problem with
nonsmooth initial data. The present article is a refined version of our Oxford Center
for Collaborative Applied Mathematics preprint [7].

Section 2 deals with some a priori estimates and regularity results for the exact
solution. The Ritz—Volterra projection is introduced in Section 3 and related estimates
are carried out. Section 4 focuses on optimal [*-error estimates, when nonsmooth
initial data ug € L*(Q), and concludes with a superconvergence result which is then
used to derive the maximum norm estimate for PIDEs (1.4) defined on a two-
dimensional spatial domain.

Throughout this article, we denote by C a generic positive constant, which may vary
from context to context.

2. A priori estimates

In this section, we derive some a priori bounds which are needed in our subsequent
error analysis.

For our future use, we assume that the principal part of A(¢) is uniformly elliptic and
the coefficient ag > 0. Further, we assume that all the coefficients of A(¢) and B(¢, s) are
smooth and that their derivatives are bounded in their domains of definitions. Based
on the assumptions on the coeflicients, it is straightforward to show that the bilinear
form A(t; -, -) is coercive, that is, there is a positive constant p; independent of ¢ such
that

A ¢.9) = pilllly, ¢ € Hy. .1
Also, the domain being a convex polygon or polyhedron, there is a positive constant
02 independent of ¢ such that

I9ll2 < pall ANl ¢ € Hy N H>. 22)
Finally, there are positive constants p3 and p4 independent of ¢ such that
LA ¢, )| < p3ligllillilly,  ¢,v € Hy,
1B, 53 $(5), )| < pallOIliIglli,  G(s).s € Hy.
We now define the bilinear form A(z;-,-) : Hy x Hy — R by
d

A= [ (]Z s 058 5+ St o) ds. 0.0 e H,
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As the coefficients and their derivatives are bounded both in time and space, we
conclude that there exists a positive constant ps5 independent of ¢ such that

VA 6, 0| < pslldllilwll, .0 € H.

We present below some a priori estimates and regularity results for the solution of
(1.1), when ug € L. For a proof, we refer the reader to Pani and Sinha [16].

LemmMa 2.1. Let u be a solution of the PIDE (1.1) and uy € L*. Then the following
estimates hold for t € J:

! t
Hlu@dlF + f sllus()IP ds < Clluol®,  llu @I + f Sllus(s)IF ds < Clluoll,
0 0

la@®ll2 < Clluoll,  tlu@®ll2 < Clluoll.
Next we discuss the estimates for ||u,||; and ||u|,, again when g € L2

LemMa 2.2. Let u be a solution of the PIDE (1.1) and uo € L. Then the following
estimate holds for k € {1,2} and t € J:

ludle < C D)1y,

Proor. Differentiate (1.1) with respect to time to obtain
t
uy + A(Ou, + A, (Hu = B(t, Hu(t) + f B,(t, s)u(s) ds. 2.3)
0

Multiply (2.3) by £*A(f)u;, integrate over Q and rewrite the resulting equation as
(e, CA)U;) + (AO)ug, £ ADU;) = —(A(Ou, PA@U,) + (B(t, Du(t), £ A@)ur)
!
+ f (Bi(t, $)u(s), LA(Du,) ds. (2.4)
0
Observe that

d d
E(”ta t3A(t)u,) = d_tt3ﬂ(t; Uy, Uy)
= 32 At g, uy) + LA up, 1) + 28 At uy, ). (2.5)

Using integration by parts, rewrite the last term of (2.4) as
!
f (B/(t, $)u(s), PA(Muy) ds = £'(By(t, Dar), At)ur)
0

-7 f (Bys(t, $)i(s), A(u,) ds. (2.6)
0
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On substituting (2.5) and (2.6) in (2.4), we arrive at
S A1) + PGP
= %tzﬂ(t; Up, Uy) + %ﬁﬂ,(z; U, up) — £ (A(u, A(Duy) + £ (B(Et, Hu(t), A(Duy)
+ 2B, D), A(Duy) + £ fo t(B,X(t, )i(s), Atyuy) ds.
Integrate the above equation with respect to time from O to #, and use (2.1) and (2.2).

The smoothness of the coefficients of A(f) and B(¢, s) along with Young’s inequality
yields

! f f
Pllull + f s Nus()Il; ds < Cf s (lus(DIIT + llu(s)IR) ds + Cf s*lacs)3 ds.
0 0 0
After applying Lemma 2.1 we obtain
t
Pllul + f s llus(s)II5 ds < Clluol*.
0
Now multiply (2.3) by #3u;, and integrate over Q to obtain
!
Pllugl® + A wy, Cug) + At u, Pug) = Bt t; ult), Cuy) + f Bi(t, 53 u(s), L) ds.
0
Note that
d s 2 3 3
E(l‘ At ug, up)) = 3°A(t up, ug) + £ A ug, 1) + 26 AL uy, uyy)
and
f f
f By(t, s u(s), Cuy) ds = £ B,(t, 1, 0(1), uyg) — 1 f Byt 3. 0(5), uy) ds.
0 0
Hence,

1d 3 1
Ellugll* + ﬁww; U, ) = Etzﬂ(t; g Uy) + zﬁﬂt(r; Uy, ) — C At U, )

+ ISB(Z, fou, uy) + I3Bt(t, 1, 0(1), uy)
t
-7 f By(t, 53 0(5), uy) ds.
0

Use the Cauchy—Schwarz inequality along with Young’s inequality and then integrate
with respect to time from O to 7 to obtain

t3ﬂ(t;ut,uz)+fo S3|Iuss(S)||2dS£Cfo{sz(llus(S)II%+IIM(S)|I§)+IIft(S)Ilg}dS-
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Using (2.1) and Lemma 2.1, we find
Pllu|I7 + fot 8 luss ()| ds < Clluol*. 2.7
Now differentiate (2.3) with respect to time to obtain
Uy + A(Duy + 2A,(Ou; — Ayu = B(t, Hu, + 2B(t, Hu + fot B, (¢, s)u(s)ds. (2.8)
Multiply (2.8) by #*u,, and integrate over Q to rewrite it as

1d
M(r“nunuz) + A wy i) = 20 | — 26 A 14y, 1) — Ayl (85 10, 114)

+ 4Bt 1, u, uy) + 20 B, 1 uy, uyy)
+rt f I Bult, s;u(s), uy) ds
0
< 203 |uagl* + 8”utt||%
+ € (Il + ulf + fo A ds).

Use (2.1) and choose € = p/2. Finally, integrate and use (2.7) with Lemma 2.1 to
conclude that

!
lul® + f s luss ()} ds < Clluol*. (2.9)
0

Rewrite (2.3) as
AOu; = uy — A(Hu — B(t, Hu — j: Bi(t, s)u(s)ds
= u, — A(Hu — B(t, Hu — B,(t, Hiu(t) + fo l B,(t, s)i(s) ds.
Using elliptic regularity (2.2), we arrive at
ol < (Il + 1l + a1 + fo iR ds).

Multiply by #*, and use (2.9) and Lemma 2.1 to obtain
lluella < Ct 2 luoll,

completing the proof. O

3. The Ritz—Volterra projection

In this section we discuss the Ritz—Volterra projection and the related error
estimates which are useful for the proof of our main theorem.
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Following Lin et al. [2, 3, 10], define the Ritz—Volterra projection Wj, : (0,T] — Sy,
satisfying

At (u — Whu)(2), ¢h) = f B(t, s; (u— Whu)(s), ¢h) ds for all ¢h €Sy. (31)
0

We refer to Cannon and Lin [2] and Lin et al. [10] to see that the Ritz—Volterra
projection is well defined. We also use the Ritz projection R, = R(¢) : Hé - Sy
defined by

A(t;u — Ryu, ¢y) =0, forall ¢y, €Sy, ue H. (3.2)

With 6 = u — Rju, we discuss below some estimates for 6. For a proof, we refer the
reader to Luskin and Rannacher [12].

Lemma 3.1. For 6 as defined above and u € H(l) N H? with uy € L?, there is a positive
constant C independent of h such that the following estimates hold for k € {1,2},
j€1{0,1} and for t > 0:

l6); < CHNu(@ll < CHI 2 ug),
16Dl < CH = {llu@lle + s (@)l < CHT 2 gl .

Next, we present an estimate of § := fot 6(s) ds. For a proof, we refer the reader to
Goswami and Pani [6, Lemma 3.2].

Lemma 3.2. For 8 as defined above and u € Hé N H? with uy € L?, there exists a positive
constant C independent of h such that, for k € {1,2} and j € {0, 1},

1811; < CH*lug .

In the rest of this section, we prove estimates of 1 = u — Wju. Using the Ritz
projection, we set 7 = 6 — p, where 6 = u — Ryu and p = W,u — R,u. Hence, we now
rewrite (3.1) using (3.2) as

At p, dy) = f B(t, 5;p(5), dp) ds — f B(t,5,0(s), ¢p)ds forall g, €S, (3.3)
0 0

Using integration by parts in time we again rewrite (3.3) as
!
AL, p, ¢n) = B(1, 15 (1), ¢p) — f B(t, 5:p(5), ¢n)ds
0

- B(t,1;0(1), ¢p) + f Bi(t, 5:0(s),¢p)ds forall ¢, €S;. (3.4
0

Below, we discuss estimates of 7 and 7.

Lemmva 3.3. For n as defined above and u(t) € Hé NH? t>0, with ug € L?, there
exists a positive constant C independent of h such that the following estimates hold
forke{l,2}, je{0,1}, andt > 0:

In@)ll; < CH 2 uoll, 7@ < CHllugll. (3.5)
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Proor. Set ¢, = p in (3.4) to obtain
At p, p)

! 5
:ﬂmmm—fﬁwwmumw—&mﬁm+fwaaamw
0 0

Using the coercivity of A and the Cauchy—Schwarz inequality yields

! !
lloll < C(Ilﬁlll +f o)l ds + 16l +f I6C)Il1 dS)- (3.6)
0 0

To find ||p||;, we integrate (3.4) and obtain
!
ﬂ(t;ﬁ,aﬁh)—fﬂs(S;ﬁ(S),fﬁh)ds
0
8 s S
= f B(s, S;ﬁ(S),¢h)ds—ff B (s, 7, 0(7), ¢n) dr ds
0 0 Jo

—fB@xaﬁmMHjirﬁmm&ﬂmMM&
0 0 Jo

Choose ¢, = p and apply the Cauchy—Schwarz inequality and then the coercivity of A

to obtain . .
|thdj\ﬂﬂMM+j\wwmm)
0 0

Now an application of Lemma 3.2 yields

!
Bl < CH*Mluoll + Cf llo(o)ll1 dss.
0

Apply Gronwall’s Lemma to arrive at
ol < CA*lugl. (3.7
Using Lemma 3.2 and the triangle inequality, we obtain
Al < 118l + 1Al < CR* llugll. (3.8)
Now substitute the estimate of ||p||; from (3.7) in (3.6) and use Lemma 3.2 to obtain
lloll; < CAlug].
Again use the triangle inequality and Lemma 3.2 to obtain
Il < 1161l + lloll < A lul. (3.9)

To estimate 7 in the L?> norm, we now appeal to the Aubin—Nitsche duality
arguments and hence consider the following auxiliary problem:

ADp=H inQ, (3.10)
$=0 ondQ, (3.11)
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where ¢ € H> N H& satisfies the regularity condition

llgll> < ClIAl.
Note that

A = A ¢, 7) = A7, ¢ = x) + At ,x)  for some y € S (3.12)
On integrating (3.1) and using the fact that d(7(¢))/dt = n(t), we obtain

ﬂ(t;ﬁ,th)—f(;ﬂs(s;ﬁ(S),th)dS

- f Bs, 5:7(s), ) d - f f B i@ edrds.  (.13)
0 0 0

On substituting (3.13) with ¢, = y in (3.12) we obtain

t !
||f7||2=ﬂ(t;f7»¢—)()+foﬂs(s;ﬁ(S),)()dS+foﬂ(s,s;ﬁ(S),X)ds

5 S
- f f B.(s,T;7(7), x)dr ds
0o Jo

= At b— 1) - fo A5 7(8), ¢ — x) s fo Bs, 5:7(5), & — ) ds
. f f ' Bo(5, 770, — x) dr ds + f (7(s), AZ()6) ds
0 0 0
" fo (3(5), B'(5, $)) ds — fo fo (7). B (s, D)) dr ds

< (il + fo Il ds o ~ i + fo Il ds gl

Here A;, B*(t,t) and B;(¢, s) are the formal adjoints of A,, B(t,f) and B(t, s),
respectively. Using the approximation property (1.3) for §,,(3.8) and (3.9), we obtain

!
||ﬁ||SCh2||Mo||+f ()l ds.
0

Now use Gronwall’s Lemma to obtain the desired estimate for ||7]|.

To find the estimate of ||5||, we again consider the auxiliary problem (3.10) and
(3.11) by replacing the function 7} by . Then we proceed similarly as for the estimate
of ||7]|, and obtain

! !
IIUIISCh(IIn|I1+IIﬁII1+ f IIﬁ(s)Illds)+C(|If7|I++ f IIﬁ(s)IIds)-
0 0

Using (3.5) with (3.9) yields the desired estimate of ||n|| and completes the proof. O

In the following lemma we discuss the estimate of ||r;]|.
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LemMa 3.4. For n as defined by (3.1) and ug € L?, let both u(t) and u,(t) be in H(l) N H?
fort € J. Then there is a positive constant C independent of h such that

Il < Chzf_z”m)” fort>0.

Proor. To find the estimate of ||r;||, we first obtain an estimate for ||p/||;. Differentiate
(3.3) with respect to time to arrive at

AL; pr, Bn) + AL p, 1) = B(t, £, p, ) + fo Bi(t, s;0(5), dp) ds

t
- B(1, 1,6, 1) — f B,(1, 5:6(s), o) ds. (3.14)
0
Using integration by parts in time, rewrite (3.14) as

AL, pr, b)) + AL p, D)

=B, t;p, ) + Bi(t, t;p, dp) — fo Bys(t, 5;0(5), dp) ds

- B(t,1;6, ¢n) — B(1, 1, 0(5), 1) +f Bys(t, 5;0(s), ¢n) ds. (3.15)
0

Choose ¢, = p, in (3.15) to obtain

/
A(t; pr.pr) = =At; 0, 01) + B, 50, p1) + Bi(t, 1,0, p1) — f Bys(t, 550(5), pr) ds
0

!
- B(t,1;,0,p,) — Bilt, 1;0,p,) + f Byi(t, 5;0(5), py) ds.
0

Using (2.1) and the smoothness of the coefficients of A(f) and B(t, s), we find

t
llodlr < C(Ilplll +oll + 1161l + (16l + f (ol + ||9(S)||1)dS)-
0

Use of (2.1), Lemma 3.1, Lemma 3.2 and (3.7) yields
llodl < Chi™" " lugll.
Hence the triangle inequality and Lemma 3.1 yield
Il < 16dh +llodh < Che~?lluol. (3.16)

For the L? estimate, we again consider the auxiliary problem (3.10) and (3.11), now
replacing the right-hand side of (3.10) by n,. Note that ¢ now satisfies the regularity
condition

lgll> < Climl. (3.17)
Observe that, for y € Sy,

Il = At 00 ¢ — x) + AW 71, X)

!
=At;n, ¢ —x)— At x) + Bt t,n,x) + f Bi(t, s;n(s), x) ds.
0
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Here we have differentiated (3.1) with respect to time and then substituted the value of
A(t; 11, x)- Integrating by parts in time, we obtain

Indl* = At 7, ¢ — x) + At 1 ¢ — X) — At 1, ) — Bl 1,1, — X)

Bt @) - Bl 1 7(5), b - x) + j; Bt 5:7(5), & — x) ds

+Bz(t,S;f7(t),¢)—j(;Bm(t,S;ﬁ(S),ﬂﬁ)dS-

Using the smoothness of the coefficients of A(¢) and B(¢, s), we obtain

!
> < C(Ilmlll + Il + 1171l +f 17CIl1 dS)II¢ = xlh
0

+C(II77II+I|f7I|+ fo ||f7<s)||1ds)||¢||z.

Using the approximation property (1.3), Lemma 3.3, (3.16) and the regularity result
(3.17), it follows that
Il < CH* 2 |lugll

This completes the proof. O

4. Semidiscrete error estimates for nonsmooth data

In this section we discuss the proof of our main theorem, Theorem 1.1. Observe
that e = u — u, satisfies the following equation:

(e, dp) + Alt; e, pp) = f B(t, s;e(s),pp)ds forall ¢, € Sy, 1> 0. “4.1)
0

Using the Ritz—Volterra projection Wju of u, we rewrite
e=u—uy=w—Wyu)— (up — Wpu) =:n-¢£.

Using equation (3.1), equation (4.1) can be written as

(& n) + AGE, ¢n) = (1o, Pi) + fo B(t,5:6(s), pn)ds  forall g, €Sy (4.2)

We now sketch the proof of our main theorem.
ProoF oF THEOREM 1.1. Choose ¢, = £3&(¢) in (4.2) to find that

ld 5 .o e de (3 2na2 L 3 s (" .
S ||$||)+ﬂ(r,§,tf>—(2t Il +r<nt,§>)+r fo B(t, 5 £(5).€) ds.

Integrate with respect to time. Then the coercivity property (2.1) for A(z; -, -) yields

PlIEIR + 201 j; SIESIT ds < f0(3S2I|§(S)||2 +25°(1,(5), £(5))dss

+2 f f ' S B(s, 13 E(1), £(5)) dr ds
0 0
=1 +h. (4.3)
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Rewrite the I term as

h<cC f PlEIP ds +C f S lins()IP ds. (4.4)
0 0

From Lemma 3.4 we obtain
2 4,4 2
[l7:1I" < CR™tluolI,

and hence )
f s*ns(IPds < Ch*tlluoll*. 4.5)
0

For the estimate of I}, if we can obtain the estimate of the first term on the right-hand
side of (4.4) as

!
f SIEIP ds < Ch*tlluo|, (4.6)
0

then substituting (4.5) and (4.6) in (4.4) yields
I < Ch*tl|uo|*.

For I,, integrating by parts we rewrite
L=2 f S B(s, 53 E(5), £(s)) ds — 2 f f S S B (s, 73 E(1), £(s)) dr ds
0 0 0
=2 f s B(s, 5:&(5),£(5)) ds — 2 f S By (s, 5;(s), £(s)) ds
0 0

+2f fs S3BTT(S,T;é(T),f(S))deS,
0o Jo

and hence we find

Il < 1 fo SIEIPds +C fo SIESIE + 1D ds.

Further, for the second term on the right-hand side of /5, if we have an estimate, say,

j(;(SIlf(S)IIf +IES)IR) ds < Ch*lluol P, 4.7)

then using (4.7) in I, yields

!
|12|Sp1f SN ds + Chtllugl.
0

Substituting the estimates of I} and I, in (4.3), we obtain

t
Pl + f SN ds < Ceh*luoll, (4.8)
0
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and hence
€Il < CR*tug. 4.9)

Now, from Lemma 3.3 with k =2 and j = 0 and (4.9), we conclude that
llell < Ch*tluoll,

and this completes the proof of Theorem 1.1. O

It remains to obtain the estimates (4.6) and (4.7), which we do now.
With u;,(0) = Pjug, integrate (4.1) twice. Use (3.13) and its integrated version to

obtain
& o) + At E, ¢n) - fo A(s3 E(5), pr) ds
=, ¢n) + fo B(s, 5;€(5), pn) ds
- f f SBT(S,T;E(T),@,)des for all ¢, € S, (4.10)
0 0
and

@ 1) + AL E o) - 2 fo A(5:£(5). op) ds + fo fo Ae(r:£(0), 1) dr ds
= (7, én) + fo B(s, 5:€(s), ¢) ds — 2 fo fo B.(r. 11 é(x), ¢y dr ds

t s T n
+ f f f B (1,7 E(T), ¢p)dr’ drds  for all ¢, € S, 4.11)
0 Jo Jo
respectively. Below we prove two lemmas involving estimates of &.

Lemma 4.1. Leté satisfy (4.11). Then there exists a positive constant C independent of
h such that the following estimates hold for t > 0:

~ t ~
€I + f IESIT ds < Cih*uol?, (4.12)
0
~ f
1T + f IESI ds < Cth*uol. (4.13)
0

Proor. Choose ¢, = é(t) in (4.11) to obtain

1d » 2 A ! 2 2 tors 2 A
5%“5”2 + At €,6) = 2[ As(s;6(5), ) ds — f f Ae(1:6(7),§) d ds
0 0 0

.+ fo Bs, 5:£(5). &) dis

—Zf fSBT(T,T;é(T),g)deS
0 Jo

! S T A A
+ f f f B (1,7 E(T), &) dr’ dr ds.
o Jo Jo
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Apply the Cauchy—Schwarz inequality along with Young’s inequality and then
integrate the resulting inequality to arrive at

B+ f I ds < C f )P ds +C f (1R + f IR dr) ds.

Use Lemma 3.3 and then apply Gronwall’s Lemma to obtain the estimate (4.12).
To estimate (4.13), set ¢, = f(t) in (4.11) to obtain

IR + A 8 =2 fo A(s:(s),8)ds - fo fo A (1), &) dr ds

+(7,8) - fo B(s, 5:4(s),8) ds

+2 f f Bt ). by drds
0 Jo

+f fsfTBTT/(T,T';g(T/),é)dT’deS. (4.14)
0o Jo Jo

d A 2 A2 A
Eﬂ(t;f,f) (1,8 + 2A(1; 6, ),

Since

we rewrite (4 14) as

3 3 1 3 3 A 2 3 ! YN
IR + ——ﬂ(r Eb=sawtdvmd-2A0:80 + ( fo Als: &(5).8) ds)
2 a0 df (" A .4
LB 16,8 - Zr( fo Bs, 5:£(5), &) ds)
+ f Ag(s:€(5), &) ds -2 f By(s, 5:£(5), &) ds
0 0

d e A \ . )
- d—(f f (Are(1;6(1), &) — 2B (1, 1; (1), €)) dT ds)
t\Jo Jo

t s T n n
+ i(f f f B (1,7 E(T), &) dr’ dr ds)
dit\Joy Jo Jo

- f f SBST(S,T;é(T),é)deS. (4.15)
0 0

Integrate (4.15) with respect to time and use the coercivity property (2.1) of A(t; -, )
with the smoothness of the coefficients of A(¢) and B(¢, s). Then an application of the
Cauchy-Schwarz inequality with Young’s inequality yields

t R ! LN
f IEIP ds + IEDIIT < Cf A1 ds + Cf IESI ds.
0 0 0
Using (4.12) and Lemma 3.3, we obtain

~ t
IEIT + f IEI ds < Cth*uol?,
0

and this completes the proof. O
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Levma 4.2. Let & satisfy equation (4.10). Then there exists a positive constant C
independent of h such that, fort > 0,

!
il + f SIESIT ds < Crhlul?, (4.16)
0
t
2l + f SIS ds < Colllug . (4.17)
0

Proor. Choose ¢, = té’(t) in (4.10) to obtain

ld . fa 1o ¢ L. .
5 7 IER) + 1A £.8) = SIEP +1 f A(5;8(5),8) ds + (1, &)
0
+1 f B(s, 53 &(5), &) ds — t f f 5 B (s,1; (1), ) dr ds.
0 0 0
Then integration by parts with respect to time yields
1d . ~ A 1 . 2 n ! 2 . R
zd_t(t||§||2)+tﬂ(t;§’§): §||§||2+tﬂt<t;§<r),§)—t fo A(536(),E) ds + 1(, &)
+1B(t, 1, £(1),8) - 2 f By(s, 5:£(5),8) ds
0
+1 f f "B (5.1 b0, By drds. (4.18)
0 0

Now integrate (4.18) with respect to time to obtain

1
2

- f f Ao (e £, E(s)) dr ds
0 0

1 R ! R R 5 R 5 2 R

SR + fo S A(s: &(5), &(s)) ds = fo IR ds + fo 5 A5 205), () dis

+ f s(n, &) ds + f sB(s. 5:£(5),&(s)) ds
0

0
-2 f f S $B.(r, 1:£(1),&(5)) ds
0 0

+f fs fTSBT/Tf(T,T';é(r’),f(s))dT'des.
0o Jo Jo

Therefore, using the coercivity property (2.1), the Cauchy—Schwarz inequality and
Young’s inequality, it follows that

HIEN* + fo slé)lifds < C fo (I + L) + 1)) ds.

Now use Lemma 3.3 and (4.13) to arrive at (4.16).
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In order to estimate (4.17), set ¢, = 2£(¢) in (4.10) to obtain
PlEPR + LA E &) - 1 f Ay(s:€(s),€)ds = (. &) + f B(s, 5:&(5), 7€) ds.
0 0
Note that
ldQﬂ.AA_ﬂ.AA tzﬂ L& ¢ Zﬂ.'\
zd_t(t (ta§7§))_t (t’§7‘§:)+5 t(l,f,§)+t (t7§7§)7
and hence
1d a A a A 2 n oA ! o
2lléR + za(tzﬂ(f, &) = tAL;€,6) + %ﬂz(t;f, &+ tzfo As(s;£(5), &) ds
+2m,6) + f B(s, 5:(5),€) ds
0

e f f ' B.(s, 1 &(1), &) dr ds.
0 0

Integrate the above equation with respect to time from O to ¢ and then rewrite the
resulting equation as

fo P ds + AR AwE)
= fo [(sﬂ(s;&s),é(s)) + gﬂxs;é(s), &())
+ 57 ((5), £(5)) — S A(s5;8(5), () — 5 B(s., 5 éf(s),éf(s))) ds
+ 1 fo A £(5), &) + B(s, 5:£(5),£(1))) ds
-2 fo ' fo (AL £, E) + Br, 10, E5)) dr d
P fo t fo 85,1800, E0)) dr ds

. f f 28,5, 7,21, &(5)) dr ds
0 0

+2f fs fTSBT/(T,T';E(T'),E(S))dT'des
o Jo Jo

==Lh+hL+L+14+ 15+ 1. (419)

To estimate /; on the right-hand side of (4.19), we obtain

L[ e ‘o
|Il|§§f S2II§(S)||2dS+§fSZIIU(S)IIZdS+Cf||§(S)I|%dS-
0 0 0
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For I, use integration by parts in time to rewrite
b = AR E0,40) + B, 1,0, 40)
-7 fo (Al5:805),0) + B,(5, 56, E0) ds
and hence obtain
ol < 2L 2IEIR + (i + fo 1B ds)
For 1, again use integration by parts in time to obtain
Ii= -7 fo 8,05, s E0. &) ds + P fo t fo 85, 0. 80 dr ds,

and hence .
1< 2218 + ¢ [ o ds
0

Similarly, rewrite I3, Is and I as
L=-2 fo ' S( A5 B05), £ + B, 5: £, 25)) ds
+2 fo l fo S A £, E5) + Bulr, 1), B drds,
Is = fo 28,05, 5.5, 85 ds - fo Z fo R8s, 1, A5 drds,

Iy =2 f fs $B.(7, 7 2(7), é?(S)) drds
0 Jo
— 2 f fs f‘l’ S:BT’T’(T, T/; 2(7_/), é\:(s)) dT’ dT ds'
0 0 0

t ro.
s+l < € [ siéoRds +C [ IR s
0 0

Thus

Substituting the estimates of Iy, ..., I in (4.19) and using the coercivity property (2.1)
yields

fo SIEIP ds + PIEIT < € fo (SIESIE + LI + IESIR) ds + CIEDIR.

From (4.12), (4.13) and (4.16), we obtain the estimate (4.17), and this completes the
proof. O

Observe that the estimate (4.6) is derived in Lemma 4.2 and estimate (4.7) is
obtained from Lemmas 4.1 and 4.2. This completes the proof of Theorem 1.1.
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Remark 4.3. For a completely discrete scheme based on the backward Euler method,
we obtain from Pani and Sinha [15, Lemma 3.10] that at each time level 1,

1
U™ = ()] < Ckz,;l(l +log %)Huoll, (4.20)

where U" denotes the backward Euler approximation at #,,. Note that at each time level
t,, we find from Theorem 1.1 that

() = un(t)ll < CH2, lugll. (4.21)

Combining (4.20) and (4.21), we therefore arrive at the following final completely
discrete error estimate:

1
lu(t,) — U"|| < Ct;l(hz + k(l +log z))nuon.

Below we discuss a superconvergence result for £ in the H' norm.

TueoreM 4.4. There is a positive constant C independent of h such that, for t € (0,T],
the following superconvergence result holds:

IEDN < CR23lug).

Proor. Setting ¢, = t*¢, in (4.2), we obtain

PN + AR EE) = i, ) + f B(t, 53 £(s), 1°&) ds.

0

Observe that

d%(r“ﬂ(r; £,6) = dPALEE) + 2 AW EE) + P A(LE 6
and

dit(r“zs(r, 5:E(5), &) = AL B(t, 5,£(5),€) + ' B(t, 5:£, &) + ' By(1, 5, £(5), 6).

Therefore,
1d 1
e + m{r“ﬂ(n EO) =101, €) + 20 A E,E) + 5:“3{,(:;5, &)

d ' 4 . _ 4 .
+E( fo tB(t,s,f(s),f)ds) B, 1;4,£)

- f (4 B(t, 5;E(), €) = 1*By(t, 5,(5), €)) ds.
0

Integrate the above equation with respect to time and then use the smoothness of
the coefficients of A(f) and B(z, s) with the Cauchy—Schwarz inequality and Young’s
inequality to obtain

t ! f
t4ﬂ(t;§,§)+f SEIP ds < 2[ s*linglP? dS+Cf S+ EWIT ds + %Ilfll?
0 0 0
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Using the coercivity property (2.1), we find

t t !
t4||§||%+fS4||§s||2dsécfs4||77sII2dS+Cfs3||§||fd5-
0 0 0

We conclude, using Lemma 3.4 and (4.8), that

!
411412 41 12 42
€11 +f s*IEI™ ds < Ch™ tlluoll”,

0

and hence
€l < CR2 3 lugl. (4.22)

This completes the proof. O

As a consequence of Theorem 4.4, we now obtain the following maximum norm
estimate.

CorOLLARY 4.5. Assume that the triangulation is quasiuniform and d = 2. Then there
exists a positive constant C such that, fort € (0,T],
e = un)@ll < CH* e~ log Al lluoll + 1~ llog AP luollL).

Proor. Since d = 2, and the triangulation is quasiuniform, we note from the subspace
Sobolev inequality [1, 20] for elements in S, that, for ¢ € (0, T'],

Il < Cllog A" ?|lyll; forall y € Sy, (4.23)
where || - || denotes the L*-norm. Now, from (4.22), we arrive using (4.23) at
€lleo < Ch*log A1 ug. (4.24)
From a paper of Lin [9], we note that for u € W>* n H> N Hy,
7lleo = llu = Windlleo < Ch*[log AI'1 [ug]lco- (4.25)

From (4.24) and (4.25), we conclude using the triangle inequality that
lelleo < I1nlleo + IElleo < Ch*log A" llugll + 1~ lluolleo),
and this completes the proof. O

Remark 4.6. The superconvergence analysis can be used for better recovery of the
gradient of the solution under a uniform mesh.
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