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Time series of counts often display complex dynamic and distributional charac-
teristics. For this reason, we develop a flexible framework combining the integer-
valued autoregressive (INAR) model with a latent Markov structure, leading to the
hidden Markov model-INAR (HMM-INAR). First, we illustrate conditions for the
existence of an ergodic and stationary solution and derive closed-form expressions
for the autocorrelation function and its components. Second, we show consistency
and asymptotic normality of the conditional maximum likelihood estimator. Third,
we derive an efficient expectation–maximization algorithm with steps available in
closed form which allows for fast computation of the estimator. Fourth, we provide
an empirical illustration and estimate the HMM-INAR on the number of trades of
the Standard & Poor’s Depositary Receipts S&P 500 Exchange-Traded Fund Trust.
The combination of the latent HMM structure with a simple INAR(1) formulation
not only provides better fit compared to alternative specifications for count data, but
it also preserves the economic interpretation of the results.

1. INTRODUCTION

Traditionally, most time-series models have been developed for continuous data.
However, many of the recorded time series in finance, economics, climatology,
and biology are counts. Examples are the number of people infected by rare
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2 LEOPOLDO CATANIA ET AL.

diseases, the number of transactions recorded per unit interval of a given stock on
the financial markets, records of weapon offenses for different cities in the same
district/area, and the annual number of hurricanes in a U.S. state. The availability
of count data challenges the adequacy of the standard specifications, such as the
well-known ARMA class. In particular, the need to provide coherent forecasts of
integer-valued variables argues against approaches based on continuous transfor-
mations of the original data, and instead motivates the use of statistical models
designed for discrete random variables (see Jung and Tremayne, 2006b). As a
result, recent years have seen the emergence of various linear and nonlinear models
and methods for the statistical analysis of integer-valued time series, providing
alternatives to the ARMA specification. For an overview, see the latest surveys in
Fokianos (2012), Davis et al. (2016, 2021), and the discussion in Aknouche and
Franq (2021). Overall, the statistical analysis of discrete-valued stochastic pro-
cesses in N (or Z) poses substantial difficulties from a methodological viewpoint,
greatly complicating the underlying theory and model interpretation.

We contribute to this strand of literature by providing a new statistical frame-
work for the analysis of time series of counts that are typically characterized by
high over-dispersion, often associated with the switch from a low-counts regime
to a high-counts regime. In this article, we develop a flexible univariate model
specification that belongs to the class of integer-valued autoregressive (INAR)
models, originally proposed by Al-Osh and Alzaid (1987) and McKenzie (1985),
which can be viewed as an alternative to the Poisson autoregression specifications
outlined in Rydberg and Shephard (2000) and Fokianos, Rahbek, and Tjøstheim
(2009) and generalized more recently in Roy and Karmakar (2021) and Armillotta,
Luati, and Lupparelli (2022). Empirical applications of INAR models span several
fields (see, among others, Thyregod et al., 1999; Rudholm, 2001; Gouriéroux and
Jasiak, 2004; Pavlopoulos and Karlis, 2008). The main feature of the INAR is the
use of the binomial thinning operator of Steutel and Van Harn (1979) to model
the autocorrelation of the observations (see Weiß, 2008, 2015). Unfortunately,
the autocorrelation function of the standard INAR(1) model mimics that of an
AR(1) process, making it overly restrictive for practical applications. Furthermore,
the generalization of the INAR(1) model to the p-th order autoregression, i.e.,
INAR(p), or to ARFIMA-type dynamics (e.g., the INARFIMA), comes at the cost
of losing exact distributional properties, thus resorting to complicated inference
techniques (see Brännäs and Hellström, 2001 and Quoreshi, 2014). For this reason,
our modeling framework builds upon the simple INAR(1) setup, which we com-
bine with a latent Markov structure that allows for a very flexible characterization
of the dynamics of the series at hand and its complex distributional features.
Further extensions aimed at improving flexibility include the random-coefficient
INAR(1) of Zheng, Basawa, and Datta (2007), the random-environment INAR(1)
of Nastić, Laketa, and Ristić (2016), and the Markov-switching INAR models of
Alerini, Olteanu, and Ridgway (2017) and Lu and Wang (2022).

Our model belongs to the class of hidden Markov models (HMMs) (see
Vermunt, Langeheine, and Böckenholt, 1999; Bartolucci and Farcomeni, 2009;
Bartolucci, Farcomeni, and Pennoni, 2012; Zucchini, MacDonald, and Langrock
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2017), which we refer to as HMM-INAR. The hidden Markov structure is made
up of two independent Markov chains, one on the thinning operator and one on
the innovations. Conditional on the latent hidden Markov processes, the design of
the model is analogous to that of a simple INAR(1) Poisson process. We study the
conditions for a unique stationary solution and compute the analytical expressions
for the first two moments and the autocovariance function. Relying on the results
of Douc, Moulines, and Rydén (2004), this allows us to derive consistency and
asymptotic normality of the conditional maximum likelihood estimator (MLE).
Estimation is carried out by resorting to an efficient expectation–maximization
(EM) algorithm, whose steps are available in closed form, thereby enabling fast
computation of the MLE. We also examine the finite-sample properties of the
MLE through Monte Carlo simulations. In addition, with the hidden Markov
representation of the HMM-INAR, we derive the predictive, filtered, and smoothed
distributions of the latent variables as well as the joint predictive distribution of
the variable at hand. We provide an empirical illustration, estimating the HMM-
INAR using high-frequency data on the number of trades in the SPDR S&P
500 Exchange-Traded Fund (SPY). The time series exhibits complex dynamics
and extreme distributional characteristics, making it a suitable framework for
evaluating the adaptability of the HMM-INAR to these features.

The article is organized as follows. Section 2 presents the structure of the model.
Section 3 sets out the assumptions and discusses the existence of an ergodic
and stationary solution as well as the derivation of the first two moments. In
Section 4, we establish the consistency and asymptotic normality of the conditional
MLE. Section 5.1 presents an EM algorithm for computing the conditional MLE.
Section 6 provides the empirical illustration. Finally, Section 7 concludes the
article. The Appendix reports the proofs, and a supplementary material contains
additional results on model selection and on the empirical application.1

2. THE HMM-INAR

To fix the notation, we first introduce the baseline INAR(1) specification (see Al-
Osh and Alzaid, 1987). Let Yt ∈ N, t ∈ Z, be a nonnegative integer-valued random
variable following an INAR(1) process as

Yt = At +ηt, (1)

where ηt is the innovation term distributed as a Poisson random variable with
intensity λ and the term At = α ◦Yt−1 is defined in terms of the binomial thinning
operator, such as

1All results presented in this article are fully reproducible using the code available at:
https://github.com/leopoldocatania/hmminar/.
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4 LEOPOLDO CATANIA ET AL.

α ◦Yt−1 =
Yt−1∑
n=1

Xt,n, (2)

where Xt,n are i.i.d. Bernoulli random variables with success rate α ∈ [0,1). In
other words, the observable process {Yt} in (1) is generated by two latent random
components: At, representing the survivors from time t−1, and the innovation term
ηt, representing the new arrivals at time t.

If the goal is to model persistent time series of counts characterized by extreme
over-dispersion, the simple dynamic structure of the INAR(1) model is not
sufficiently flexible. In theory, the INAR(1) specification could be extended by
including p > 1 lags of At, i.e., the INAR(p) (see Alzaid and Al-Osh, 1990; Du
and Li, 1991). Unfortunately, establishing theoretical properties for the general
INAR(p) model is challenging, as discussed by Brännäs and Hellström (2001).
Moreover, maximum likelihood estimation is typically complex and computa-
tionally demanding, as shown by Bu, McCabe, and Hadri (2008) and Pedeli,
Davison, and Fokianos (2015).2 This greatly limits the range of applicability of
the INAR(p) model and makes it not particularly suitable to be combined with an
HMM structure, although Bu and McCabe (2008) show that an INAR(p) model
can be treated as a Markov chain with benefits for the computation of forecasts
and their confidence intervals. Furthermore, to account for over-dispersion or
under-dispersion of the data at hand, one may adopt a flexible distribution for
the innovations, ηt. For instance, several alternatives to the Poisson distribution
have been proposed; see the Negative Binomial of Al-Osh and Aly (1992) and
Gouriéroux and Lu (2019), the compound Poisson of Schweer and Weiß (2014),
the Geometric-INAR of Bourguignon and Weiß (2017), the mixture INAR (Mix-
INAR) of Pavlopoulos and Karlis (2008) and Roick, Karlis, and McNicholas
(2021), the zero-modified geometric INAR(1) of Kang et al. (2024), as well as
the flexible specifications of Qian and Zhu (2025), Aknouche and Scotto (2024),
and Weiß and Zhu (2024) within the class of INGARCH models.

We build the HMM-INAR upon the considerations outlined above. In particular,
we develop a flexible yet interpretable INAR specification by employing a mixture
of Poisson distributions with dynamic mixture probabilities for the innovations,
ηt, and pairing it with a time-varying probability of survivorship, α. Specifically,
we extend the baseline INAR(1) by allowing both α and ηt to depend upon two
latent Markov chains, ({Sα

t } and {Sη
t }), and an additional unobserved process, ({Zt}).

These unobserved processes significantly contribute to increasing the flexibility of
the model, while still maintaining the simple (and interpretable) INAR(1) structure
outlined in (1). We let Yt ∈ N be a nonnegative integer-valued random variable

2Furthermore, the interpretation of the features of the INAR(p) model is not as straightforward as for the INAR(1).
The INAR(p) allows for multiple parametrizations when p > 1 (see the discussion in Jung and Tremayne (2006b)
and the review in Jung and Tremayne (2006a)). In contrast, the INAR(1) model characterizes the random variable of
interest as the sum of survivors and new arrivals.
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following the HMM-INAR process:

Yt = At;Sα
t
+ηt;Zt(S

η
t ), (3)

where {Sα
t } is an ergodic first-order Markov chain with state space [1, . . . ,J] and

transition probability matrix �α = [γ α
i,j]

J
i,j=1, such that P(Sα

t = i|Sα
t−1 = j,Sα

t−s,s >

1) = P(Sα
t = i|Sα

t−1 = j) = γ α
i,j. The random variable At;Sα

t
is also integer-valued and

defined as

At;Sα
t

= αSα
t
◦Yt−1.

In this case, the binomial thinning operator is such that αSα
t
◦ Yt−1 = ∑Yt−1

n=1 Xt,n,

with Xt,n = ∑J
j=11(Sα

t = j)Xt,n,j, where 1(·) denotes the indicator function, and
Xt,n,j are Bernoulli random variables, independent over n,t, and j, with success rate
αj ∈ [0,1], i.e., P(Xt,n,j = 1) = αj, for j = 1, . . . ,J, with min

j
αj < 1. In other words,

the realization of Sα
t determines the success probability of Xt,n. Hence, conditional

on Yt−1 and Sα
t , the random variable αSα

t
◦ Yt−1 is Binomial with size Yt−1 and

success rate αSα
t
.

The innovation term, ηt;Zt(S
η
t ), depends upon the realization of the unobserved

variable Zt, which in turn is affected by an additional ergodic unobserved first-
order Markov chain, {Sη

t }, according to the hierarchical structure Zt = ∑
l=1

L1(St
η

= l)Zt, l. The random variables Zt, l, l = 1, . . ., L, are assumed to be independent of
Sα

t , Sη
t , and among themselves. They follow a categorical distribution on [1, . . . ,K],

such that P(Zt,l = k) = ωl,k, for l = 1, . . . ,L. To simplify the exposition, the notation
ηt is used in place of ηt;Zt(S

η
t ), and the stochastic representation ηt = ∑K

k=11(Zt =
k)ηt,k is exploited. Here, the variables ηt,k for k = 1, . . . ,K are assumed to be i.i.d.

Poisson distributed with intensity 0 < λk < ∞, meaning P(ηt,k = u) = λu
k e−λk

u! . All
ηt,k are assumed to be independent of Sη

t , Sα
t , and Zt. The chain {Sη

t } serves the
purpose of representing the innovation term ηt as a mixture of K Poisson variables,
where the composition evolves over time among L configurations, based on the
realizations of {Sη

t }.
In the next section, we study the properties of the model and derive closed-form

expressions of the mean, variance, and autocovariance function of {Yt} based on
the HMM-INAR specification.

3. PROPERTIES OF THE HMM-INAR

Before presenting the probabilistic properties of the HMM-INAR, we summarize
all the assumptions made so far in Section 2.

Assumption 1.

a) {Sα
t } is an ergodic unobserved first-order Markov chain with state space

[1, . . . ,J], with J fixed and finite, and transition probability matrix �α =
[γ α

i,j]
J
i,j=1, with γ α

i,j ∈ (0,1) for all i,j,
∑J

m=1 γ α
i,m = 1 for all i, and stationary

distribution πα , where πα = (πα
1 , . . . ,πα

J )′ and πα = �α ′πα .
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b) {Sη
t } is an ergodic unobserved first-order Markov chain, independent from {Sα

t },
with state space [1, . . . ,L] with L fixed and finite, and transition probability
matrix �η = [γ η

i,j]
L
i,j=1, with γ

η

i,j ∈ (0,1) for all i,j,
∑L

m=1 γ
η

i,m = 1 for all i, and
stationary distribution πη, where πη = (π

η

1 , . . . ,π
η

L )′ and πη = �η ′πη.
c) {Zt,l}, for all l = 1, . . . ,L, are i.i.d. categorical random variables, independent

among themselves, and independent from {Sα
t } and {Sη

t }, with K × 1 vector
of probabilities ωl = (

ωl,1, . . . ,ωl,K
)′

with K fixed and finite, ωl,k ∈ (0,1),∑K
k=1 ωl,k = 1 for l = 1, . . . ,L.

d) {Xt,n,j}, for all n = 1,2, . . . , are i.i.d. Bernoulli random variables with success
rate αj ∈ [0,1], for all j = 1, . . . ,J, with min

j=1,...,J
αj < 1, independent among

themselves, and independent from {Sα
t ,S

η
t ,Zt,l,l = 1, . . . ,L}.

e) {ηt,k}, for k = 1, . . . ,K, are i.i.d. Poisson random variables with intensities
λk ∈ (0,∞), independent among themselves and from {Sα

t ,S
η
t ,Xt,n,j,Zt,l,l =

1, . . . ,L,j = 1, . . . ,J,n = 1,2, . . . }.

Assumption 1 specifies the stochastic characteristics of the components in the
HMM-INAR model. In particular, Assumption 1(d) permits some, though not all,
αj to be equal to one. The presence of such “unit-root regimes” is a typical feature in
regime-switching and mixture autoregressive models (see Hamilton, 1989; Wong
and Li, 2000).

To study the properties of the HMM-INAR model, it is convenient to resort
to an alternative (yet equivalent) stochastic representation of the system depicted
in Figure 1. Specifically, we define a process {St} constructed by combining
{Sα

t }, {Sη
t }, and {Zt}. {St} is still a first-order ergodic Markov chain with state

space H = [1, . . . ,H], where H = JKL, with H × H transition probability matrix
�S = [γ S

i,j ]
H
i,j=1, and with stationary distribution denoted by the (H × 1) vector of

probabilities π = (π1, . . . ,πH)′ (see Lemma 1 below). The probabilities γi,j and πh

are recovered from the definition of {St}. Specifically, let (h1,h2,h3) → h be the
unique mapping between the indexes of the triplet {(Sα

t ,Zt,S
η
t )} and those of {St},

i.e., (Sα
t = h1,Zt = h2,S

η
t = h3) for some h1 = 1, . . . ,J, h2 = 1, . . . ,K, h3 = 1, . . . ,L,

denotes St = h, where h ∈H. Then, γ S
m,h := P(St = h|St−1 = m) = P(Sα

t = h1,Zt =
h2,S

η
t = h3|Sα

t−1 = m1,Zt−1 = m2,S
η

t−1 = m3) and πS
h := P(St = h) = P(Sα

t =
h1,Zt = h2,S

η
t = h3) with

γ S
m,h = P(Zt = h2|Sη

t = h3)P(Sη
t = h3|Sη

t−1 = m3)P(Sα
t = h1|Sα

t−1 = m1)

= ωh3,h2γ
η

m3,h3
γ α

m1,h1
,

πS
h = P(Zt = h2|Sη

t = h3)P(Sη
t = h3)P(Sα

t = h1) = ωh3,h2π
η

h3
πα

h1
,

for all h,m = 1, . . . H. It should be noted that the mapping (Sα
t ,Zt,S

η
t ) → St is

injective, allowing us to express the HMM-INAR model in (3) as

Yt = At,St +ηt,St, (4)
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Figure 1. The HMM-INAR path diagram.

Figure 2. The HMM-INAR path diagram under equivalent parametrization.

where the path diagram of this representation is reported in Figure 2. The condi-
tional probability mass function P(Yt = yt|Yt−1 = yt−1,St = h) is

P(Yt = yt|Yt−1 = yt−1,St = h) =
yt∧yt−1∑

q=0

e−λh2
λ

q
h2

q!

(
yt−1

yt −q

)
α

yt−q
h1

(1−αh1)
yt−1−yt+q,

(5)

where yt ∧ yt−1 = min(yt,yt−1), and it does not depend on h3 = 1, . . . ,L.
Examining the conditional distribution reveals how the components of the

Markov chains contribute to its structure. Specifically, when the chain Sη
t is turned

off (i.e., L = 1), the conditional distribution of ηt simplifies to a static Poisson
mixture with K terms. Further setting K = 1 reduces the distribution of ηt to a
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standard Poisson random variable. A similar interpretation applies to the chain
associated with the Binomial thinning operator. Disabling the chain Sα

t (i.e., setting
J = 1) results in the Binomial thinning operator producing a binomial distribution
with size Yt−1, while it is a mixture of binomial distributions with dynamic weights
when J > 1. In the next section, we establish the ergodicity and stationarity of
{(Yt,St)}, and in Theorem 2, we derive the moments of Yt, showing that although
Yt is conditionally independent of Sη

t given (Sα
t ,Zt), the inclusion of the Sη

t chain,
with L > 1 states, provides additional flexibility in the autocorrelation structure of
Yt, through the serial dependence of ηt.

3.1. Ergodicity and Stationarity

To show the existence and uniqueness of a strictly stationary ergodic solution of
HMM-INAR, we employ the St-representation of the model in (4). We indicate
with ϕ a measure on (H,H), which satisfies ϕ{i} > 0 for all i ∈ H, and with μ a
Lebesgue measure on (N,B), such that μ(A) implies (μ×ϕ)(A×B) > 0 for A ∈B
and B ∈H. Let (	,F,P) denote a generic probability space, and let H and B be the
σ -algebras generated by all subsets of H and N, respectively. The following lemma
establishes the ergodicity and stationarity of {St} as a consequence of ergodicity
and stationarity of {Sα

t }, {Sη
t }, and {Zt}.

Lemma 1. Suppose Assumption 1.a)–c) holds. Then, {St} is a time-homogeneous
first-order ergodic and stationary Markov chain.

The proof is provided in Appendix A.1. According to Lemma 1, the chain
{St} defined on (	,F,P) is stationary and ergodic, and it takes values in H.
Furthermore, {St} is ϕ-irreducible. In the following lemma, we establish two
results on {(Yt,St)} that are later used in Theorem 1 to derive the geometric
ergodicity of {(Yt,St)}.

Lemma 2. Suppose Assumption 1 holds. Then

a) {(Yt,St)} is a time-homogeneous Markov chain defined on (	,F,P) with state
space (N×H,B×H).

b) The Markov chain {(Yt,St)} is (μ×ϕ)-irreducible and aperiodic.

The proof is provided in Appendix A.2. In the following theorem, we establish a
sufficient condition for {(Yt,St)} to be geometrically ergodic. It is noteworthy that
Theorem 1 also establishes that the geometric ergodicity of {(Yt,St)} implies that
the observable process {Yt} is geometrically ergodic.

Theorem 1. Suppose Assumption 1 holds. Then, the Markov chain {(Yt,St)} is
geometrically ergodic. Furthermore, there exist a unique probability distribution
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π∗ and a positive number β < 1, such that, for any initial value x ∈N with Y0 = x,

lim
t→∞β−t‖P(Yt ∈ ·|Y0 = x)−π∗(·)‖τ = 0, (6)

where ‖ · ‖τ is the total variation norm.

The proof is provided in Appendix A.3.

3.2. Moments

We now derive the first two moments of the HMM-INAR and its autocovariance
function. For the derivation of the moments, we consider the single chain repre-
sentation outlined in Figure 2. We denote by α = ιKL ⊗ α and λ = ιJL ⊗ λ the
two vectors of length H containing the coefficients αj and λk for all the states of
{St}, with ιN denoting the vector of ones of dimension N. Let also A = diag(α),
� = diag(λ), and 	 = diag(π) be three H ×H diagonal matrices, and define G =
	−1�′	, and, for a square matrix X, X(n) = ∏n

i=1 X. In the following proposition,
we derive the first and second moments of Yt, At,St , and ηt,St , as well as their
cross moments. For ease of notation, we write At and ηt in place of At,St and ηt,St ,
respectively. In the following, we indicate with IH the H ×H identity matrix.

Theorem 2. Consider the HMM-INAR in (4), and let Y(1) and Y(2) denote
(E[Yt|St = h],h = 1, . . . ,H)′ and (E[Y2

t |St = h],h = 1, . . . ,H)′, respectively. By
Assumption 1, it follows that Y(1) = (IH − AG)−1λ, E[Yt] = π ′Y(1), E[At] =
π ′AGY(1), and E[ηt] = π ′λ. Furthermore,

Y(2) = (IH −AAG)−1 {
(IH +�)λ+ [A(IH −A)+2�A]GY(1)

}
,

with E[Y2
t ] = π ′Y(2), E[A2

t ] = π ′A
[
(IH −A)GY(1) +AGY(2)

]
, E[η2

t ] = π ′(IH +
�)λ, and E[Atηt] = π ′�AGY(1). Finally, for k > 0,

E[AtAt−k] = α′�′Mk	AGY(1) +α′�′ (A�′)(k−1)
	

[
Y(2) −

(
�Y(1) +λ

)]
E[Atηt−k] = α′�′Mk	λ+α′�′ (A�′)(k−1)

	
(
�Y(1) +λ

)
E[ηtAt−k] = λ′�(k)′	AGY(1), E[ηtηt−k] = λ′�(k)′	λ,

and

E[YtYt−k] = α′�′Mk	Y(1) +λ′�(k)′	Y(1) +α′�′ (A�′)(k−1)
	Y(2),

where M1 = 0, and Mk = ∑k−2
i=0

(
A�′)(i)

��(k−i−1)′ for k > 1.

The proof is provided in Appendix A.4. Given the results in Theorem 3,
we can analyze and compare the amount of over-dispersion and autocorrelation
generated by various HMM-INAR models. To clarify the state-space dimensions
of Sα

t , Zt, and Sη
t for each HMM-INAR specification, we introduce the notation

HMM(J,K,L)-INAR. The models considered here range from the simple INAR(1)
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Figure 3. Over-dispersion decomposition. The HMM(1,1,1)-INAR is denoted as 111, the
HMM(2,1,1)-INAR is denoted as 211, the HMM(1,2,1)-INAR is denoted as 121, the HMM(2,2,1)-
INAR is denoted as 221, the HMM(1,2,2)-INAR is denoted as 122, and the HMM(2,2,2)-INAR is
denoted as 222. The yellow area is the contribution of the variance of At to ID, the red area represents
the contribution of the variance of (ηt), and the blue area represents the contribution of 2Cov[At,ηt].

model (denoted as HMM(1,1,1)-INAR) to the HMM(2,2,2)-INAR model. Across
all models, parameter configurations are chosen to ensure a fixed mean of E[Yt] =
10. For the INAR(1) model, the parameters are set to α = 0.7 and λ = 3. In contrast,
for the more sophisticated HMM(2,2,2)-INAR model, the parameters are specified
as α1 = 0.80, α2 = 0.565, λ1 = 1, λ2 = 5, and

�α =
(

0.85 0.15
0.15 0.85

)
, ω1 =

(
0.2
0.8

)
, ω2 =

(
0.8
0.2

)
, �η =

(
0.95 0.05
0.05 0.95

)
.

Other specifications are derived by “switching off” certain components, restoring
those of the baseline INAR(1). In Figure 3, the height of each bar represents
the degree of over-dispersion generated by each model, as represented by the
index of dispersion (ID), defined as ID = Var[Yt]/E[Yt]. Furthermore, following
Theorem 2, ID can be decomposed as

ID = Var[At]+Var[ηt]+2Cov(At,ηt)

E[Yt]
.

In Figure 3, the yellow area represents the contribution of Var[At] to the over-
dispersion, the red area corresponds to the contribution of Var[ηt], and the blue
area reflects the contribution of 2Cov[At,ηt]. As expected, the baseline INAR(1)
model does not produce over-dispersion (i.e., ID = 1), with most of its variability
driven byVar[At]. All other HMM-INAR configurations generate over-dispersion,
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Figure 4. The ACF of the HMM-INAR model and its decomposition. The figure reports the ACF
of the HMM-INAR (orange dots) and its decomposition into four components. The yellow area is
Cov[At,ηt−k]/Var[Yt], the purple area is Cov[ηt,At−k]/Var[Yt], the red area is Cov[ηt,ηt−k]/Var[Yt],
and the blue area is Cov[At,At−k]/Var[Yt]. Panel a) reports the ACF of the baseline HMM(1,1,1)-
INAR, Panel b) the HMM(2,1,1)-INAR, Panel c) the HMM(1,2,1)-INAR, Panel d) the HMM(2,2,1)-
INAR, Panel e) the HMM(2,2,2)-INAR, and Panel f) the HMM(1,5,1)-INAR.

with the magnitude increasing as the number of states grows. Interestingly,
models HMM(2,1,1)-INAR and HMM(1,2,1)-INAR exhibit similar levels of over-
dispersion (approximately 1.8), but their sources differ. In the HMM(2,1,1)-INAR,
the majority of variability (about 83%) is due to Var[At], driven by the increased
persistence of the α chain. In contrast, the HMM(1,2,1)-INAR model attributes a
substantial portion of its over-dispersion (around 40%) to Var[ηt], arising from the
mixture of two Poisson random variables. When combining the α chain and the
Poisson mixture, as in the HMM(2,2,1)-INAR model, over-dispersion increases
further, with Var[At] remaining the dominant contributor. In all these cases, L = 1,
and Cov[At,ηt] = 0. Finally, over-dispersion is amplified in models with L > 1,
such as the HMM(1,2,2)-INAR model and the HMM(2,2,2)-INAR model. In these
cases, a significant portion of over-dispersion is attributed to Cov[At,ηt], which
arises from the time-varying composition of the Poisson mixture.

The persistence generated by the HMM-INAR process can be seen in Figure 4,
which illustrates the autocorrelation function of Yt for lags from 1 to 20 of
alternative parameterizations, as decomposed into four components. Some insights
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can be drawn. First, Panel (a) displays the ACF of the HMM(1,1,1)-INAR model,
which is the plain vanilla INAR(1). Second, in Panel (b), the chain on α with
J = 2 plays a dominant role in contributing to the autocorrelation, significantly
more important than the one with K = 2 in Panel (c), which is an INAR(1) with
a mixture of two Poisson random variables for ηt. Notably, in the model shown in
Panel (d), which incorporates both a chain on α and a Poisson mixture for ηt, the
contribution from the autocovariance of At (the blue area) is far more important
than the cross-autocovariance between At and ηt−k (the yellow area). Third, the
ACF of the model with L > 1, shown in Panel (e), exhibits a more complex
and diverse structure compared to models with L = 1. This is attributed to the
contributions from the autocovariance of ηt (red area) and the cross-autocovariance
between ηt and At−k (purple area). Fourth, Panel (f) reports the ACF of a Mix-
INAR model with five components (J = 1, K = 5, L = 1), calibrated to match the
number of parameters (M = 10), mean, and over-dispersion of the HMM(2,2,2)-
INAR model. The parameters of the HMM(1,5,1)-INAR model are set to λ1 = 1,
λ2 = 2, λ3 = 3, λ4 = 15, and λ5 = 26.5, with ω1 = (0.18,0.22,0.57,0.01,0.02)′.
In this case, the overall autocorrelation of the series is lower than that of the
HMM(2,2,2)-INAR model. In summary, by leveraging the double chain structure
and the categorical variable, the HMM-INAR process can generate a rich variety of
dynamic behaviors with relatively few parameters, avoiding the need for extreme
parameter configurations.

4. MAXIMUM LIKELIHOOD ESTIMATION

The estimation of the HMM-INAR parameters can be carried out by conditional
maximum likelihood (ML). In this section, we discuss the properties of the
estimator, while in Section 5.1 below, we present an efficient EM algorithm with
steps available in closed form that allow for fast computation of the MLE. For our
asymptotic analysis, we rely on the results from Douc et al. (2004) for general
Markov switching autoregressive models, exploiting the St representation of the
HMM-INAR model.

The HMM-INAR parameters are α = (α1, . . . ,αJ)
′ ∈ [0,1]J , λ = (λ1, . . . ,λK)′ ∈

(0,∞)K , ω = (ω′
1, . . . ,ω

′
L)

′ ∈ S
L
K (where SK is the standard K-th simplex),

vec(�α) ∈ MJ and vec(�η) ∈ ML, where MA denotes the space of all vectorized
A×A stochastic matrices with positive elements. Model parameters are collected
in the (M ×1) vector θ = (α′,λ′,ω′,vec(�α)′,vec(�η)′)′, where M = J +K + (K −
1)L + J(J − 1) + L(L − 1). Furthermore, θ ∈ �, where � = [0,1]J × (0,∞)K ×
S

L
K × MJ × ML ⊂ R

M . Following Proposition 1 in Zucchini et al. (2017), the
conditional log-likelihood function for a sample of length T, y1:T , denoted as

T(θ,s0) = logP(Y1:T = y1:T |S0 = s0;θ), takes the following form:


T(θ,s0) = log

[
e′

0P1

(
T∏

t=2

�Pt

)
ιH

]
, (7)
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where ιH is a vector of ones of length H, e0 is the s0-th column of the H-dimensional
identity matrix, Pt is an H×H diagonal matrix with generic element pt;h,h = P(Yt =
yt|St = h,Yt−1 = yt−1) defined in Equation (5) for h = 1, . . . ,H, and �S is the
transition probability matrix of {St}. The log-likelihood function (7) is defined
conditionally on an arbitrary initial state s0 ∈ H (which implies an initial state for
Sα

t , Sη
t , and Zt, through the map h) whose effect is proved to be asymptotically

negligible by Douc et al. (2004), under our set of assumptions. The same applies
to the initial Y0, which is set to zero, i.e., Y0 = 0. The MLE is

θ̂T,s0 = arg max
θ∈�


T(θ,s0), (8)

for an arbitrary s0 ∈ H. The following assumption is required to establish the
consistency and asymptotic normality of θ̂T,s0 . Let � be a (K × L) matrix with
generic element ωk,l for k = 1, . . . ,K and l = 1, . . . ,L.

Assumption 2. The matrix � has full rank with K ≥ L. Also, if K > 1, λi > λj

for i > j, i,j = 1, . . . ,K. If K = 1, then αi > αj for i > j, i,j = 1, . . . ,J.

Assumption 3. The parameter space � is compact.

Assumption 2 is a sufficient condition for identification and implies that, once
conditioning on Sη

t and Sα
t , the conditional probability mass functions are linearly

independent. The assumption entails that the parameters λ and α can be different
among the states, while imposing an ordering among them is not restrictive and
it only prevents label swapping. Let θ0 ∈ � be the true vector of parameters. The
following theorem establishes the consistency and the asymptotic normality of the
conditional MLE in (8).

Theorem 3. Suppose Assumptions 1–3 hold. Then, θ̂T,s0 → θ0 a.s. for any s0 ∈
H. If also θ0 ∈ �̇, where �̇ = int(�), then

√
T (̂θT,s0 −θ0) →N (0,I(θ0)

−1), where
I(θ0) is the Fisher information matrix at θ0. Furthermore, − 1

T ∇2
θ 
T (̂θT,s0,s0) →

I(θ0) a.s. for any s0 ∈ H, with I(θ0) positive definite.

The proof of Theorem 3, based on the findings of Douc et al. (2004), is presented
in Appendix A.5. For consistency, it is sufficient that one αj is less than 1, while
asymptotic normality requires αj ∈ (0,1) for all j. Additionally, the Hessian matrix,
− 1

T ∇2
θ 
T (̂θT,s0,s0), almost surely converges to the Fisher information, irrespective

of the initial choice of s0.
The asymptotic distribution in Theorem 3 can be used to construct standard

statistical tests, such as the asymptotic normal test based on a t-statistic, and the
asymptotic chi-squared test based on the LR, LM, or Wald statistic, provided
all coefficients are identifiable under the null hypothesis, and they are not on
the boundary of the parameter space. In Section 5.2, we will show, through
Monte Carlo simulations, the quality of the Gaussian approximation of the Z
test in finite samples. From a computational perspective, the estimation of θ̂T,s0

presents practical difficulties, as it requires numerical constrained optimization
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of a complex, highly nonlinear function with potentially numerous parameters.
To overcome these challenges, Section 5.1 presents an EM algorithm featuring a
closed-form M-step, ensuring convergence to θ̂T,s0 .

5. EM ALGORITHM AND SIMULATION STUDY

5.1. EM Algorithm for the HMM-INAR Model

The EM algorithm presented below is an extension of the procedure proposed in
Catania and Di Mari (2021) and Catania, Di Mari, and Santucci de Magistris (2022)
for ML estimation of a hierarchical Markov-switching model for multivariate
count data, and that of Pavlopoulos and Karlis (2008) for the Mix-INAR model.
Differently from the previous section, we do not work with the initial condition s0

but define generic initial distributions for {Sα
t } and {Sη

t } at time t = 1 by δα and δη,
respectively, and include them in θ .3 This choice is made out of convenience and
has no asymptotic effect under Assumption 1.

We derive the joint distribution of a series of T observed variables (Y1:T )
and unobserved variables (Sη

1:T,S
α
1:T,Z1:T,η1:T ), where η1:T = (η′

1, . . . ,η
′
T)′ with

η′
t = (ηt,1, . . . ,ηt,K)′ and similarly for Z1:T . Conditional on Y0, the joint distribution

denoted by P := P(Y1:T,S
η

1:T,S
α
1:T,Z1:T,η1:T |Y0)

4 is

P = P(Sα
1 )P(Sη

1)

T∏
t=2

P(Sα
t |Sα

t−1)

T∏
t=2

P(Sη
t |Sη

t−1)

T∏
t=1

P(Zt|Sη
t )

×
T∏

t=1

P(Yt|Yt−1,S
α
t ,Zt,ηt)

T∏
t=1

P(ηt|Zt)

= P(Sα
1 )P(Sη

1)

T∏
t=2

γ α
Sα

t−1,S
α
t

T∏
t=2

γ
η

Sη
t−1,S

η
t

T∏
t=1

ωSη
t ,Zt

×
T∏

t=1

α
Yt−ηt
Sα

t
(1−αSα

t
)Yt−1−Yt+ηt

T∏
t=1

e−λZt λ
ηt
Zt

ηt!
,

where P(Sα
1 ) and P(Sη

1) represent an element of the initial distribution of Sα
t and

Sη
t , which are denoted as δα = (δα

1 , . . . ,δα
J )′ and δη = (δ

η

1, . . . ,δ
η

L)′, respectively.
The complete data log-likelihood (CDLL) is obtained by introducing the following
augmenting variables: uη

1,l = 1 if Sη

1 = l, uα
t,j = 1 if Sα

t = j, vη

t,i,l = 1 if Sη

t−1 = i and
Sη

t = l, vα
t,i,j = 1 if Sα

t−1 = i and Sα
t = j, and zt,l,k = 1 if Zt = k and Sη

t = l. The
CDLL is

3The MLE of δα and δη is a unit vector, and it is known to be inconsistent (see Levinson et al., 1983, p. 1055).
This will have no asymptotic effect on the estimation of the other parameters, which are shown to be consistent and
asymptotically normal for any choice of the initial distribution of the two Markov chains in Theorem 3.
4We adopt the notation P(X) to indicate P(X = x) for a realization x of the random variable X.
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T,c(θ) ∝
J∑

j=1

uα
1,j log(δα

j )+
L∑

l=1

uη

1,l log(δ
η

l )+
T∑

t=2

J∑
j=1

J∑
i=1

vα
t,i,j log(γ α

i,j)

+
T∑

t=2

L∑
l=1

L∑
i=1

vη

t,i,l log(γ
η

i,l)+
T∑

t=1

L∑
l=1

K∑
k=1

zt,l,k log(ωl,k)

+
T∑

t=1

K∑
k=1

zt,k
[−λk +ηt,k log(λk)

]+

+
T∑

t=1

J∑
j=1

K∑
k=1

uα
t,jzt,k

[
(Yt −ηt,k) log(αj)+ (Yt−1 −Yt +ηt,k) log(1−αj)

]
,

(9)

where zt,k = ∑L
l=1 zt,l,k.

Maximization of (9) is unfeasible due to the presence of latent quantities. The
EM algorithm treats these unobserved terms as missing values and proceeds with
the iterative maximization of the expected value of the CDLL. Specifically, let
θ (m) be the value of the parameters at the m-th iteration. The EM maximizes
Q(θ,θ (m)) = E

θ (m) [

T,c(θ)

]
(M-step), where the expectation (E-step) is taken

with respect to the joint distribution of the missing variables conditional on
the observed variables, i.e., θ (m+1) = argmax

θ

Q(θ,θ (m)). The E-step amounts to

computing the expectation of the augmenting variables uη

t,l,u
α
t,j,v

η

t,j,l,v
α
t,j,l,zt,l,k, and

ηt,k conditionally on Y0:T . These are

ûη

1,l := E[uη

1,l|Y0:T ] =
J∑

j=1

K∑
k=1

P(Sη

1 = l,Sα
1 = j,Z1 = k|Y0:T),

ûα
t,j := E[uα

t,j|Y0:T ] =
L∑

l=1

K∑
k=1

P(Sη
t = l,Sα

t = j,Zt = k|Y0:T),

ẑt,l,k := E[zt,l,k|Y0:T ] =
J∑

j=1

P(Sα
t = j,Sη

t = l,Zt = k|Y0:T),

η̂t,k := E[ηt,k|Y0:T ] =
J∑

j=1

P(Sα
t = j|Y0:T)

λkP(Yt = yt −1|Yt−1,Zt = k,Sα
t = j)

P(Yt = yt|Yt−1,Zt = k,Sα
t = j)

,

where P(Yt = y|Yt−1,Zt = k,Sα
t = j) is reported in (5), and

v̂η

t,m,l := E[vη

t,m,l|Y0:T ]

=
J∑

j=1

J∑
i=1

K∑
k=1

K∑
g=1

P(Sη
t = l,Sη

t−1 = m,Sα
t = j,Sα

t−1 = i,Zt = k,Zt−1 = g|Y1:T),
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v̂α
t,i,j := E[vα

t,i,j|Y0:T ]

=
L∑

l=1

L∑
m=1

K∑
k=1

K∑
g=1

P(Sη
t = m,Sη

t−1 = l,Sα
t = j,Sα

t−1 = i,Zt = k,Zt−1 = g|Y1:T).

The computation of the conditional probabilities required in the E-step of the
algorithm is achieved via a run of the forward filtering backward smoothing
algorithm, exploiting the single chain representation of the model discussed in
Section 2. It follows that Q(θ,θ (m)) is given by

Q(θ,θ (m)) ∝
L∑

l=1

ûη

1,l log(δ
η

l )+
T∑

t=2

J∑
j=1

J∑
i=1

v̂α
t,i,j log(γ α

i,j)+
T∑

t=1

L∑
l=1

K∑
k=1

ẑt,l,k log(ωl,k)

+
J∑

j=1

ûα
1,j log(δα

j )+
T∑

t=2

L∑
l=1

L∑
i=1

v̂η

t,i,l log(γ
η

i,l)

+
T∑

t=1

K∑
k=1

ẑt,k
[−λk + η̂t,k log(λk)

]
+

T∑
t=1

J∑
j=1

K∑
k=1

ûα
t, ĵzt,k

[
(Yt − η̂t,k) log(αj)+ (Yt−1 −Yt + η̂t,k) log(1−αj)

]
,

whose maximum is available in closed form with γ α
i,j

(m+1) =
∑T

t=2 v̂α
t,i,j∑T

t=2
∑J

h=1 v̂α
t,h,j

,

γ
η

l,i
(m+1) =

∑T
t=2 v̂η

t,l,i∑L
h=1

∑T
t=2 v̂η

t,l,h
, ω(m+1)

l,k =
∑T

t=1 ẑt,l,k∑T
t=1

∑K
h=1 ẑt,l,h

, α(m+1)
j =

∑T
t=1

∑K
k=1 ûα

t, ĵzt,k(Yt−η̂t,k)∑T
t=1

∑K
k=1 ûα

t, ĵzt,kYt−1
,

λ
(m+1)
k =

∑T
t=1 ẑt,k η̂t,k∑T

t=1 ẑt,k
, and δ

η

l
(m+1) = ûη

1,l, δα
j

(m+1) = ûα
1,j.

Given an initial guess θ (0), the algorithm iterates between the E-step and the
M-step until convergence. Convergence to a local optimum is guaranteed since
the M-step increases the likelihood value at each iteration. As for standard
HMMs, the likelihood function can present multiple local optima, and there is no
guarantee that convergence to the global optimum is achieved. To this end, running
the algorithm several times with different starting values is standard practice to
better explore the likelihood surface.

5.2. Monte Carlo Analysis

We now investigate the finite sample properties of the MLE computed with the
EM algorithm. We consider an HMM(2,2,2)-INAR model with parameters λ1 = 1,
λ2 = 7, γ α

1,1 = γ α
2,2 = γ

η

1,1 = γ
η

2,2 = 0.9, α1 = 0.4, α2 = 0.9, ω1 = (0.7,0.3)′, and
ω2 = (0.3,0.7)′. The experiment proceeds as follows: first, we simulate a sequence
of T observations from the HMM(2,2,2)-INAR model, and second, we estimate
the model using the EM algorithm outlined above. We iterate this procedure
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Table 1. This table reports the bias, the RMSE, and the frequency of the rejection
of the null hypothesis (θi = 0) of the Z-test statistic (θ̂i/S.E.(θ̂i)) at 5% significance
level based on the ML estimates of an HMM-INAR model with J = 2, K = 2, and
L = 2

Bias RMSE Rejection frequency

T 250 500 1,000 5,000 250 500 1,000 5,000 250 500 1,000 5,000

γ
η
11 0.020 0.017 0.013 0.002 0.114 0.102 0.081 0.031 0.170 0.181 0.148 0.069

γ
η
22 −0.017 −0.014 −0.009 −0.002 0.112 0.099 0.079 0.029 0.182 0.183 0.153 0.054

γ α
11 0.008 0.004 0.002 0.000 0.045 0.030 0.020 0.009 0.062 0.057 0.052 0.047

γ α
22 −0.005 −0.002 −0.001 0.000 0.036 0.024 0.017 0.007 0.060 0.059 0.054 0.052

ω11 −0.049 −0.038 −0.025 −0.003 0.160 0.133 0.102 0.038 0.083 0.104 0.099 0.049

ω21 0.048 0.036 0.022 0.004 0.172 0.143 0.109 0.042 0.096 0.109 0.100 0.038

α1 0.003 0.001 0.001 0.000 0.038 0.026 0.018 0.008 0.061 0.063 0.059 0.059

α2 0.001 0.000 0.000 0.000 0.016 0.010 0.007 0.003 0.065 0.056 0.055 0.051

λ1 −0.013 −0.006 −0.001 0.001 0.330 0.217 0.149 0.063 0.087 0.072 0.064 0.050

λ2 −0.029 −0.011 −0.007 0.000 0.465 0.320 0.224 0.097 0.054 0.053 0.053 0.044

Note: The results are based on 10,000 replications.

B =10,000 times. We consider four sample sizes: small (T = 250), medium-small
(T = 500), medium-large (T = 1,000), and large (T = 5,000).

Table 1 reports the bias, root mean squared error (RMSE), and the rejection
frequency of the Z-test at 5% significance level based on the ML estimates
and their asymptotic distribution in Theorem 3. Note that we do not report the
results for γ

η

1,2, γ
η

2,1, γ α
1,2, γ α

2,1, ω1,2, and ω2,2 because these are obtained as a
deterministic transformation of the other parameters (for instance, γ η

1,2 = 1−γ
η

1,1).
Results indicate that the bias and RMSE of the MLE behave as expected. The
bias is generally small even for T = 500, and the RMSE decreases as expected
when the sample size increases. Empirical frequency of rejection of the null
hypothesis against a two-sided alternative by the Z-test indicates that the Gaussian
approximation is adequate even for moderate sample sizes. Finally, the adoption
of the EM algorithm, which does not require numerical optimization, rules out
numerical instabilities, thus contributing to the quality of the estimates.

5.3. Model Selection

The asymptotic results presented in Section 4 are valid for a fixed and known
number of states (K, J, and L). However, it is well-known that the parameters
of an HMM are not identifiable if the number of hidden states is over-specified
(see, among others, Rydén, Teräsvirta, and Aasbrink, 1998). Therefore, selecting
the correct number of hidden states, or order selection, is crucial for consistent
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parameter inference in HMMs. We consider BIC for order selection, which is given
by

BIC = −2
T(θ̂)+M log(T).

In particular, BIC is known to be strongly consistent in i.i.d. settings as well as
in certain non-i.i.d. settings and in finite mixture models, which commonly use
penalized likelihood approaches (see Claeskens and Hjort (2008) for a review).
In the context of HMMs, Csiszár and Shields (2000) and Gassiat and Boucheron
(2003) show strong consistency of BIC for observations that take a finite set of
values, even without imposing an upper bound on the order of the HMM. Monte
Carlo simulations support the reliability of BIC for the HMM-INAR model, with
correct model selection achieved in over 99% of cases when T = 1,000, as reported
in Table S3 in the Supplementary Material. Importantly, the percentage of correctly
identified models increases with T, and the performance is notably strong even
for smaller sample sizes (T = 250). In contrast, the Akaike Information Criterion
(AIC) displays non-monotonic behavior as T increases, reflecting challenges with
consistency.

6. EMPIRICAL ILLUSTRATION

Trading volume is a crucial financial metric that reflects various factors, such
as the arrival of new information, trader disagreements, microstructural frictions,
and liquidity issues, as surveyed by Karpoff (1987). Beyond systematic diurnal
patterns, such as those linked to the opening and closing of the trading day, high-
frequency trading volume trajectories likely indicate the presence of informed
traders, resulting in distinct trading regimes. For instance, Barardehi, Bernhardt,
and Davies (2019) build a refined Amihud (2002) measurement of illiquidity
based on the theoretical framework developed in Easley and O’Hara (1987),
which highlights how multiple regimes may correspond to periods of intense
news arrival and a predominant presence of informed traders, while periods of
low trading activity may reflect information staleness and prolonged inactivity.
Furthermore, liquidity concerns associated with the price impact of large trades
induce traders to dynamically split orders into a sequence of smaller trades,
the so-called trade splitting effect, where large transactions are broken up into
smaller ones executed sequentially. Therefore, the number of trades for a specific
instrument over short intervals provides valuable insights into the trading activity
and liquidity in financial markets, as discussed in Tauchen and Pitts (1983) and,
more recently, in Ranaldo and Santucci de Magistris (2022), among others.

In this study, we analyze the time series of the number of trades sampled at one-
minute intervals for the Standard & Poor’s 500 ETF (SPY) over the period from
2 January 2001 to 31 August 2001, using data from the TAQ database. Each trading
day comprises 390 observations, resulting in 146 days and a total of 59,940 data
points. The time series displays both extreme distributional traits, shifting from
low to high trading regimes, associated with low counts and high counts, including
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Table 2. The table reports the mean, median, mode, max, min, standard devia-
tions (SD), excess kurtosis (Ex. Kurt), skewness coefficient (Skew), and ID

Mean Median Mode Max Min SD Ex. Kurt Skew ID Period

8.60 7.00 5.00 209.00 0.00 6.76 74.44 4.89 5.31 Full

14.75 12.00 11.00 209.00 0.00 12.32 55.58 5.65 10.29 Opening

5.81 5.00 4.00 96.00 0.00 4.14 24.57 2.63 2.95 Midday

11.56 11.00 8.00 64.00 0.00 6.02 4.12 1.33 3.14 Closing

Note: Period indicates the intra-daily interval used to compute the statistics. Results are reported for
the entire day (Day), the first 30 minutes of trading activity (Opening), the period between 12:00 and
14:00 (Midday), and the last 30 minutes of trading activity (Closing).

periods with no trades. This makes the sample an ideal series to assess how well
Markov chains can adapt to these distinctive attributes. Furthermore, adopting the
INAR specification for the number of trades allows for an intuitive interpretation
of the components of the trading activity in financial markets. Indeed, the total
number of transactions at time t can be disentangled into a component responsible
for the arrival of new trades (ηt,St ) and another (At,St ) possibly associated with trade
splitting.

Table 2 presents the summary statistics for the sample under analysis. Looking
at the entire day, the number of trades exhibits substantial excess kurtosis and over-
dispersion, as indicated by the sample ID, which is 5.31. Additionally, we analyze
the sample statistics across different times of the trading day. As anticipated, the
average number of trades is higher at the beginning and end of the trading session.
Notably, the standard deviation and kurtosis are also larger during these periods,
indicating greater dispersion compared to Midday. The ID reaches its maximum
at the opening, with a value of 10.29.

In Figure 5, Panel a) reports the number of trades of SPY at the one-minute
frequency recorded on 9 May 2001. Panel b) reports the value of the test statistics
of Harris and McCabe (2019) for the null hypothesis of independence computed
over daily sub-samples (146 days with 390 observations per day). The red solid
line denotes the critical value at the 1% significance level based on the asymptotic
distribution. The test statistic rejects the null hypothesis in almost all cases (141
out of 146), thus supporting the evidence that the intra-daily number of trades is
not an independent sequence.5 The strong seasonality in the number of trades is
evident when looking at the empirical autocorrelation function and the average
number of trades computed over different minutes of the day, as reported in Panels
c) and d) in Figure 5, respectively. Due to the presence of seasonality and overnight
periods (when trading does not take place), the HMM-INAR model is therefore
extended to account for the peculiar features of the data at hand. Notably, the EM

5When computing the test of Harris and McCabe (2019) on the whole sample, the test reports a value of 3,073,730,
which is far above the 1% critical value.
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Figure 5. Panel a) reports the one-minute frequency number of SPY trades recorded on 9 May 2001.
Panel b) reports the value of the test statistic of Harris and McCabe (2019) computed for all daily sub-
samples. The red solid line denotes the critical value at 1% significance level based on the asymptotic
distribution. Panel c) reports the empirical ACF computed over the full sample. Panel d) presents the
average number of trades per one-minute intra-daily period, computed over the 146-day sample.

algorithm illustrated in Section 5.1 for the estimation of the new model parameters
requires a straightforward adaptation to the new specification, incurring only a
minor additional computational cost.

6.1. The Seasonal HMM-INAR Model

Financial data sampled at high frequencies typically exhibit strong intra-daily
seasonal patterns (see, among others, the recent contribution by Andersen, Thyrs-
gaard, and Todorov, 2019. The intra-daily periodicity reflects different trading
patterns associated with the traders’ working hours and/or market operating rules.
These features cannot be fully accounted for by the baseline HMM-INAR model
introduced in Section 2. For instance, at lunch, trading activity is low, while at the
beginning and end of the trading day, activity is more pronounced since traders tend
to balance their positions after (before) the market opens (closes). Furthermore, the
institutional settings of the U.S. financial markets operating in the interval between
9 AM until 4 PM create a long interval, called the overnight period, between
consecutive trading days. In terms of the INAR specification, the non-trading hours
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during the overnight period entail that the term At;Sα
t
, which is a function of the

number of trades executed in the previous interval, has to be low at the opening of
the market hours.

The strong intra-daily periodicity calls for a proper treatment within the HMM-
INAR model, which highlights the flexibility of this model specification to the
inclusion of additional features. In particular, seasonality can be introduced by
assuming that λt,k = λk

∑P
p=1 ft(p)βp, k = 1, . . . ,K, where P is the number of

periods or seasons. To avoid an identifiability problem, we impose β1 = 1.
Incorporating intra-daily seasonal patterns using dummy variables is especially
beneficial in the context of the HMM-INAR model, as it enables obtaining a
closed-form M-step for the seasonal parameters βp,p = 1, . . . ,P. The parameter
λk is the baseline intensity for the k-th component of the mixture and βp is the
intra-daily period-specific multiplicative term, that is, ft(p) = 1 if t is in season p,
and zero otherwise. The presence of an overnight break in the transactions can also
be accommodated by introducing a specific dummy at the opening of the trading
day. Hence, the term ASα

t
is modeled as

At,Sα
t

= [
αSα

t
(1−Ot)+�Ot

]◦Nt−1, (10)

where Ot = 1, if time t coincides with the opening and 0 otherwise, and �

determines the thinning operator at the opening of the trading day. The parameter
� is expected to be very low reflecting the reduction in persistence due to the
overnight period.

The Q(θ,θ (m)) function is easily extended to account for the intra-daily season-
ality as

Q(θ,θ (m)) ∝
J∑

j=1

ûα
1,j log(δα

j )+
L∑

l=1

ûη

1,l log(δ
η

l )+
J∑

j=1

J∑
i=1

T∑
t=2

v̂α
t,j,i log(γ α

j,i)

+
L∑

l=1

L∑
i=1

T∑
t=2

v̂η

t,l,i log(γ
η

l,i)+
T∑

t=1

L∑
l=1

K∑
k=1

ẑt,l,k log(ωl,k) (11)

+
T∑

t=1

K∑
k=1

ẑt,k

⎡⎣−λk

P∑
p=1

ft(p)βp + η̂t,k

⎛⎝log(λk)+ log

⎛⎝ P∑
p=1

ft(p)βp

⎞⎠⎞⎠⎤⎦
+

T∑
t=1

J∑
j=1

K∑
k=1

ûα
t, ĵzt,k

[
(Yt − η̂t,k) log(αj)+ (Yt−1 −Yt + η̂t,k) log(1−αj)

]
.

The E-step remains unchanged apart from replacing λk with λt,k, and αj

with αj(1 − Ot) + �Ot. The M-steps for λk and αj are modified as λ
(m+1)
k =∑T

t=1 ẑt,k η̂t,k∑T
t=1 ẑt,k

∑P
p=1 ft(p)β

(m)
p

, α
(m+1)
j =

∑T
t=1

∑K
k=1(1−Ot )̂uα

t, ĵzt,k(Yt−η̂t,k)∑T
t=1

∑K
k=1(1−Ot )̂uα

t, ĵzt,kYt−1
, while the update

for βp is β(m+1)
p =

∑T
t=1

∑J
j=1

∑K
k=1

∑L
l=1 ût,j,k,lft(p)
̂t,j,k∑T

t=1
∑J

j=1
∑K

k=1
∑L

l=1 ût,j,k,lft(p)λ
(m+1)
k

, where ût,j,k,l = P(Sα
t =
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j,Zt = k,Sη
t = l|Y0:T) and 
̂t,j,k = λ

(m)
t,k P(Yt=yt−1|Yt−1,Zt=k,Sα

t =j)

P(Yt=yt |Yt−1,Zt=k,Sα
t =j) . Finally, �(m+1) =∑T

t=1
∑J

j=1
∑K

k=1
∑L

l=1 Otût,j,k,l(Yt−
̂t,j,k)∑T
t=1 OtYt−1

is the update of � . Since λ
(m+1)
k is computed

using the estimate of βp obtained at the previous iteration, the resulting algorithm
is effectively an expectation conditional maximization (ECM) (see Meng and
Rubin, 1993).

6.2. Estimation

We estimate the seasonal HMM-INAR model using the time series of SPY
trades sampled from 2 January 2001 to 16 May 2001 (in-sample period). The in-
sample period consists of 73 days and 390 intervals per day for a total of 28,470
observations. The second half of the sample, from 17 May 2001 to 31 August 2021
is used for the out-of-sample analysis, as described in Section 6.3 below. Using BIC
for the unrestricted HMM(J,K,L)-INAR model, the selected number of states is
J = 4, K = 8, and L = 3. Furthermore, we define P = 81 seasons, specified as
follows: three seasons for each of the three minutes after market opening, one
season for minutes 4 and 5, and 77 seasons for the intervals 6–10 minutes, 11–
15 minutes, and so on. The decision to include 81 seasons is inherently arbitrary
and reflects the characteristics of the series under consideration. Moreover, due
to the extensive length of the series, the seasonal coefficients are estimated with
remarkable precision, as outlined by the standard errors provided in Section 1.1
of the Supplementary Material. Thus, with the inclusion of the periodic terms, the
total number of parameters to be estimated equals J(J−1)+L(L−1)+(K −1)L+
J +K +P = 132, with a corresponding BIC value of 153885.3.

Beyond the unrestricted HMM(J,K,L)-INAR model, we consider several
restricted HMM-INAR specifications that include the same seasonal compo-
nents presented in Section 6.1. The restricted specifications, whose optimal
number of states is again selected via the BIC, are: the INAR(1), that is, the
HMM(1,1,1)-INAR model (M = 83, BIC = 184387.7); the Mix-INAR, that is,
the HMM(1,K,1)-INAR model with K = 9 (M = 99, BIC= 160966.4); one chain
HMM-INAR model with {Sα

t } and mixture innovations, that is, HMM(J,K,L)-
INAR model with J = 5 and K = 6 (M = 117, BIC = 155379.7); one chain
HMM-INAR model with {Sη

t }, that is, the HMM(1,K,L)-INAR model with K = 7
and L = 5 (M = 139, BIC = 154313.2); one chain HMM-INAR model with
{Sα

t } and Poisson innovations, that is, the HMM(J,1,1)-INAR model with J = 5
(M = 107, BIC = 165750.7). We also consider a periodic version of the Negative
Binomial Softplus INGARCH(1,1) model proposed recently by Weiß, Zhu, and
Hoshiyar (2022) (labeled INGARCH; see Section 2 of the Supplementary Material
for details) with the same seasonal specification as in the HMM-INAR model. The
INGARCH model has a total of M = 85 parameters, and the BIC is 158305.3.6

6In Section 3 of the Supplementary Material, we analyze versions of the HMM-INAR and INGARCH models where
periodicity is introduced via a parsimonious harmonic term, following Rossi and Fantazzini (2014). For the HMM-
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Figure 6. Estimates of βp in logarithmic values in the unrestricted HMM(J,K,L)-INAR model, its
sub-models, and the INGARCH of Weiß et al. (2022). The trading day from 9:30 AM to 16:00 PM is
divided into 81 intervals of 5 minutes each. The first coefficient is log(β1) = 0 by construction.

Figure 6 reports the estimates of the seasonal parameters (βp) in logarithmic
scale for a number of alternative specifications. The parameter estimates and the
standard errors are reported in Section 1.1 of the Supplementary Material. In
particular, as shown in Figure 6, the estimates of βp are similar in all HMM-INAR
specifications and they reflect the intra-daily pattern of the trading intensity, which
is higher on average, particularly at the beginning of the trading day.

With regard to the autoregressive parameter, the states of {Sα
t } are associated

with estimates of α ranging from 0.067 to 0.777, thus indicating that part of
the dynamics of the series can be attributed to the seasonal dummies associated
with the parameters βp. Furthermore, the parameter governing the opening of the
trading session in the thinning operator, � , is estimated at zero in all specifications,
signaling the absence of persistence of the number of trades at the opening as a
consequence of the long overnight break in the transactions. The transition matrix
�̂

α
does not display a clear pattern, meaning that it is quite likely that {Sα

t } switches
state at each point in time. Concerning the estimates of the parameters associated
with {Zt} and {Sη

t }, we note that the BIC selects a mixture with a large number of
components, whose weights are governed by the (K ×L) matrix �̂, which allows
us to identify three clear patterns (low, intermediate, and high mean/volatility) in
most cases. The (L × L) transition matrix �η is much more polarized than �α in

INAR model, the results are qualitatively similar to those presented here, particularly for the in-sample analysis
(Figures S2 and S3 in the Supplementary Material), although the out-of-sample fit slightly worsens (Table S2 in the
Supplementary Material). The INGARCH model shows slightly improved results. The estimated intra-daily seasonal
patterns align well with the empirical pattern shown in Panel d) of Figure 5.
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Figure 7. The ACF of the standardized residuals for the unrestricted HMM(J,K,L)-INAR model,
its sub-models, and the INGARCH of Weiß et al. (2022). The red lines indicate the 95% confidence
intervals under the null hypothesis of zero autocorrelation. Standardized residuals are computed as

v̂t = (Yt −E[Yt|Y1:t−1;θ̂ ])/
√
Var[Yt|Y1:t−1;θ̂ ].

all cases. This indicates the presence of persistent states with a low probability of
switching from one state to another.

The standardized residual ACFs shown in Figure 7 indicate that the unrestricted
HMM(J,K,L)-INAR model effectively captures the dynamic patterns of the series,
whereas both the simple INAR(1) and the Mix-INAR fail to capture the dynamics
of trade counts. Some residual autocorrelation remains in both HMM(J,K,L)-
INAR and HMM(J,1,1)-INAR models, whereas the models with L > 1, such as the
HMM(1,K,L)-INAR model, as well as the INGARCH model exhibit no residual
autocorrelation.

Finally, we evaluate the accuracy of the probability predictions of the HMM-
INAR model and compare the results. Figure 8 presents the in-sample randomized
probability integral transform (PIT) as proposed by Brockwell (2007).7 The
unrestricted HMM(J,K,L)-INAR model, along with the HMM(1,K,1)-INAR,
HMM(J,K,1)-INAR, and HMM(1,K,L)-INAR, exhibit a similar fit to the empir-
ical distribution, whereas other model specifications show PITs that deviate
significantly from uniformity. When combined with the residual ACF analysis,
these findings underscore the strong performance of the HMM-INAR model with
only the chain {St

η} (i.e., the HMM(1,K,L)-INAR model). This suggests that

7An alternative goodness-of-fit test for count process models, introduced by Fokianos and Neumann (2013), is based
on smoothed versions of the empirical process of Pearson residuals.
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Figure 8. In-sample randomized PIT for the unrestricted HMM(J,K,L)-INAR model, its sub-models,
and the INGARCH. The red lines indicate the 95% confidence interval under the null hypothesis of
being U(0,1), as in Diebold, Gunther, and Tay (1998).

incorporating the overnight/opening effect on At;St
α , as defined in (10), may be

sufficient to achieve an adequate empirical fit.

6.3. Forecast

We now extend the in-sample analysis and evaluate the quality of the forecasts
provided by the HMM-INAR model both in terms of point and probability
forecasts in the out-of-sample period. The out-of-sample period consists of the
number of trades recorded from 17 May 2001 to 31 August 2001, for a total of 73
trading days (and 28,470 observations) after the in-sample period. The parameters
of the model are kept constant at their estimated values throughout the entire out-
of-sample period. This rather extreme setting for the out-of-sample period allows
us to highlight the flexibility of the HMM-INAR model, namely, its ability to adapt
to possibly mutated market conditions.

We first look at the quality of the point forecasts and compare the out-of-sample
predictions of the HMM-INAR model with those of the alternative specifications
used in the in-sample analysis. We follow Freeland and McCabe (2004b) and
produce coherent forecasts by computing the one-step ahead predictive median
of the number of trades, that is, Median[Nt+1|N1:t]. We add two naive predictors:
the random walk (RW), that is, Median[Nt+1|N1:t] = Nt, and the one-day-lag
random walk (RW390), that is, Median[Nt+1|N1:t] = Nt+1−p. Table 3 reports the
median absolute forecast error (MAFE) of all model specifications relative to
those of the unrestricted HMM(J,K,L)-INAR model. A value of the ratio larger
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Table 3. MAFE for the unrestricted HMM(J,K,L)-INAR model, the INAR(1),
i.e., the HMM(1,1,1)-INAR, the Mix-INAR, i.e., the HMM(1,K,1)-INAR, the
HMM(J,K,1)-INAR, the HMM(1,K,L)-INAR, and the HMM(J,1,1)-INAR

(J,K,L) (1,1,1) (1,K,1) (J,K,1) (1,K,L) (J,1,1) RW RW78 INGARCH Periods

1.00 1.13 1.10 1.03 1.02 1.04 1.56 2.60 1.05 Full

1.00 1.20 1.20 1.25 0.88 1.12 1.53 1.28 0.97 Opening

1.00 1.10 1.07 1.07 1.01 1.05 1.61 2.52 1.07 Midday

1.00 1.19 1.13 1.03 1.02 1.03 1.60 2.61 1.04 Closing

Note: We also consider the random walk (RW), the random walk with lag length equal to 390 periods
(RW390), and the Periodic Negative Binomial Softplus INGARCH(1,1) (INGARCH). The results
are reported relative to the HMM(J,K,L)-INAR model. Green (red) cells indicate significant superior
(inferior) predictive ability at the 5% confidence level of each model with respect to the HMM-INAR
model according to the Diebold and Mariano (1995) test statistics computed with HAC standard errors.
The results are reported for the entire day (Day), the first 15 minutes of trading activity (Opening), the
period between 11:45 and 12:00 (Midday), and the last 15 minutes of trading activity (Closing).

(smaller) than one indicates under-performance (over-performance) of the j-th
model with respect to the HMM(J,K,L)-INAR model. The table also indicates
whether the differences in the quality of the forecasts are statistically significant (at
5% significance level) by means of the Diebold and Mariano (1995) test. In almost
all cases, the HMM(J,K,L)-INAR model provides significantly superior point
forecasts compared to those obtained by the other specification. In only one case,
the performance of the unrestricted HMM(J,K,L)-INAR model is significantly
worse than that of the competing models. This is the case of the HMM(1,K,L)-
INAR model and of the INGARCH at the opening of the trading day. Overall,
this evidence suggests that the unrestricted HMM(J,K,L)-INAR specification is
superior to the other specifications being the only one with the sufficient degree of
flexibility required for a good fit to the data at hand.

We also assess the ability of each model specification to provide a good fit of the
extreme over-dispersion in the data. For this reason, we compute the unconditional
ID for each intra-daily interval, IDp, p = 1, . . . ,81, where the latter is computed as

IDp = Var[Yt|ft(p) = 1]

E[Yt|ft(p) = 1]
,

where Var[Yt|ft(p) = 1] and E[Yt|ft(p) = 1] are computed by exploiting the results

of Section 3.2. Let ÎDp be the sample counterpart of IDp and let ÎD
Mi
p be the index

computed according to model Mi. We look at the ratio

RMi
p = ÎDp

ÎD
Mi
p

,

and we report its average value over different intra-daily periods (see Table 4). A
value of RMi

p lower (higher) than one indicates that a given model is overestimating
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Table 4. Sample and model-based ID and excess of kurtosis ratios, Rp

ID Ex. Kurt. Period

(J,K,L) (1,1,1) (1,K,1) (J,K,1) (1,K,L) (J,1,1) (J,K,L) (1,1,1) (1,K,1) (J,K,1) (1,K,L) (J,1,1)

1.77 10.07 1.40 1.62 1.84 6.05 0.74 3.03 1.00 0.86 1.07 2.30 Full

1.01 2.89 1.21 1.06 1.04 1.49 1.00 5.36 1.78 1.51 1.80 3.93 Opening

0.68 2.95 0.80 0.74 0.71 1.11 0.34 2.21 0.57 0.51 0.62 1.58 Midday

1.06 4.08 1.18 1.09 1.10 2.05 0.79 4.42 1.36 1.17 1.41 3.21 Closing

Note: The models considered are: the unrestricted HMM(J,K,L)-INAR model, the INAR(1), i.e.,
the HMM(1,1,1)-INAR, the Mix-INAR, i.e., the HMM(1,K,1)-INAR, the HMM(J,K,L)-INAR, the
HMM(1,K,L)-INAR, and the HMM(J,1,1)-INAR. The results are reported for the entire day (Day),
the first 15 minutes of trading activity (Opening), the period between 11:45 and 12:00 (Midday), and
the last 15 minutes of trading activity (Closing).

(underestimating) the empirical ID in a given intra-daily period. The ID for
the unrestricted HMM(J,K,L)-INAR model is generally quite close to 1, with
the exception of the Midday period, where the model tends to overestimate the
empirical dispersion index. The baseline INAR(1) and the Mix-INAR do not
generally provide a good fit of the ID and they tend to underestimate it, especially
the baseline INAR. Only the HMM(J,K,L)-INAR and the HMM(1,K,L)-INAR
models provide a fit to the empirical over-dispersion analogous to that of the
unrestricted HMM(J,K,L)-INAR model. Instead, the restricted HMM(J,1,1)-
INAR model tends to predict a low value of ID in most cases. A similar pattern
arises if we look at the fit of the empirical kurtosis.

We also examine the autocorrelation of the forecast errors, which are defined
here as v̂t = Yt −E[Yt|Y1:t−1]. Figure 9 indicates that the forecast errors of the
unrestricted HMM(J,K,L)-INAR model exhibit minimal autocorrelation, whereas
the INAR(1) and HMM(1,K,1)-INAR models fail to adequately capture the
dynamics of the number of trades even in the out-of-sample period. Again, the
ACF of the forecast errors of the HMM(1,K,L)-INAR model is in line with
that of the unrestricted model. Contrary to this, the other restricted models,
namely, HMM(J,K,L)-INAR and HMM(J,1,1)-INAR, slightly underestimate the
persistence of trade counts in the out-of-sample period. In contrast, the INGARCH
model produces negative forecast error autocorrelation up to the tenth lag.

Finally, we evaluate the quality of the forecasts in terms of density predictions.
Figure 10 presents the histograms of the out-of-sample randomized PITs for all
the considered model specifications. In terms of fit to the empirical distribution,
the results are largely consistent with those obtained for the in-sample period.
Overall, combining this evidence with the PIT analysis, we conclude that the
unrestricted HMM(J,K,L)-INAR model and the HMM(1,K,L)-INAR, that is,
the most parametrized models in our application with M = 132 and M = 139
coefficients, exhibit similar performance both in-sample and out-of-sample.
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Figure 9. The ACF of the forecast errors for the unrestricted HMM(J,K,L)-INAR model, its sub-
models, and the INGARCH. The red lines indicate the 95% confidence intervals under the null
hypothesis of zero autocorrelation.

Figure 10. Out-of-sample randomized PIT for the unrestricted HMM(J,K,L)-INAR model, its sub-
models, and the INGARCH. The red lines indicate the 95% confidence intervals under the null
hypothesis of being U(0,1) as in Diebold et al. (1998).

7. CONCLUSION

In this article, we propose and study a new modeling framework to deal with time
series of counts that are characterized by high over-dispersion and persistence.

https://doi.org/10.1017/S0266466625100182 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100182


SWITCHING REGIME INTEGER AUTOREGRESSIONS 29

In particular, we add a flexible hidden Markov chain structure to the baseline
INAR(1). The Markov structure is made up of two independent chains: one on
the binomial thinning operator and the other on the innovation term. Together,
these determine both the autocorrelation structure and the conditional distribution
of the process. The HMM-INAR model has appealing theoretical properties, which
make inference possible and tractable by ML via the EM algorithm. The empirical
analysis shows that the HMM-INAR model outperforms other specifications for
count data previously proposed in the literature in fitting the data and in out-of-
sample forecasting. The flexible structure of the HMM-INAR model also lends
itself to extensions. For instance, the model can include seasonal terms or a
compound structure. Alternatively, it can be adapted to the analysis of multivariate
time series of counts along the lines of Livsey et al. (2018) and Fokianos et al.
(2020), among others. We leave this to future research.

A. PROOFS

A.1. Proof of Lemma 1

Proof. Irreducibility and time homogeneity follow from

P(S1 = h|S0 = j) = P(Sα
1 = h1,Z1 = h2,S

η
1 = h3|Sα

0 = j1,Z0 = j2,S
η
0 = j3)

= ωh3,h2γ
η
j3,h3

γ α
j1,h1

> 0,

by Assumption 1 and by using the unique mapping between the indexes of {St} and those of
{(Sα

t ,Zt,S
η
t )}, i.e., (St = h) denotes (Sα

t = h1,Zt = h2,S
η
t = h3), for h = 1, . . . ,H. A similar

argument shows that {St} is first-order Markov. Since the chain is irreducible and the state
j ∈ H is aperiodic, i.e., P(S1 = j|S0 = j) > 0, the rest of the states are aperiodic. Finally,
stationarity of {St} follows by construction, i.e., P(St = h) = P(Sα

t = h1,Zt = h2,S
η
t =

h3) = P(Zt = h2|Sη
t = h3)P(Sη

t = h3)P(Sα
t = h1) = ωh3,h2π

η
h3

πα
h1

is constant with respect
to t. �

A.2. Proof of Lemma 2

Proof. The proof follows from Lemmas 1 and 2 in Tang and Wang (2014), as well as
Tong (1990). The time homogeneity of the Markov chain {(Yt,St)} follows from: i) the time
homogeneity of {St} (Lemma 1), ii) the independence of {St} from {Xt,n,j} and {ηt,k}, for
all t,n,j,k, and iii) the stationarity of {Xt,n,j} and {ηt,k}. Indeed, for a given 0 ≤ s < t, it
follows that

P
(
(Yt+1,St+1) = (yt+1,h)|(Yt,St) = (yt,m),(Ys,Ss) = (ys,ms)

)
= P

(
αh1 ◦ yt +ηt+1,h2 = yt+1,St+1 = h|(Yt,St) = (yt,m),(Ys,Ss) = (ys,ms)

)
= P

(
αh1 ◦ yt +ηt+1,h2 = yt+1|(Yt,St) = (yt,m)

)
P(St+1 = h|Yt = yt,St = m)

= P
(
αh1 ◦ yt +ηt+1,h2 = yt+1|Yt = yt,St = m

)
P(St+1 = h|St = m)

= P(St+1 = h|St = m)P
(
αh1 ◦ yt +ηt+1,h2 = yt+1

)
,
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since {ηt+1,h2 } and {St} are mutually independent by Assumption 1 and
P(αh1 ◦ yt +ηt+1,h2 = yt+1) is given in (5). Furthermore, it holds that

P((Yt+1,St+1) = (yt+1,h)|(Yt,St) = (yt,m)) = P(St+1 = h|St = m)P
(
αh1 ◦ yt +ηt+1,h2 = yt+1

)
.

Hence,

P
(
(Yt+1,St+1) = (yt+1,h)|(Yt,St) = (yt,m),(Ys,Ss)

)
= P

(
(Yt+1,St+1) = (yt+1,h)|(Yt,St) = (yt,m)

)
,

which means that {(Yt,St)} is first-order Markov. Finally, time homogeneity follows from
the time homogeneity of {St} (Lemma 1), and the stationarity of {Xt,n,j} and {ηt,k} for all
n,j,k (Assumption 1).

As for the proof of part b) of Lemma 2, the μ × ϕ irreducibility of {(Yt,St)} follows
from the irreducibility of {St} by Lemma 2 in Tang and Wang (2014). Indeed, given that

γS (t)
m,h := P(St+s = h|Ss = m) > 0 ∀t > 0 by irreducibility, then considering t steps, we

obtain γS
m,m(1)γ

S
m(1),m(2)γ

S
m(2),m(3) · · ·γS

m(t−1),h
> 0. Hence, recalling that

P
(
(Yt+1,St+1) = (yt+1,h)|(Yt,St) = (yt,m)

)
= P(St+1 = h|St = m)P

(
αh1 ◦ yt +ηt+1,h2 = yt+1

)
,

∀(yt,m) ∈ (N×H), where P
(
αh1 ◦ yt +ηt+1,h2 = yt+1

)
is given in (5). Then,

p(t) ((ys,m),(yt+s,h)) := P((Yt+s,St+s) = (yt+s,h)|(Ys,Ss) = (ys,m))

=
∑

(m(1),m(2),···,m(t−1))∈Ht−1

γS
m,m(1) γ

S
m(1),m(2)γ

S
m(2),m(3) · · ·γS

m(t−1),h

×
∑

w1,w2,...,wt−1∈Nt−1

ys∧w1∑
r1=0

w1∧w2∑
r2=0

· · ·
wt−1∧yt∑

rt=0

P

(
α

m(1)
1

◦ ys +η
s+1,m(1)

2
= w1

)

×P

(
α

m(2)
1

◦w1 +η
s+2,m(2)

2
= w2

)
· · ·P

(
α

m(t)
1

◦ yt−1 +η
s+t,m(t−1)

2
= yt+s

)
> 0,

so that the Markov chain {(Yt,St)} is μ×ϕ irreducible.8 Positivity follows from the fact
that all transition probabilities are positive (γS

i,j > 0 for all i,j) and from the fact that

there exists at least one ergodic state of {Sα
t }, say h∗

1, with αh∗
1

< 1, which implies that

P
(
αh∗

1
◦ y′ +ηt,k = y

)
> 0 for all (y,y′) ∈ N

2 and all k. Aperiodicity of {(Yt,St)} follows

directly from Proposition A1.2 of Tong (1990) and Chan (1990). �

A.3. Proof of Theorem 1

Proof. By an application of Lemma 2, it follows that {(Yt,St)} is a (μ×ϕ)–irreducible,
aperiodic Markov chain. To prove that {(Yt,St)} is geometrically ergodic, we follow
Theorem 1 in Tang and Wang (2014). They show that the conditions of Theorem 3.1 by

8Here, we use the notation H
t−1 = ⊗t−1

q=1 H, and similarly for Nt−1. Also, the indexes m(1)
u and m(2)

u are computed

by mapping the state m(u) of the enlarged system to the original HMM-INAR specification, for u = 1, . . . ,t −1.
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Tweedie (1975) are satisfied for the nonnegative measurable function g(y,i) =
√

y2 + i2,
i.e., the Euclidean norm of (y,i) ∈ (N×H). In our case, we have

E[g(Y1,S1)|Y0 = y,S0 = i] = E[g(αS1
◦Y0 +η1,S1)|Y0 = y,S0 = i]

≤ E[αS1
◦ y|S0 = i]+E[η1|S0 = i]

≤ ay+ c+ c0,

where the last inequality is satisfied by taking c0 = maxi∈HE[η1|S0 = i] +E[S1|S0 = i]
and noting that

E[αS1
◦ y|S0 = i] ≤ ay+ c, ∀(y,i) ∈ (N×H),

where 0 < a < 1 and c ≥ 0, is satisfied by taking

a = max
i∈H

H∑
m=1

αmγS
i,m < 1,

which follows from the fact that γS
i,m > 0 for all i,m,

∑H
m=1 γS

i,m = 1 for all i, αm ∈ (0,1] for
all m, and min

m∈H αm < 1 (Assumption 1). Here, αm represents the m-th element of α, which

is the vector of probabilities of success in the enlarged specification (see the discussion in
Section 3.2).

The rest of the proof follows from Theorem 1 in Tang and Wang (2014). Since {(Yt,St)}
is geometrically ergodic, there exists a probability measure π on (N×H,B ×H) and a
constant β ∈ (0,1), such that ∀(y,m) ∈ (N×H)

lim
t→∞β−t||p(t) ((y,m),·)−π(·)||τ = 0,

where || · ||τ denotes the total variation norm. Let π∗ be a set function on (N,B) such that
π∗(A) = π(A×H), ∀A ∈B, so that π∗ is a probability measure on (N,B). Then, for Y0 = y0,
we get that

P(Yt = yt|Y0 = y0) =
∑
h∈H

P(Yt = yt,St = h|Y0 = y0)

=
∑
h∈H

∑
m∈H

P(Yt = yt,St = h|Y0 = y0,S0 = m)

×P(S0 = m|Y0 = y0), ∀y0 ∈ N,

and, ∀A ∈ B,

π∗(A) = π(A×H) =
∑
h∈H

∑
m∈H

π(A×{h})P(S0 = m|Y0 = y0).

Since H is a finite set, it follows that

lim
t→∞β−t||P(Yt ∈ ·|Y0 = y0)−π∗(·)||τ = 0,

which implies that π∗ is the unique invariant probability measure of {Yt}. �
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A.4. Theorem 2

A.4.1. Notation and a Useful Lemma. Hereafter, for notational convenience, we
omit the dependence of At,St and ηt,St on {St} and denote them as At and ηt, respectively.

A.4.2. Proof of Theorem 2. Let Yt,m be the process defined as Yt,m = y for t ≤ m,

where y ∈N is arbitrary and Yt,m = At,m +ηt,m, with At,m = αSα
t
◦Yt−1,m, and ηt,m|St,m =

h ∼ Pois(λh). Let Y(1),t,m denote the vector (E[Yt,m|St,m = h],h = 1, . . . ,H)′, and set
P(St,m = h) = πh, for t ≤ m and P(St,m = j|St−1,m = i) = γi,j. By construction, it follows
that P(St,m = h) = πh, for t > m, because π is the stationary distribution associated with
�. We have E[Yt,m|St,m = h] = E[At,m|St,m = h]+E[ηt,m|St,m = h], where

E[At,m|St,m = h] =
H∑

q=1

E[At,m|St,m = h,St−1,m = q]P(St−1,m = q|St,m = h)

H∑
q=1

E[E[At,m|Yt−1,m,St,m = h,St−1,m = q]|St,m = h,St−1,m = q]γq,h
πq

πh

H∑
q=1

αhE[Yt−1,m|St−1,m = q]γq,h
πq

πh
. (A.1)

Computing the expression above for all h = 1, . . . ,H and putting the result in a vector we
obtain, for t > m, Y(1),t,m = λ+AGY(1),t−1,m, where G = 	−1�′	 is a stochastic matrix
with positive entries, i.e., G = [gl,r], with gl,r > 0, and gl,r = γr,lπr/πl. The fact that
gl,r > 0 for all l,r = 1, . . . ,H (which implies also that gl,r < 1) follows by Assumption 1
because γr,l > 0 for all r,l, which also implies πh > 0 for all h. According to the Banach
fixed-point theorem, this recursion has a unique solution, independent of the initialization,
for m → −∞, if there exists some k ∈ N such that ||(AG)(k)|| < 1 for some norm || · ||.
Here, we set || · || to the matrix norm induced by the vector 1-norm, i.e., for a D×D matrix
L = [li,j]

D
i,j=1, we set ||L|| = max

j=1,...,D

∑D
i=1 |li,j|. Assume without loss of generality that

a1,1 = α̃, where α̃ = minh αh < 1 (by Assumption 1) and consider the matrix

Ã =
(

a 0′
0 I

)
,

where 0 is a vector of zeros of length H − 1 and I is the identity matrix of dimension
(H−1)×(H−1). Then, ||(AG)(k)|| ≤ ||(ÃG)(k)|| for all k. For k = 1, we have ||(ÃG)|| = 1.
For k = 2, we have ||(ÃG)(2)|| = ||ÃGÃG|| ≤ ||ÃGÃ||||G|| = ||ÃGÃ|| because ||G|| = 1.
Let ei be the i-th unit basis vector in R

H , and let ι = ∑H
h=1 eh. Then, the sum of the

first row is given by e′
1ÃGÃι = α̃(1 − g1,1(1 − α̃)) ∈ (0,1) because g1,1 ∈ (0,1) and

α̃ ∈ (0,1). Furthermore, e′
hÃGÃι = 1 − gh,1(1 − α̃) ∈ (0,1), because g1,1 ∈ (0,1) and

α̃ ∈ (0,1), for all h > 1. It then follows that ||(AG)(2)|| ≤ ||(ÃG)(2)|| < 1, such that
limm→−∞ Y(1),t,m = (IH − AG)−1λ = Y(1). To compute E[Y2

t ], we proceed in the

same way and write E[Y2
t,m] = E[A2

t,m] + E[η2
t,m] + 2E[At,mηt,m]. We have E[η2

t,m] =∑H
h=1E[η2

t,m|St,m = h]πh = ∑H
h=1 λh(1+λh)πh andE[At,mηt,m] = ∑H

h=1E[At,m|St,m =
h]E[ηt,m|St,m = h]πh, whereE[At,m|St,m = h] is given in (A.1) andE[ηt,m|St,m = h] = λh.
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To compute E[A2
t,m], we write E[A2

t,m] = ∑H
h=1E[A2

t,m|St,m = h]πh, where

E[A2
t,m|St,m = h] =

H∑
q=1

E[A2
t,m|St,m = h,St−1,m = h]P(St−1,m = q|St,m = h)

=
H∑

q=1

E[E[A2
t,m|Yt−1,m,St,m = h,St−1,m = h|St,m = h,St−1,m = h]gh,q

=
H∑

q=1

(αh(1−αh)E[Yt−1,m|St−1,m = q]+α2
hE[Y2

t−1,m|St−1,m = q])gh,q. (A.2)

Collecting the results for all h = 1, . . . ,H in a vector, we obtain

Y(2),t,m = (IH +�)λ+ [A(IH −A)+2�A]GY(1),t−1,m +AAGY(2),t−1,m,

and by noting that ||(AAG)(k)|| ≤ ||(AG)(k)|| for all k, and by letting m → −∞, we
conclude that limm→−∞ Y(2),t,m = Y(2), where the expression for Y(2) is provided as in
the statement of the theorem. The autocovariances are obtained via repetitive calculations,
employing the same arguments used for deriving the first two moments, together with
the Markov property of St. To compute the first-order autocovariance, note that YtYt−1 =
AtYt−1 +ηtAt−1 +ηtηt−1, and

E[YtYt−1] =
H∑

h=1

H∑
q=1

E[AtYt−1|St = h,St−1 = q]γq,rπq

+
H∑

h=1

H∑
q=1

E[ηtAt−1|St = h,St−1 = q]γq,rπq

+
H∑

h=1

H∑
q=1

E[ηtηt−1|St = h,St−1 = q]γq,rπq,

where

E[AtYt−1|St = h,St−1 = q] = E[Yt−1E[At|Yt−1|St = h,St−1 = q]|St = h,St−1 = q]

= αhE[Y2
t−1|St = h,St−1 = q]

= αhE[Y2
t−1|St−1 = q],

and E[ηtAt−1|St = h,St−1 = q] = λhE[At−1|St = h,St−1 = q] = λhE[At−1|St−1 = q] =
λhαqE[Yt−2|St−1 = q], and E[ηtηt−1|St = h,St−1 = q] = λhλq. In matrix form, the
expression for E[YtYt−1] is

E[YtYt−1] = λ′�′	AỸ(1) +λ′�′	λ+α′�′	Y(2), (A.3)

where Ỹ(1) is a vector with generic element E[Yt−1|St = h], for h = 1, . . . ,H. After noting

that E[Yt−1|St = h] = ∑H
q=1E[Yt−1|St = h]gh,q, we obtain Ỹ(1) = GY(1). Furthermore,

since E[Yt|St = h] = αhE[Yt−1|St = h]+λh, and E[Yt|St = h] =E[Yt−1|St−1 = h] (which
was proved previously), we obtain the following identity AỸ(1) = Y(1) −λ. By replacing

AỸ(1) in (A.3), we obtainE[YtYt−1] = λ′�′	Y(1)+α′�′	Y(2), which is the expression in
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Theorem 2 when k = 1. The derivations for k > 1 and the remaining cross moments proceed
in an analogous manner.

A.5. Theorem 3

A.5.1. Notation and Useful Lemmas. We introduce the following notation: || · ||
indicates the sup norm, i.e., for x ∈ X ⊆ R

n, ||x|| = max
i=1,...,n

|xi|, where xi is the i-th

element of x, and Eθ [·] indicates the expectation evaluated at θ . Analogously, Varθ [·] and
Covθ [·] indicate variance and covariance evaluated at θ . When required, the dependence of
P(Yt|Yt−1,St) on θ is denoted as Pθ (Yt|Yt−1,St). The operators returning the gradient and
Hessian matrix with respect to θ are denoted as ∇θ and ∇2

θ
, respectively. �̇ indicates the

interior of �, i.e., �̇ = int(�). The following lemmas are useful for proving Theorem 3.

Lemma 3. Under the assumptions of Theorem 3,

Eθ0

[
sup
θ∈�̇

sup
h∈H

∣∣∣∣∇θ logPθ (Yt|Yt−1,St = h)
∣∣∣∣2

]
< ∞, (A.4)

Eθ0

[
sup
θ∈�̇

sup
h∈H

∣∣∣∣∣∣∇2
θ logPθ (Yt|Yt−1,St = h)

∣∣∣∣∣∣] < ∞. (A.5)

Proof. Let θ ∈ �̇, and let θm be its generic element. We define

ṗh,t;θm = ∂ logPθ (Yt|Yt−1,St = h)

∂θm
, p̈h,t;θm,θn = ∂2 logPθ (Yt|Yt−1,St = h)

∂θm∂θn
,

for h ∈ H, where (St = h) ≡ (Sα
t = h1,Zt = h2,S

η
t = h3). With a slight adaptation of

Proposition 3 of Freeland and McCabe (2004a),9 we obtain the following representation
for ṗh,t;θm and p̈h,t;θm,θn :

ṗh,t;θm =

⎧⎪⎪⎨⎪⎪⎩
1

αh1 (1−αh1 )

{
Eθ

[
At|Yt,Yt−1,St = h

]−Eθ

[
At|Yt−1,St = h

]}
, if θm = αh1,

1
λh2

{
Eθ

[
ηt|Yt,Yt−1,St = h

]−Eθ

[
ηt|Yt−1,St = h

]}
, if θm = λh2,

0, otherwise,

(A.6)

and if θm = θn = αh1 , then

p̈h,t;αh1,αh1
= 1

α2
h1

(1−αh1)
2

{
(2αh1 −1)Eθ

[
At|Yt,Yt−1,St = h

]
+Varθ [At|Yt,Yt−1,St = h]−αh1Eθ

[
At|Yt−1,St = h

]}
,

if θm = αh1 and θn = λh2 , then p̈h,t;αh1,λh2
= 1

αh1λh2
Covθ [At,ηt|Yt,Yt−1,St = h], if θm =

λh2 and θn = λh2 , then p̈h,t;λh2,λh2
= 1

λ2
h2

{Varθ [ηt|Yt,Yt−1,St = h]−Eθ [ηt|Yt,Yt−1,St =

9The only difference between Freeland and McCabe (2004a) and this article is the conditioning event St = h which
arises naturally when considering their Propositions 1 and 2.

https://doi.org/10.1017/S0266466625100182 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100182


SWITCHING REGIME INTEGER AUTOREGRESSIONS 35

h]}, and p̈h,t;θm,θn = 0 otherwise. Given At ≤ Yt−1 a.s., it follows that

Eθ0 [supθ∈�̇ suph∈H ṗ2
h,t;θm

] ≤ 4E0[Y2
t−1] < ∞ (from Theorem 2) when θm = αh1 .

Regarding the case θm = λh2 , we note that:

Eθ0

[
sup
θ∈�̇

sup
h∈H

Eθ

[
ηt|Yt,Yt−1,St = h

]2

]

= Eθ0

⎡⎣(
Yt − sup

θ∈�̇

sup
h∈H

Eθ

[
At|Yt,Yt−1,St = h

])2
⎤⎦

≤ Eθ0

[
Y2

t

]
+Eθ0

[
sup
θ∈�̇

sup
h∈H

Eθ

[
At|Yt,Yt−1,St = h

]2

]

+2Eθ0

[
Yt sup

θ∈�̇

sup
h∈H

Eθ

[
At|Yt,Yt−1,St = h

]]
≤ Eθ0

[
Y2

t

]
+Eθ0

[
Y2

t−1

]
+2Eθ0

[
Y2

t

]
Eθ0

[
Y2

t−1

]
= 2Eθ0

[
Y2

t

](
1+Eθ0

[
Y2

t

])
< ∞, (A.7)

where the first inequality follows by noting that Yt ·supθ∈�̇ suph∈HEθ

[
At|Yt,Yt−1,St = h

]
> 0 a.s., and in the second one, we used the Cauchy–Schwarz inequality. The last equality
follows from the stationarity of the model. Furthermore, supθ∈�̇ suph∈HEθ

[
ηt|Yt−1,

St = h] = supθ∈�̇ suph∈H λh2 < ∞, because � is compact, such that Eθ0 [supθ∈�̇

suph∈H ṗ2
h,t;θm

] < ∞ when θm = λh2 . Regarding the second derivatives, we note that:

Eθ0

[
sup
θ∈�̇

sup
h∈H

Varθ [At|Yt,Yt−1,St = h]

]
≤ Eθ0

[
sup
θ∈�̇

sup
h∈H

Eθ [A2
t |Yt,Yt−1,St = h]

]
≤ Eθ0

[
Y2

t−1

]
< ∞,

such thatEθ0 [supθ∈�̇ suph∈H |p̈h,t;αh1,αh1
|] < ∞. ThatEθ0 [supθ∈�̇ suph∈H |p̈h,t;αh1,λh2

|]
< ∞ follows from the fact that:

Eθ0

[
sup
θ∈�̇

sup
h∈H

∣∣Covθ [At,ηt|Yt,Yt−1,St = h]
∣∣]

≤ Eθ0

[
sup
θ∈�̇

sup
h∈H

(
Eθ [A2

t |Yt,Yt−1,St = h]Eθ [η2
t |Yt,Yt−1,St = h]

)1/2
]

≤ Eθ0

[
Yt−1

(
Y2

t +Y2
t−1 +2YtYt−1

)1/2
]

≤ 2Eθ0

[
Y2

t

]2
(1+Eθ0 [Y2

t ]) < ∞,

by Theorem 2. Finally, that Eθ0

[
supθ∈�̇ suph∈H |p̈h,t;λh2,λh2

|
]

< ∞ follows by (A.7).

This concludes the proof. �
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Lemma 4. Under the assumptions of Theorem 3,∣∣∣∣∇θ Pθ (Yt|Yt−1,St = h)
∣∣∣∣ < 1+ cYt−1, (A.8)∣∣∣∣∣∣∇2

θ Pθ (Yt|Yt−1,St = h)

∣∣∣∣∣∣ < 1+ cY2
t−1, (A.9)

a.s. for a finite constant c > 0 for all θ ∈ �̇.

Proof. Let θ ∈ �̇, and let θm be its generic element. We define

v̇h,t;θm = ∂Pθ (Yt|Yt−1,St = h)

∂θm
, v̈h,t;θm,θn = ∂2Pθ (Yt|Yt−1,St = h)

∂θm∂θn
,

for h ∈ H, where (St = h) ≡ (Sα
t = h1,Zt = h2,S

η
t = h3). Using results from Proposition 1

of Freeland and McCabe (2004a) and with the convention that Pθ (−a|Yt−1,St) = Pθ (Yt|−
b,St) = Pθ (−a|−b,St) = 0 for all a,b > 0, we obtain

v̇h,t;θm =

⎧⎪⎪⎨⎪⎪⎩
Yt−1

1−αh1

[
Pθ (Yt −1|Yt−1 −1,St = h)−Pθ (Yt|Yt−1,St = h)

]
, if θm = αh1,

Pθ (Yt −1|Yt−1,St = h)−Pθ (Yt|Yt−1,St = h), if θm = λh2,

0, otherwise,

(A.10)

and if θm = θn = αh1 , then

v̈h,t;αh1,αh1
= Yt−1

(1−αh1)
2

[
2Pθ (Yt −1|Yt−1 −1,St = h)

+ (Yt−1 −1)Pθ (Yt −2|Yt−1 −2,St = h)

−Yt−1
Pθ (Yt −1|Yt−1 −1,St = h)2

Pθ (Yt|Yt−1,St = h)
−1

]
,

if θm = αh1 and θn = λh2 , then

v̈h,t;αh1,λh2
= Yt−1

1−αh1

×
[

Pθ (Yt −2|Yt−1 −1,St = h)−Pθ (Yt −1|Yt−1,St = h)
Pθ (Yt −1|Yt−1 −1,St = h)

Pθ (Yt|Yt−1,St = h)

]
,

if θm = λh2 and θn = λh2 , then

v̈h,t;λh2,λh2
= Pθ (Yt −2|Yt−1,St = h)− Pθ (Yt −1|Yt−1,St = h)2

Pθ (Yt|Yt−1,St = h)
,

and v̈h,t;θm,θn = 0 otherwise. Using Proposition 2 of Freeland and McCabe (2004a) it
follows that

Pθ (Yt −1|Yt−1,St = h)

Pθ (Yt|Yt−1,St = h)
= 1

λh2

Eθ

[
ηt|Yt,Yt−1,St = h

]
,

Pθ (Yt −1|Yt−1 −1,St = h)

Pθ (Yt|Yt−1,St = h)
= 1

αh1 Yt−1
Eθ

[
At|Yt,Yt−1,St = h

]
.
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Substituting these expressions into v̇h,t;θm and v̈h,t;θm,θn , rearranging the terms, and
applying the triangular inequality completes the proof. �

Consider the following alternative representation of the model. Let {S̃t} = {(Sα
t ,Sη

t )} be
a Markov chain constructed by combining Sα

t and Sη
t . As in the proof of Lemma 2, it can

be shown that {S̃t} is a first-order homogeneous ergodic Markov chain with state space
H̃= [1, . . . ,H̃], where H̃ = JK. Let h also be a generic state of {S̃t} and let h1 and h2 be the
associated realizations of {(Sα

t ,Sη
t )}, such that P(S̃t = h) = P(Sα

t = h1,S
η
t = h2), for h ∈ H̃.

By the S̃t-representation, it follows that P(Yt = yt|Yt−1 = yt−1,S̃t = h̃) for all yt,yt−1 ∈ N

is a mixture of K Poisson Binomial distributions with mixing weights given by ωk,h̃2
, for

k = 1, . . . ,K, i.e.,

P(Yt = yt|Yt−1 = yt−1,S̃t = h)

=
K∑

k=1

ωk,h2

yt∧yt−1∑
q=0

e−λh2
λ

q
h2

q!

(
yt−1
yt −q

)
α

yt−q
h1

(1−αh1)
yt−1−yt+q. (A.11)

Let us represent θ as θ = (γ ′,ψ ′)′ with ψ = (ψ ′
h,h = 1, . . . ,H̃)′, where γ includes all the

elements of �̃ (the transition probability matrix associated with {S̃t}) but those reported in
the last column, and ψh = (ω′

h2
,αh1,λh2)

′.10 Let fh,t|t−1(ψh) = Pψh
(Yt|Yt−1,S̃t = h), and

ṽh,t,m(ψh) = ∂fh,t|t−1(ψh)

∂[ψh]m
.

Lemma 5. Under the assumptions of Theorem 3,

{fh,t|t−1(ψh,0),ṽh,t,m(ψh,0),h = 1, . . . ,H̃,m = 1, . . . ,ph}
are linearly independent for all (Yt,Yt−1) = (yt,y′

t−1) ∈ N
2.

Proof. First, note that Assumption 2 implies that P(Yt = yt|Yt−1 = yt−1,S̃t = h,Zt = l1)

and P(Yt = yt|Yt−1 = yt−1,S̃t = h,Zt = l2) for l1 �= l2 are linearly independent for all
(yt,yt−1) ∈ N

2, such that mixtures fh,t|t−1(ψh) = Pψh
(Yt = yt|Yt−1 = yt−1,S̃t = h) for

h ∈ H̃ are linearly independent by Theorem 2.3 of Chandra (1977). Lemma 5 then follows by
noting that expressions for ṽh,t,m(ψh) are of the kind of those reported in (A.10), and involve

the terms
∑K

k=1 ωk,h2 P(Yt = yt − 1|Yt−1 = yt−1 − 1,S̃t = h,Zt = k) when [ψh]m = αh

and [ψh]m = λh and P(Yt = yt|Yt−1 = yt−1,S̃t = h,Zt = k) when [ψh]m = ωh2,k. Linear
independence then follows by distinctness of the mixture components (Assumption 2) and
the condition ωh,l > 0 (Assumption 1.c). �

Let ft|t−1(θ) = Pθ (Yt|Y−∞:t−1) and note that:

ft|t−1(θ) =
H̃∑

h=1

πh,t|t−1(θ)fh,t|t−1(ψh), (A.12)

10The elements in the last column of �̃ are excluded since they are computed by subtracting the sum of the other

elements from one, i.e., γ̃hH̃ = 1−∑H̃−1
i=1 γ̃hi for all h = 1, . . . ,H̃.
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where πh,t|t−1(θ) = Pθ (S̃t = h|Y−∞:t−1). Let now π t|t−1(θ) = (πh,t|t−1(θ),h =
1, . . . ,H̃)′, then

π t+1|t(θ) = �S̃ (θ)′P̃t(θ)π t|t−1(θ), (A.13)

where P̃t(θ) is a diagonal matrix with generic element fh,t|t−1(ψh)/ft|t−1(θ). Exploiting the

fact that πH̃,t|t−1(θ) = 1−∑H̃−1
h=1 πh,t|t−1(θ), starting from (A.13), we obtain the following

representation for πj,t|t−1(θ):

πj,t+1|t(θ) = γJ,j +
H̃−1∑
i=1

(γi,j −γJ,j)fi,t|t−1(θ)

ft|t−1(θ)
πi,t|t−1(θ), (A.14)

for j = 1, . . . ,H̃ −1.

Lemma 6. Under the assumption of Theorem 3, I(θ0) is positive definite.

Proof. First, recall that

I(θ0) = E
[∇θ log ft|t−1(Yt;θ0)∇θ ′ log ft|t−1(Yt;θ0)

]
.

Hence, I(θ0) is clearly positive semi-definite. To show that I(θ0) is also positive definite,
it is enough to show that x′∇θ log ft|t−1(Yt;θ0) = 0 a.s. implies that x = 0. Let θ =
(γ ′,ψ ′)′, where γ = (γ α ′,γ η ′)′, γ α = (γ α

1
′, . . . ,γ α

J−1
′)′, γ α

i = (γ α
j,i,j = 1, . . . ,J)′, γ η =

(γ
η
1
′
, . . . ,γ

η
L−1

′
)′, γ η

i = (γ
η
j,i,j = 1, . . . ,L)′, and ψ = (ψ ′

h,h = 1, . . . ,H̃)′, and ψh is defined

as below (A.11). Similarly, let x = (xγ ′,xψ ′
)′, where the elements of xγ are of the kind

xγ α

i,j , i = 1, . . . ,J and j = 1, . . . ,J −1, and xγ η

i,j , i = 1, . . . ,L and j = 1, . . . ,L−1, and those of

xψ are xα
j , j = 1, . . . ,J, xλ

k , k = 1, . . . ,K, xω
l,k for l = 1, . . . ,L and k = 1, . . . ,K. From (A.12),

we have that

ft|t−1(Yt,θ0)x′∇θ log ft|t−1(Yt;θ0) =
H̃∑

j=1

x′∇θπj,t|t−1(θ0)fj,t|t−1(ψ j,0)

+
H̃∑

j=1

p∑
m=1

πj,t|t−1(θ0)x
ψj
m ṽj,t,m(ψ j,0),

where p is the dimension of ψh (which is the same for all h = 1. . . ,H̃). Since
{fj,t|t−1(ψ j,0),vj,t,m(ψ j,0),j = 1, . . . ,H̃,m = 1, . . . ,p} are linearly independent with positive
probability by Lemma 5, then x′∇θ log ft|t−1(Yt;θ0) = 0 a.s. implies that:

1) x′∇θπj,t|t−1(θ0) = 0 a.s. for all j ∈ {1, . . . ,H̃},
2) x

ψj
m πj,t|t−1(θ0) = 0 a.s. for all j ∈ {1, . . . ,J} and m ∈ {1, . . . ,p},

where the latter implies that x
ψj
m = 0 for all j ∈ {1, . . . ,H̃} and m ∈ {1, . . . ,p}. Hence, 1)

becomes

1′) xγ ′∇γ πj,t|t−1(θ0) = 0 a.s. for all j ∈ {1, . . . ,H̃}.
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Provided that, associated with an index j ∈ {1, . . . ,H̃}, there are two indexes j1 ∈ {1, . . . ,J}
and j2 ∈ {1, . . . ,L}, and that a generic element of �̃ is given by γi,j = γ α

i1,j1
γ

η
i2,j2

for some
indexes i1,i2,j1,j2, from (A.14), we get that

∇γ πj,t|t−1(θ0)

= ∇γ (γ α
J,j1

γ
η
L,j2

)+
H̃−1∑
i=1

(
(γ α

i1,j1
γ

η
i2,j2

−γ α
J,j1

γ
η
L,j2

)fi,t|t−1(ψ i,0)

ft|t−1(Yt;θ0)

)
∇γ πi,t|t−1(θ0)

+
H̃−1∑
i=1

πi,t|t−1(θ0)

[∇γ (γ α
i1,j1

γ
η
i2,j2

−γ α
J,j1

γ
η
L,j2

)fi,t|t−1(ψ i,0)

ft|t−1(Yt;θ0)

−
(γ α

i1,j1
γ

η
i2,j2

−γ α
J,j1

γ
η
L,j2

)fi,t|t−1(ψ i,0)

ft|t−1(Yt;θ0)2

J∑
h=1

∇γ πh,t|t−1(θ0)fh,t|t−1(ψh,0)

⎤⎦, (A.15)

for all j = 1, . . . ,H̃ −1. Since xγ ′∇γ πj,t|t−1(θ0) = 0 for all j = 1. . . ,H̃ by 1′), and by pre-
multiplying (A.15) by ft|t−1(Yt : θ0)xγ ′, we obtain

0 =
H̃∑

i=1

xγ ′∇γ (γ α
i1,j1

γ
η
i2,j2

)fi,t|t−1(ψ i,0)πi,t|t−1(θ0)

for all (j1,j2) associated with j = 1, . . . ,H̃ − 1. Furthermore, linear independence of
f1,t|t−1(ψ1,0), . . . ,fH̃,t|t−1(ψH̃,0) leads to the following result:

3) xγ ′∇γ (γ α
i1,j1

γ
η
i2,j2

) = 0 for all j1 ∈ {1, . . . ,J}, j2 ∈ {1, . . . ,L} associated with j ∈
{1, . . . ,H̃ −1} and all i1 ∈ {1, . . . ,J}, i2 ∈ {1, . . . ,L} associated with i ∈ {1, . . . ,H̃}.

Noting that

γi,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ α
i1,j1

γ
η
i2,j2

, if j1 �= J,j2 �= L(
1−∑J−1

l=1 γ α
i1,l

)
γ

η
i2,j2

, if j1 = J,j2 �= L

γ α
i1,j1

(
1−∑L−1

l=1 γ
η
i2,l

)
, if j1 �= J,j2 = L(

1−∑J−1
l=1 γ α

i1,l

)(
1−∑L−1

l=1 γ
η
i2,l

)
, if j1 = J,j2 = L,

and

xγ ′∇γ (γ α
i1,j1

γ
η
i2,j2

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xα
i1,j1

γ
η
i2,j2

+γ α
i1,j1

xη
i2,j2

, if j1 �= J,j2 �= L

−∑J−1
l=1 xα

i1,l
γ

η
i2,j2

+
(

1−∑J−1
l=1 γ α

i1,l

)
xη

i2,j2
, if j1 = J,j2 �= L

xα
i1,j1

(
1−∑L−1

l=1 γ
η
i2,l

)
−γ α

i1,j1

∑L−1
l=1 xη

i2,l
, if j1 �= J,j2 = L

−∑J−1
l=1 xα

i1,l

(
1−∑L−1

l=1 γ
η
i2,l

)
−

(
1−∑J−1

l=1 γ α
i1,l

)∑L−1
l=1 xη

i2,l
, if j1 = J,j2 = L,
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and by
(∑J−1

j1=1 xγ ′∇γ (γ α
i1,j1

γ
η
i2,j2

)
)

+xγ ′∇γ (γ α
i1,J

γ
η
i2,j2

) = 0, we conclude that xη
i2,j2

= 0

for all i2 = 1, . . . ,L, and j2 = 1, . . . ,L − 1. Similarly, by
(∑L−1

j2=1 xγ ′∇γ (γ α
i1,j1

γ
η
i2,j2

)
)

+
xγ ′∇γ (γ α

i1,j1
γ

η
i2,L

) = 0, we conclude that xα
i1,j1

= 0 for all i1 = 1, . . . ,J, and j1 = 1, . . . ,J−1,

such that xγ = 0. All in all, x′∇θ log ft|t−1(Yt;θ0) = 0 a.s. implies that x = 0. Hence, I(θ0)

is also positive definite. �

A.5.2. Proof of Theorem 3.

Proof. To prove the consistency and asymptotic normality of θ̂T,s0 for any s0, we apply
Theorems 1 and 4 of Douc et al. (2004), respectively. For the strong consistency of the Fisher
information matrix estimator, we apply their Theorem 3. For the proof, we illustrate below
that their conditions (A1)–(A8) are valid in the context of ML estimation of the HMM-
INAR model. We list below conditions (A1)–(A8), adapting them to the notation of the
HMM-INAR model:

(A1) (a) γS
ij > 0

(b) (i) for all y,y′ ∈ N
2: (i) inf

θ∈�

∑H
h=1 Pθ (Yt = y|Yt−1 = y′,St = h)Pθ (St = h) > 0

and (ii)sup
θ∈�

∑H
h=1 Pθ (Yt = y|Yt−1 = y′,St = h)P(St = h) < ∞.

(A2) The sequence {(Yt,Yt−1,St)}t∈N at θ ∈ � is a Markov chain on N
2 × H with

transition kernel �θ . For all θ ∈ �, the transition kernel �θ is positive Harris
recurrent and aperiodic with invariant distribution πθ .

(A3) (a) supθ∈� sup(y,y′)∈N2 suph∈H Pθ (Y1 = y|Y0 = y′,S1 = h) < ∞
(b) Eθ0

(∣∣∣log
(

infθ∈�

∑H
h=1 Pθ (Y1|Y0,S1 = h)Pθ (S1 = h)

)∣∣∣) < ∞.

(A4) (i)θ → � is continuous on � and (ii)θ → Pθ (Y1 = y|Y0 = y′,S1 = h) is continuous
on � for all (y,y′,h) ∈ N

2 ×H.
(A5)′ θ = θ0, if and only if E

[
logPθ0(Y1:p|Y0)

] = E
[
logPθ (Y1:p|Y0)

]
for all p ≥ 1.

(A6) (i)θ → � is twice continuously differentiable on �̇ and (ii)θ → Pθ (Y1 = y|Y0 =
y′,S1 = h) is twice continuously differentiable on �̇ for all (y,y′,h) ∈ N

2 ×H.
(A7) (a) supθ∈�̇ sup(i,j)∈H2 ||∇θ logγS

i,j || < ∞ and supθ∈�̇ sup(i,j)∈H2 ||∇2
θ logγS

i,j || <

∞.
(b) Eθ0

[
supθ∈�̇ suph∈H ||∇θ logPθ (Yt|Yt−1,St = h)||2

]
< ∞ and

Eθ0

[
supθ∈�̇ suph∈H

∣∣∣∣∇2
θ logPθ (Yt|Yt−1,St = h)

∣∣∣∣] < ∞.
(A8) (a) There exists a function fy,y′ : H → (0,∞) such that supθ∈�̇ Pθ (Y1 = y|Y0 =

y′,St = h) ≤ fy,y′(h) for almost all (y,y′) ∈ N
2, with fy,y′ ∈ L1, the space of

absolutely integrable functions.
(b) There exist functions f 1

h,y : N → (0,∞) and f 2
h,y : N → (0,∞) such

that
∣∣∣∣∇θ Pθ (Yt = y′|Yt−1 = y,St = h)

∣∣∣∣ ≤ f 1
h,y(y

′) and||∇2
θ Pθ (Yt = y′|Yt−1 = y,

St = h)|| ≤ f 2
h,y(y

′), a.s., with f 1
h,y(y

′) ∈ L1 and f 2
h,y(y

′) ∈ L1.

Strong consistency of θ̂T,s0 for any s0 follows from Theorem 1 of Douc et al. (2004)
if (A1)–(A5) are satisfied. We note that (A1)(a) is satisfied by Lemma 1; (A1)(b)(i) is
satisfied due to the fact that P(St = h) > 0 for all h ∈ H (Lemma 1) and minj=1,...,J αj < 1,
which ensures that for at least one h ∈ H, we have infθ∈� Pθ (Yt = y|Yt−1 = y′,St =
h) > 0 for all (y,y′) ∈ N

2; (A1)(b)(ii) is satisfied, since Pθ (Yt = y|Yt−1 = y′,St = h) ≤ 1
and P(St = h) < 1 for all y,y′,h. Condition (A2) is satisfied, if the extended process is
geometrically ergodic, which holds by Theorem 1. Condition (A3) is satisfied by the fact
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that supθ∈� sup(y,y′)∈N2 suph∈HPθ (Yt = y|Yt−1 = y′,St = h) ≤ 1 and by the fact that

infθ∈� Pθ (Yt|Yt−1,St = h′) > 0 a.s. for some h′ ∈ H. The latter inequality follows by
selecting any index h′ for which αh′

1
< 1 (where h′

1 is the index for Sα
t selected according

to h′). Indeed, it is easily shown that, for such h′, infθ∈� Pθ (Y1|Y0,S1 = h′) > 0 a.s. It
then follows that, infθ∈� Pθ (Y1|Y0) ≥ infθ∈� Pθ (Y1|Y0,S1 = h′)P(S1 = h′) > 0 a.s., since
P(S1 = h′) > 0 by Assumption 1. Condition (A4) is satisfied by the HMM-INAR model
because the conditional probability mass functions are smooth functions of θ . Condition
(A5)′ is satisfied by Assumptions 1 and 2.

As shown in the proof of Lemma 5, under the S̃t representation of the HMM-INAR
model, P(Yt = yt|Yt−1 = yt−1,S̃t = h̃) for all h = 1, . . . ,H̃, are linearly independent.
Condition (A5)′ then follows by Lemma 5 of Krishnamurthy and Rydén (1998). The only
difference with Lemma 5 of Krishnamurthy and Rydén (1998) is that in the HMM-INAR
case Yt|(Yt−1,S̃t) is distributed according to a mixture of K distributions. However, as noted
in the proof of Proposition 2 of Gassiat, Cleynen, and Robin (2016), a sufficient condition
to ensure that the mixture distributions P(Yt = yt|Yt−1 = yt−1,S̃t = h̃), for h̃ ∈ H̃, are
linearly independent is that the conditional probability mass functions P(Yt = yt|Yt−1 =
yt−1,S̃t = h̃,Zt = l) for l = 1, . . . ,L are linearly independent for all yt−1 ∈ N and that �

has rank L with L ≤ K. Both conditions are satisfied by Assumption 2 and identifiability of
P(Yt = yt|Yt−1 = yt−1,S̃t = h̃,Zt = l), which follows from Theorem 2.3 of Chandra (1977),
as discussed earlier. We then conclude that (A5)′ is satisfied by Lemma 5 of Krishnamurthy
and Rydén (1998). So, by Theorem 1 of Douc et al. (2004) θ̂T,s0 → θ0 a.s. as T → ∞ and
for any s0 ∈ H.

Asymptotic normality of the MLE follows by verifying conditions (A6)–(A8). We note
that conditions (A6)(i) and (A6)(ii) are straightforward to verify in the HMM-INAR case.
Conditions (A7)(a) and (A7)(b) are verified by applying Lemma 3. Condition (A8)(a) is
satisfied by taking fy,y′(h) = 1, while condition (A8)(b) is satisfied by taking f 1

h,y(y
′) =

1+ cy′ and f 2
h,y(y

′) = 1+ c(y′)2 for some finite c > 0 by an application of Lemma 4. Note

that absolute integrability of f 1
h,y(y

′) and f 2
h,y(y

′) follows from the weak stationarity of {Yt},
which is ensured by minj=1,...,J αj < 1. So, by an application of Theorem 4 of Douc et al.

(2004), we conclude that
√

T (̂θT,s0 − θ0) → N (0,I(θ0)−1) for T → ∞, for any s0 ∈ H.
Strong consistency of the Fisher information matrix estimator follows by Theorem 3 of

Douc et al. (2004) under their assumptions (A1)–(A3) and (A6)–(A8), which are satisfied
by the HMM-INAR model. Positive definiteness of I(θ0) follows by Lemma 6. �
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Nastić, A. S., Laketa, P. N., & Ristić, M. M. (2016). Random environment integer-valued autoregressive
process. Journal of Time Series Analysis, 37(2), 267–287.

https://doi.org/10.1017/S0266466625100182 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100182


44 LEOPOLDO CATANIA ET AL.

Pavlopoulos, H., & Karlis, D. (2008). INAR(1) modeling of overdispersed count series with an
environmental application. Environmetrics, 19(4), 369–393.

Pedeli, X., Davison, A. C., & Fokianos, K. (2015). Likelihood estimation for the INAR(p) model by
saddlepoint approximation. Journal of the American Statistical Association, 110(511), 1229–1238.

Qian, L., & Zhu, F. (2025). A flexible model for time series of counts with overdispersion or underdis-
persion, zero-inflation and heavy-tailedness. Communications in Mathematics and Statistics, 13(2),
431–454.

Quoreshi, A. M. M. S. (2014). A long-memory integer-valued time series model, INARFIMA, for
financial application. Quantitative Finance, 14(12), 2225–2235.

Roick, T., Karlis, D., & McNicholas, P. D. (2021). Clustering discrete-valued time series. Advances in
Data Analysis and Classification, 15(1), 209–229.

Ranaldo, A., & Santucci de Magistris, P. (2022). Liquidity in the global currency market. Journal of
Financial Economics, 146(3), 859–883.

Rossi, E., & Fantazzini, D. (2014). Long memory and periodicity in intraday volatility. Journal of
Financial Econometrics, 13(4), 922–961.

Roy, A., & Karmakar, S. (2021). Time-varying auto-regressive models for count time-series. Electronic
Journal of Statistics, 15(1), 2905–2938.

Rudholm, N. (2001). Entry and the number of firms in the Swedish pharmaceuticals market. Review
of Industrial Organization, 19, 351–364.

Rydberg, T. H., & Shephard, N. (2000). A modelling framework for the prices and times of trades
made on the New York stock exchange. In W. J. Fitzgerald, R. L. Smith, A. T. Walden & P. Young
(Eds.), Nonlinear and nonstationary signal processing. Cambridge University Press Cambridge.

Rydén, T., Teräsvirta, T., & Aasbrink, S. (1998). Stylized facts of daily return series and the hidden
Markov model. Journal of Applied Econometrics, 13(3), 217–244.

Schweer, S., & Weiß, C. H. (2014). Compound Poisson INAR(1) processes: Stochastic properties and
testing for over-dispersion. Computational Statistics & Data Analysis, 77, 267–284.

Steutel, F., & Van Harn, K. (1979). Discrete analogues of self-decomposability and stability. The Annals
of Probability, 7(5), 893–899.

Tang, M., & Wang, Y. (2014). Asymptotic behavior of random coefficient INAR model under random
environment defined by difference equation. Advances in Difference Equations, 99(1), 1–9.

Tauchen, G. E., & Pitts, M. (1983). The price variability-volume relationship on speculative markets.
Econometrica: Journal of the Econometric Society, 51, 485–505.

Thyregod, P., Carstensen, J., Madsen, H., & Arnbjerg-Nielsen, K. (1999). Integer valued autoregressive
models for tipping bucket rainfall measurements. Environmetrics, 10(4), 395–411.

Tong, H. (1990). Non-linear time series: A dynamical system approach. Oxford University Press.
Tweedie, R. L. (1975). Sufficient conditions for ergodicity and recurrence of Markov chains on a

general state space. Stochastic Processes and their Applications, 3(4), 385–403.
Vermunt, J. K., Langeheine, R., & Böckenholt, U. (1999). Discrete-time discrete-state latent Markov

models with time-constant and time-varying covariates. Journal of Educational and Behavioral
Statistics, 24(2), 179–207.

Weiß, C. H. (2008). Thinning operations for modeling time series of counts: A survey. AStA Advances
in Statistical Analysis, 92(3), 319.

Weiß, C. H. (2015). A Poisson INAR(1) model with serially dependent innovations. Metrika, 78(7),
829–851.

Weiß, C. H., Zhu, F., & Hoshiyar, A. (2022). Softplus INGARCH models. Statistica Sinica, 32(2),
1099–1120.

Weiß, C. H., & Zhu, F. (2024). Conditional-mean multiplicative operator models for count time series.
Computational Statistics and Data Analysis, 191, 107885.

Wong, C. S., & Li, W. K. (2000). On a mixture autoregressive model. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 62(1), 95–115.

Zheng, H., Basawa, I. V., & Datta, S. (2007). First-order random coefficient integer-valued autoregres-
sive processes. Journal of Statistical Planning and Inference, 137(1), 212–229.

Zucchini, W., MacDonald, I. L., & Langrock, R. (2017). Hidden Markov models for time series: An
introduction using R. CRC Press.

https://doi.org/10.1017/S0266466625100182 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100182

	1 INTRODUCTION
	2 THE HMM-INAR
	3 PROPERTIES OF THE HMM-INAR
	3.1 Ergodicity and Stationarity
	3.2 Moments

	4 MAXIMUM LIKELIHOOD ESTIMATION
	5 EM ALGORITHM AND SIMULATION STUDY
	5.1 EM Algorithm for the HMM-INAR Model
	5.2 Monte Carlo Analysis
	5.3 Model Selection

	6 EMPIRICAL ILLUSTRATION
	6.1 The Seasonal HMM-INAR Model
	6.2 Estimation
	6.3 Forecast

	7 CONCLUSION
	A PROOFS
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2
	A.3 Proof of Theorem 1
	A.4 Theorem 2
	A.4.1 Notation and a Useful Lemma
	A.4.2 Proof of Theorem 2

	A.5 Theorem 3
	A.5.1 Notation and Useful Lemmas
	A.5.2 Proof of Theorem 3



