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Abstract

The almost-sure existence of a polymer probability in the infinite volume limit is readily
obtained under general conditions of weak disorder from standard theory on multiplicative
cascades or branching random walks. However, speculations in the case of strong disorder
have been mixed. In this note existence of an infinite volume probability is established at
critical strong disorder for which one has convergence in probability. Some calculations
in support of a specific formula for the almost-sure asymptotic variance of the polymer
path under strong disorder are also provided.
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1. Introduction and preliminaries

Polymers are abstractions of chains of molecules embedded in a solvent by nonself-
intersecting polygonal paths of points whose probabilities are themselves random (reflecting
impurities of the solvent). In this connection, tree polymers take advantage of a particular way
to determine path structure and their probabilities as follows.

Three different references to paths occur in this formulation. An ∞-tree path is a sequence
s = (s1, s2, . . .) ∈ {−1, 1}N emanating from a root 0. A finite tree path or vertex v is a finite
sequence v = s|n = (s1, . . . , sn), read ‘path s restricted to level n’, of length |v| = n. The
symbol ‘∗’ denotes concatenation of finite tree paths; if v = (v1, . . . , vn) and t = (t1, . . . , tm),
then v ∗ t = (v1, . . . , vn, t1, . . . , tm). Vertices belong to T := ⋃∞

n=0{−1, 1}n, and can be
viewed as unique finite paths to the root of the directed binary tree T equipped with the obvious
graph structure. We also write

∂T = {−1, 1}N

for the boundary of T . The third type of path, and the one of main interest to polymer questions,
is that of the polygonal tree path defined by n → (s)n := ∑n

j=1 sj , n ≥ 0, with (s)0 := 0 for
a given s ∈ ∂T .

Here ∂T is a compact, topological Abelian group for coordinatewise multiplication and the
product topology. The uniform distribution on ∞-tree paths is the Haar measure on (∂T , B),
i.e.

λ(ds) = ( 1
2δ+(ds) + 1

2δ−(ds)
)N

.
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Let {Xv : v ∈ T } be an independent and identically distributed family of positive random
variables on (�, F , P) with E X < ∞; we denote a generic random variable with the common
distribution of Xv by X. Without loss of generality, we may assume that E X = 1. Define a
sequence of random probability measures probn(ds) on (∂T , B) by the prescription that

probn(ds) � λ(ds)

with
dprobn

dλ
(s) = Z−1

n

n∏
j=1

Xs|j ,

where

Zn =
∫

∂T

n∏
j=1

Xs|j λ(ds) =
∑
|s|=n

n∏
j=1

Xs|j 2−n.

Observing that {Zn : n = 1, 2, . . .} is a positive martingale, it follows that

Z∞ := lim
n→∞ Zn

exists almost surely (a.s.) in (�, F , P). According to a classic theorem of Kahane and Peyrière
(1976) in the context of multiplicative cascades, and Biggins (1976) in the context of branching
random walks, we have the following dichotomy:

P(Z∞ > 0) = 1 ⇐⇒ E X ln X < ln 2,

P(Z∞ = 0) = 1 ⇐⇒ E X ln X ≥ ln 2.

The almost-sure occurrence of the event [Z∞ > 0] is referred to as weak disorder and that of
[Z∞ = 0] as strong disorder; see Bolthausen (1989), (1991). In particular, the critical case
E X ln X = ln 2 is strong disorder. In the case of tree polymers we may view the notions
of weak and strong in terms of a disorder parameter defined by E X ln X and relative to the
branching rate, ln 2.

In this short communication we provide some new insights into a few delicate problems for
the case of strong disorder.

2. Tree polymers under weak disorder

To set the stage for contrast, we record a rather robust consequence of weak disorder.

Theorem 1. Under weak disorder, there exists a random probability measure prob∞(ds) on
(∂T , B) such that, a.s.,

probn(ds) ⇒ prob∞(ds),

where ‘⇒’ denotes weak convergence.

Proof. Define λn(ds) = Znprobn(ds), n = 1, 2, . . .. By Kahane’s T -martingale theory
(see, e.g. Kahane and Peyrière (1976), Kahane (1989), and Waymire and Williams (1996)),
λn(ds) converges vaguely to a nonzero random measure λ∞(ds) on (∂T , B) with probability 1.
By the definition of weak disorder, Zn → Z∞ > 0 a.s.; thus, we obtain

probn(ds) = Z−1
n λ(ds) ⇒ Z−1∞ λ∞(ds) a.s.

Note that in the case of no disorder, i.e. X = 1 a.s., we have

probn(ds) = λ(ds) for all n = 1, 2, . . . .
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Moreover, under λ(ds), the polygonal paths are simply symmetric simple random walk paths,
where the probability theory is quite well known and complete. For example, the central limit
theorem takes the form

lim
n→∞ λ

({
s ∈ ∂T : (s)n√

n
≤ x

})
= 1√

2π

∫ x

−∞
e−ξ2/2 dξ.

For probability laws involving convergence in distribution, one may ask if the central limit
theorem continues to hold a.s. with λ(ds) replaced by probn(ds). This form of universality
was answered in the affirmative in Waymire and Williams (2010) for weak disorder under the
additional assumption that E X1+δ < ∞ for some δ > 0. Problems involving limit laws, such
as almost-sure strong laws, almost-sure laws of the iterated logarithm, etc., however, require
an infinite volume probability prob∞(ds) for their formulation. While the preceding theorem
answers this in the case of weak disorder, the problem is open for strong disorder. Moreover,
it has been speculated by Yuval Peres (private communication) that probn(ds) will a.s. have
infinitely many weak limit points under strong disorder. However, in the case of critical strong
disorder we show that a natural infinite volume polymer exists and is related to the finite volume
polymers through limits in probability.

3. Tree polymers at critical strong disorder

In this section we show the existence under critical strong disorder, i.e. assuming that
E X ln X = ln 2, of an infinite volume polymer probability prob∞(ds) that may be viewed as the
weak limit in probability of the sequence probn(ds), n ≥ 1, in the sense that its characteristic
function is the limit in probability of the corresponding sequence of characteristic functions of
probn(ds), n ≥ 1.

For v ∈ T , v = (v1, . . . , vm), say, let

�m(v) = {s ∈ ∂T : si = vi, i = 1, . . . , m}, |v| = m.

Since T is countable, there are countably many such finite-dimensional rectangles in ∂T .
For m > n, note that

probn(�m(v)) =
∫

�m(v)

dprobn

dλ
(s)λ(ds)

=
∫

�m(v)

Z−1
n

n∏
j=1

Xs|j λ(ds)

= Z−1
n

∫
�m(v)

n∏
j=1

Xv|j λ(ds)

= Z−1
n

n∏
j=1

Xv|j 2−m.

For example,

prob1(�m(v)) = Z−1
1 Xv|12−m = Xv|12−(m−1)

X+ + X−
=

⎧⎪⎪⎨
⎪⎪⎩

X+2−(m−1)

X+ + X−
, v|1 = +1,

X−2−(m−1)

X+ + X−
, v|1 = −1,

where Z1 = (X+ + X−)/2. We have
∑

|v|=m prob1(�m(v)) = 1 since there are 2m such vs,
half of which have v1 = +1 and the other half have v1 = −1.
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For m ≤ n and |v| = m, we have

probn(�m(v)) = Z−1
n

∫
�m(v)

n∏
j=1

Xs|j λ(ds)

= Z−1
n

m∏
j=1

Xv|j
∑

|t |=n−m

n−m∏
j=1

X(v∗t)|j 2−n

= Z−1
n

( m∏
j=1

Xv|j 2−m

)
Zn−m(v),

where

Z0(v) = 1, Zn−m(v) =
∑

|t |=n−m

n−m∏
j=1

X(v∗t)|j 2−(n−m).

In particular, Zn = Zn(0), where 0 ∈ T is the root.
Note that

Zn =
∑

|u|=m

∑
|t |=n−m

m∏
j=1

Xu|j 2−m
n−m∏
j=1

X(u∗t)|j 2−(n−m) =
∑

|u|=m

Zn−m(u)

m∏
j=1

Xu|j 2−m.

Thus, letting ak = 1/
√

k, k ≥ 1,

probn(�m(v)) = Dn−m(v)
∏m

j=1 Xv|j 2−m(Zn−m(v)/an−mDn−m(v))∑
|u|=m Dn−m(u)(

∏m
j=1 Xv|j 2−m)(Zn−m(u)/an−mDn−m(u))

→ D∞(v)
∏m

j=1 Xv|j 2−m∑
|u|=m D∞(u)(

∏m
j=1 Xv|j 2−m)

,

where (i) the convergence to D∞(v) is the almost-sure limit of the derivative martingale
obtained in Biggins and Kyprianou (2004), and (ii) limn→∞ Zn−m(v)/an−mDn−m(v) = c > 0
is the limit in probability at critical strong disorder recently obtained in Aidékon and Shi
(2011). The constant c = (2/πσ 2)1/2 for σ 2 = E{X(ln(X))2} − (E{X ln(X)})2 > 0 does
not depend on v ∈ T . Aidékon and Shi (2011) also pointed out that the almost-sure positivity
of D∞(v) follows from Biggins and Kyprianou (2004) and Aidékon (2011). The sequence
ak = k−1/2, k ≥ 1, is referred to as the Seneta–Heyde scaling.

Remark 1. For each v ∈ T , there is a set N(v) of probability 0 such that

D∞(v, ω) = lim
n→∞ Dn(v, ω), ω ∈ � \ N(v).

Since T is countable, the set N = ⋃
v∈T N(v) is still a P-null subset of �. The almost-sure

convergence of the derivative martingales is essential to the construction of prob∞ given in the
lemma below.

We now define

prob∞(�m(v), ω) = D∞(v, ω)
∏m

j=1 Xv|j (ω)2−m∑
|u|=m D∞(u, ω)(

∏m
j=1 Xu|j (ω)2−m)

for ω ∈ � \ N .
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Lemma 1. prob∞(�m(v), ω) extends to a unique probability on (∂T , B) for each ω ∈ � \N .

Proof. We use the Carathéodory extension, taking careful advantage of the fact that the
sets �(v), v ∈ T , are both open and closed subsets of the compact set ∂T . For ω ∈ � \ N ,
prob∞(·, ω) extends to the algebra generated by {�(v) : v ∈ T } by addition. Since ∂T is
compact and the rectangles are both open and closed, countable additivity on this algebra
must hold as a consequence of finite additivity, i.e. if

⋃∞
i=1 �(vi) is contained in the algebra

generated by {�(v) : v ∈ T }, then
⋃∞

i=1 �(vi) is closed, hence compact, and its own open
cover, i.e.

⋃∞
i=1 �(vi) = ⋃l

i=1 �(vil ) for some finite subsequence {ij }lj=1 of {1, 2, . . .}.
Theorem 2. At critical strong disorder, for each finite set F ⊆ N,

p̂robn(F ) ⇒ p̂rob∞(F ) in probability,

where p̂robn, n ≥ 1, and p̂rob∞ denote the Fourier transforms of probn and prob∞, respectively,
as probabilities on the compact Abelian multiplicative group ∂T for the product topology.

Proof. The continuous characters of the group ∂T are given by

χF (t) =
∏
j∈F

tj for finite sets F ⊆ N.

In particular, there are only countably many characters of ∂T . From standard Fourier analysis,
it follows that we need only show that

lim
n→∞ Eprobn

χF = Eprob∞ χF in probability

for each finite set F ⊆ N. Let m = max{k : k ∈ F }. Then, for n > m,

Eprobn
χF =

∫
∂T =⋃

|v|=m �m(v)

χF (s)
dprobn

dλ
(s)λ(ds)

=
∑

|v|=m

(∏
j∈F

vj

)
Z−1

n (0)

m∏
j=1

Xv|j 2−m
∑

|t |=n−m

n−m∏
j=1

X(v∗t)|j 2−(n−m)

=
∑

|v|=m

(∏
j∈F

vj

) m∏
j=1

Xv|j 2−m Zn−m(v)

Zn(0)

=
∑

|v|=m

(∏
j∈F

vj

) m∏
j=1

Xv|j 2−mDn−m(v)

× Zn−m(v)/an−mDn−m(v)∑
|u|=m

∏m
j=1 Xu|j 2−mDn−m(u)(Zn−m(u)/an−mDn−m(u))

→ Eprob∞ χF ,

where the convergence is almost sure for terms of the form Dn−m and in probability for those
of the form Zn−m/(an−mDn−m) as n → ∞.
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4. Diffusivity problems at strong disorder

With regard to the aforementioned almost-sure limits in distribution of polygonal tree paths,
Waymire and Williams (2010) also obtained almost-sure limits of the form

lim
n→∞

ln Eprobn
er(S)n

n
= F(r)

under both weak and strong disorder. Let us refer to these as almost-sure Laplace rates in
reference to the Laplace principle of large deviation theory.

In the case of weak disorder the universal limit is F(r) = ln cosh(r), in a neighborhood of
the origin, otherwise independent of the distribution of X. In addition to being independent
of the distribution of X within the range of weak disorder, this universality of Laplace rates
is manifested in the coincidence with the same limit obtained for X ≡ 1, i.e. for a simple
symmetric random walk.

For an illustrative case of strong disorder, consider X = eβZ−β2/2, where Z is standard
normal and β ≥ βc = √

2 ln 2. Then, from Waymire and Williams (2010), it follows a.s. in a
neighborhood of the origin that

F(r) = r tanh(rh(r)) + β2h(r) − ββc,

where h(r) is the uniquely determined solution to

β2h2(r) + 2rh(r) tanh(rh(r)) − 2 ln cosh(rh(r)) = β2
c ;

also see Waymire and Williams (2010, Section 6, Corollary 2) for the general formulae in the
case of strong disorder. In particular, the universality of the Laplace rates breaks down, even
at critical strong disorder. A graph of F(r) computed using MATLAB® is shown in Figure 1
for the strong disorder case of β = 2βc.

Using the equations defining F(r), we may easily verify that F(0) = 0, F ′(0) = 0, and
F ′′(0) = (2ββc − β2

c )/β2. While these specific calculations follow directly from the general

0 1 2 33− 1−2−
r

2.5

2.0

1.5

1.0

0.5

0.0

F ( )r

β βc= 2

β βc=
= ln(cosh(r))F r)(

Figure 1: Graph of the function F for various β.
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results of Waymire and Williams (2010), from here one is naturally led to speculate that the
asymptotic variance under strong disorder is obtained under diffusive scaling by

√
n precisely

as

σ 2(β) = 2ββc − β2
c

β2 , β ≥ βc.

(To avoid potential confusion, let us mention that other forms of polymer scalings appear in
the recent probability literature, within which the polymer is referred to as ‘superdiffusive’
even in the context of weak disorder; e.g. in reference to wandering exponents in Bezerra
et al. (2008).) In particular, this formula continuously extends the weak disorder variance
σ 2(β) ≡ 1, β < βc, across β = βc. In any case, this quantity is a basic parameter of the
rigorously proven limit F(r).
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