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Abstract
We present the first steps of a design of the optimal parameters for a full Bragg X-Ray free electron laser (BX-FEL).

Aiming towards a future source of coherent X-ray radiation, operating in the strong Compton regime, we envisage the

system to be the seed for an advanced light source or compact medical X-ray source. Here we focus on the design of

the accelerator parameters: maximum gradient, optimal accelerated charge, maximum efficiency, and ‘wake coefficient’,

which relates to the decelerating electric field generated due to the motion of a charged-line or train of charged-lines.

Specifically, we demonstrate that the maximum efficiency has optimal value and given the fluence of the materials, the

maximum accelerated charge in the train is constant. These two results might be important in any future design.
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1. Introduction

X-ray sources based on Compton scattering of a laser from a

relativistic counter-propagating electron beam (e-beam) have

recently drawn increasing interest due to several potential ad-

vantages over magnetostatic free electron lasers (FELs), such

as compact size, low-cost operation, and reduced e-beam en-

ergy requirements. Recent work[1] demonstrated that X-ray

radiation emitted by relativistic electrons scattered by a

counter-propagating laser pulse guided by an adequate Bragg

structure (spontaneous emission) surpassed by about two or-

ders of magnitude the intensity generated by a conventional

free-space Gaussian-beam configuration, given the same

e-beam and injected laser power in both configurations.
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Figure 1. Schematic of an all-Bragg system. On the left, the Bragg accelerator supports a co-propagating TM01 mode which accelerates the e-beam. The

latter is injected into another Bragg structure which supports a TEM mode (inside the vacuum core) counter-propagating to the electrons, which as a result

generates X-ray radiation.
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Based on this configuration, we proposed a Bragg

configuration based X-FEL operating in the collective

regime. The full system consists of three main components

(Figure 1): an optical injector bunches the electrons to

the accelerator Bragg structure which supports a TM01

mode. The co-propagating laser which accelerates the

electrons is dumped at the end. Next, the electrons are

transported into a second Bragg waveguide. This structure

supports a TEM laser mode in the vacuum core (TM mode

at the Bragg layers) counter-propagating to the e-beam –

the latter acts as an electromagnetic (EM) wiggler. The

scattering of free electrons with a counter-propagating TEM-

like laser mode generates X-ray radiation – inverse Compton

scattering.
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Figure 2. Planar Bragg waveguide with a vacuum region of width 2Dint.

In this study we focus on the Bragg accelerator. Structure-

based laser-driven linear accelerators have been the subject

of intense investigation, primarily for use with relativistic

particles, where obtaining high energies in compact geome-

tries is desired.

To accelerate particles efficiently, EM waves must be

guided or confined to the region in which the particles

travel. An electric field component in the direction of desired

acceleration is strictly necessary. Traditionally, EM waves

have been confined to a vacuum channel surrounded by

metallic structures. Field confinement can also be achieved

through surrounding dielectric layers where reflections from

different layers interfere constructively (Bragg reflection).

A planar Bragg waveguide[2] consists of dielectric lay-

ers surrounding a sub-wavelength vacuum region which is

symmetrical relative to the central plane (Figure 2). The

clearance is a vacuum region of width 2Dint, surrounding

alternating periodic layers (ε2 = 4, ε3 = 2.1).

The layers are made of two lossless dielectric materials;

the first layer has a relative dielectric coefficient ε1. For

single-mode operation: Dint = 0.25λL → 0.55λL . For an

optical accelerator having a vacuum core, the surrounding

layers must have, at the operating wavelength, an effective

dielectric coefficient smaller than unity, i.e., εeff < 1, thus

creating the need for a Bragg structure with a matching

layer[3].

The present study is organized as follows: A self-

consistent solution for maximum gradient is presented in

Section 2. In Section 3 we present the optimal charge of

the e-beam injected into the acceleration module from a

perspective of high efficiency. A charged-line moving in

a planar Bragg acceleration structure generates a reaction

field which, by virtue of linearity of Maxwell’s equations, is

related through the so-called, wake coefficient. We show a

detailed evaluation of the wake coefficient in Section 4 for a

single bunch and in Section 5 for train of micro-bunches.

2. Accelerating gradient

For assessment of the accelerating gradient, we examine the

maximum energy flux that can be sustained by the structure;

typically, this occurs at the vacuum–dielectric interface,

where Sz,max(D+
int) = 1

2 H∗
y (D+

int)Ex (D+
int). The material is

characterized by the fluence (F), which represents the energy

per unit surface before breakdown occurs. Consequently, the

threshold for a pulse of duration τp is determined by

Smax(D+
int) = 1

2η0ε1

[ωL

c
DintG0

]2 = F
τP

, (1)

where G0 is the accelerating field gradient, ωL is the laser

frequency and η0 is the vacuum impedance. We rely on the

three EM field components of the accelerating mode in the

vacuum region

Ez = G0 exp
(
− j
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c
z
)

,

Ex (x) = j
ωL

c
xG0 exp

(
− j

ωL

c
z
)

,

Hy(x) = j
ωL

c
x

G0

η0
exp

(
− j

ωL

c
z
)

.

(2)

Dielectric damage involves heating of conduction band elec-

trons by the incident radiation and transfer of this energy to

the lattice; damage occurs via conventional heat deposition.

Thus, we consider the threshold fluence (energy/area) of

the material, which, in turn, depends on the pulse duration.

An empirical fluence threshold of fused silica has been

published[4] by the LLNL group

F
(

J

cm2

)
=

⎧⎪⎨
⎪⎩

1.44τ
1/2
p τp (ps) > 10

2.51τ
1/4
p 0.4 < τp (ps) < 10

2 τp (ps) < 0.4.

(3)

It should be pointed out that the above empirical expres-

sion assumes a TEM mode impinging perpendicular to the

dielectric surface, whereas in our case the energy flows in

the parallel direction. It is assumed that since the electric

field is vertical to the surface the probability of flash-over is

reduced – therefore, adopting this criterion (Equation (3)) is

an underestimate of the fluence our structure can sustain.

In RF-based accelerators, the radiation wavelength is typ-

ically more than 10 cm in length, thus we may use 1010

electrons in a 100 μm bunch. Assuming similar dimensions

in the transverse directions, we realize that the density of

electrons is on the order of n ∼ 1023 m−3. If the density

is kept the same in the optical regime, say λL ∼ 1 μm, the

micro-bunch needs to be on the order of 30 nm long, 100 nm

high and, assuming a sheet-beam about 10 μm wide, then

the number of electrons in one optical micro-bunch is 300.

In spite of this clearly being a very rough estimate, in order

to accelerate a significant number of electrons, and keep the

electron density as in an RF machine, we need to use a

multiple number of periods of the accelerating mode, thus

the accelerated bunch is actually a train of micro-bunches.

Moreover, it is strictly necessary to use a pre-bunched

beam at optical wavelengths before injection into the optical
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Figure 3. (a) Gradient versus clearance of the accelerator structure. Red line for a single bunch and green line for M = 104. As the clearance is increased,

the gradient drops. (b) Gradient versus number of micro-bunches in the train. Red line for Dint = 0.25λL ; green line for Dint = 0.55λL , multiplied by a

factor (2.377) such that at M = 1 both curves coincide for G0 (Dint = 0.25λL ). There is a critical value at approximately M = 1000.

accelerator. Without the pre-bunching, the beam energy

spread is too large to be useful. Energy modulation converted

into a density modulation may also lead to increased effi-

ciency in the accelerator. A configuration of modulator and

chicane may be used as a pre-buncher injector to increase the

number of electrons in the optimal phase of the accelerating

laser. An efficient method for bunching the beam at optical

wavelengths was suggested in[5] and it was demonstrated

that a pre-bunched beam at optical wavelengths indeed

reduced the beam energy spread in laser accelerators[6]. We

are in the process of analysing a novel injector that generates

density-modulated beams at optical wavelengths, but this is

beyond the scope of this study.

An assessment of the laser pulse duration requires one

to take into consideration that the EM wave propagates at

the group/energy velocity whereas the electrons propagate

virtually at the speed of light in vacuum. For full overlap of

the two pulses, the duration of the EM pulse is

τp = Lgeo

c

(
1

βgr
− 1

)
+ Lbeam

c
, (4)

where Lbeam = (M − 1)λL is the train length, M represents

the number of micro-bunches in the train, and λL is the

laser wavelength in vacuum. The geometrical length of the

structure is Lgeo = γ mec2/eG0, where γ = √
λL/4λr is the

relativistic factor and is set by the resonance condition in an

EM wiggler. As an example, for a laser wavelength of 1

micron and a radiation wavelength of X-rays λX = 0.1 nm

we get γ � 50.

Due to the constraint imposed by the fluence and for

the specified energy (γ � 50), the maximum accelerating

gradient depends on two parameters: the clearance of the

Table 1. Typical Values of the Parameters for Dint = 0.3λL .

G0 〈PL 〉 τbeam τp F βgr Lgeo

(GV m−1) (kW) (ps) (ps) (J cm−2) (m)

M = 1 0.7 35.56 ∼0 171 18.83 0.424 0.038

M = 104 0.66 117.77 35 216 21.2 0.424 0.04

structure (Dint) and the number of micro-bunches in the

train (M). Note the interdependence between the various

parameters requires a self-consistent solution: the laser field

depends on the laser pulse duration, which in turn depends

on the train’s total charge and the gradient itself.

A self-consistent solution is illustrated in Figure 3. For

M < 103 micro-bunches, the gradient is virtually indepen-

dent of M (see Figure 3(b)). For larger values of M the

gradient decreases for the same clearance. Figure 3(a) shows

that it is advantageous to operate with the smallest possible

vacuum tunnel – leading to a maximum gradient of less

than 0.9 GV m−1. Further simulations show it is better to

use a lower dielectric coefficient for the first layer, and in

order to achieve a gradient of 1 GV m−1 we need to replace

the silica with a material whose typical fluence is higher by

a factor of 1.5 – assuming the pulse dependence is the same.

Typical values of the parameters for Dint = 0.3λL are given

in Table 1.

At this point it warrants making a comment regarding a

more realistic scenario: The wake generated by the acceler-

ated bunches tends to reduce the laser field – this is the well

known beam-loading effect. Consequently, in the presence

of the electrons, the field experienced by the structure is thus

reduced accordingly for a given fluence, the applied gradient

may be significantly higher. In the context of the fluence
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effect we consider the worst case scenario and ignore this

process. Taking it into consideration, we estimate that the

accelerating gradient will be enhanced.

3. Optimal charge

Given the accelerating gradient G0, which is evaluated

self-consistently, we now calculate the optimal number of

electrons in a micro-bunch injected into the acceleration

module. Optimum charge occurs for maximum efficiency

of the acceleration process. We can interpret the reason for

this optimum as follows: for a given accelerating gradient,

if the accelerated charge is small, the energy transferred is

negligibly small (zero). At the other extreme, when the

charge is large, beam loading may suppress the effective

accelerating gradient to zero; therefore, again, the transferred

energy is minuscule. Between these two ‘zeros’ the function

of energy transferred is expected to have a maximum.

3.1. Single bunch

In the single bunch case (M = 1), the efficiency of the

acceleration process may be determined as

η = 	Ukinetic

UEM
= 4ηmax

q
q0

(
1 − q

q0

)
, (5)

where q0 = G0/κ is the charge for which the wake gen-

erated by the bunch balances the laser gradient – in other

words, there is no net acceleration. The maximum value of

efficiency, occurring for qopt = q0/2, is determined by the

projection of the total deceleration, represented by κ , on the

fundamental mode, represented in turn by κ1 – explicitly,

ηmax = κ1/κ ≡ W1; W1 is the weight function of the

first mode[7]. The maximum efficiency is dependent on the

clearance (Stupakov & Bane[8]):

ηmax(Dint) = 1

4ε0λ
2
Lκ

βgr

1 − βgr

Z int

η0
, (6)

where κ , βgr , and Z int are dependent on the vacuum

clearance[2]. In the case of a dielectric planar Bragg

waveguide with a vacuum tunnel of 2Dint along which a

charged-line propagates, the wake coefficient associated with

the decelerating field is κ = E (dec)/q = 1/(4ε0 Dint) (see

Section 4).

The maximum efficiency itself has an optimum at Dint =
0.35λL (Figure 4). The reason for this optimum is a

combination of two facts: the wake coefficient and the

interaction impedance drop as the clearance is widened,

whereas the group velocity increases (Figure 5).

3.2. Train of micro-bunches

For the case of train of M micro-bunches, the beam-loading

causes different micro-bunches to experience different effec-
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Figure 4. Maximum efficiency for a single bunch versus half clearance

width (Equation (6)).
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Figure 5. Wake coefficient, interaction impedance, and group velocity

versus half clearance width. Each of the parameters is normalized to its

maximum value.

tive accelerating gradients. In order to eliminate this effect,

the laser pulse must be tapered according to

G(t) = G0 + t
τP

κqmb(M − 1), (7)

where qmb is the charge in one micro-bunch; tacitly assuming

that all micro-bunches are identical. It is assumed that for

a sufficiently large number of M the weight function of the

first mode is dominant, i.e., κ1 ∼ κ . κ is the wake coefficient,

which depends on the structure and number of accelerated

micro-bunches. The wake coefficients for a single bunch

and train of micro-bunches are different; however, since the

laser is tapered, we consider the wake coefficient for a single

bunch and a single discontinuity.
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Figure 6. (a) Maximum efficiency versus number of micro-bunches in the train. Red line for Dint = 0.25λL and green line for Dint = 0.54λL . The optimum

value is 15% for M = 30. (b) Maximum efficiency normalized to the single bunch case versus clearance of the accelerator structure. For each clearance there

is an optimal value for M .

The EM energy injected into the system may be readily

calculated using

UEM =
∫ τp

0

dt PL(t) =
∫ τp

0

dt
|λL |2
Z int

G2(t), (8)

together with Equation (4). The efficiency in this case is

given by

η = 	Ukinetic

UEM
= ηmax(M = 1)

12Mq̄(1−q̄)

[3+3q̄(M−1)+q̄2(M−1)2]
1 + βgr

1−βgr

Lbeam
Lgeo

. (9)

By neglecting the geometric length dependence on the

charge, since it does not change significantly, the optimal

charge is

qopt(M) = q0
−3 + √

9 + 3(M − 1)(M + 2)

(M − 1)(M + 2)
≡ q0ξ(M).

(10)

Several facts are evident: (i) The maximum efficiency value

depends on two parameters – the clearance and the number

of micro-bunches in a train. Figure 6(a) illustrates the effi-

ciency and its maximum. (ii) For the case of a single bunch

(M = 1) we get ξ(M = 1) = 0.5, and get the maximum

efficiency which was calculated explicitly for a single bunch.

(iii) Comparing to the latter case, the efficiency more than

doubled for M ∼ 50. (iv) Figure 6(b) shows a weak depen-

dence of the maximum efficiency on the vacuum clearance

and a strong dependence on the number of micro-bunches.

Another perspective of the energy conversion efficiency is

the total amount of charge accelerated and its distribution

among the various numbers of micro-bunches. The number

of electrons in a train as a function of the number of micro-

bunches is almost constant ∼1 × 106. Thus, for larger

values of M , the number of electrons in a micro-bunch drops.
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Figure 7. Number of electrons in a microbunch (left y-axis) and number of

electrons in the train (right y-axis) versus the number of micro-bunches for

Dint = 0.25λL , 0.54λL .

Figure 7 reveals a weak dependence of qmb and Mqmb on the

vacuum clearance.

The average power per unit length (	y) of the tapered laser

is given by

〈PL〉 = UEM

τP
= 1

τP

∫ τP

0

dt PL(t)

= 	y
|λL |2
Z int

[
G2

0 + α2

3
+ αG0

]
, (11)

where α = κqmb(M − 1). It has a maximum for M ∼ 700

(Figure 8). This maximum is the result of two contradicting

trends: the accelerating gradient increases for a reduction of
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Figure 8. Average laser power for Dint = 0.25λL , 0.54λL . Its maximum

(170 kW) occurs for Dint = 0.25λL , M = 700.

M , whereas α decreases. As an example, for 	y = 10 μm

and 103 micro-bunches in the train, the average tapered laser

power is 117 kW, whereas for 	y = 1 μm the latter is only

11 kW. It should be pointed out that pulse shaping can be

done using several methods, such as spatial light modulators,

adaptive beam shaping and fixed masks[9, 10].

4. Wake coefficient – single bunch

In this section we determine and investigate the wake coef-

ficient (κ) for a single bunch (in the following section we

repeat this for a train of micro-bunches). Both are essential

for establishing the optimal charge in the micro-bunch and

determining the beam loading effect.

A laser pulse accelerates a point charge qmb moving in a

vacuum tunnel of planar Bragg acceleration structure and

generates an EM wake (Cerenkov radiation). Associated

with this wake there is a decelerating electric field which, by

virtue of the linearity of Maxwell’s equations, is proportional

to the charge, namely Edec = κq, where the wake coefficient

κ depends on the structure.

The vacuum–dielectric discontinuity generates a reflected

wave that can affect the point charge. Any reflection

occurring further away from the first discontinuity reaches

the structure’s axis only after the point charge has passed–

thus it may affect only trailing micro-bunches.

In the absence of reflections, the wake coefficient is

determined by the structure (Appendix A) and given as

κ = 1

4ε0 Dint

(


ms

)
. (12)

In the presence of reflections, for a single bunch, only

the first discontinuity affects a line-charge. However, we

demonstrate that quantitatively using a previously defined

formulation[2]. The effective wake coefficient on the first

bunch (τ̄ = 0) is

Edec � E (s)
z (τ̄ = 0) =

[
κ

π

∫ ∞

−∞
dω̄

1
1−R(ω)
1+R(ω)

+ jω̄

]
λ̄ � κ̄ λ̄,

(13)

where the R(ω) is the reflection coefficient of the structure

– including the effect of the first (matching) layer as well as

the ‘Bragg layers’. Numerical evaluation of Equation (13)

reveals that κ̄ = κ , with an error of less than 0.1% – i.e.,

the wake coefficient for a single bunch including reflections

is almost equal to the wake coefficient with no reflections.

In fact, it is possible to demonstrate analytically that since

reflection reaches the axis behind the charged-line micro-

bunch, κ̄ = κ .

5. Wake coefficient – train of bunches

In the case of a train of micro-bunches the field spatial

distribution trailing the particle is strongly affected. The

Bragg dielectric structure allows energy to escape from the

structure through the layers, and the trailing bunches are

less affected by the wake field – except eigenmodes of the

structure.

For a train of M micro-bunches, of length Lmb each, sepa-

rated by one wavelength λL (Figure 9), the wake coefficient

in the case of a train of micro-bunches is strongly dependent

on the structure

κ̃ = κ

∫ ∞

−∞
dω̄ W (ω̄)sinc2

(
χ

2

ω̄

ω̄L

)
sinc2

(
π ω̄

ω̄L
M

)
sinc2

(
π ω̄

ω̄L

) , (14)

where χ = 2π Lmb/λL is the relative length of the micro-

bunch and W (ω̄) ≡ [ 1−R(ω)
1+R(ω)

+ jω̄
]−1

are the weights[2].

Several observations are evident: κ̃ decays as 1/M2 and

the ‘sinc’ function acts as a low-pass filter (Figure 10); higher

frequencies than the fundamental are suppressed (shorter

wavelengths). M has an effect on the non-fundamental

modes, i.e., κ̃ � κ1. κ1 is independent of the number

of micro-bunches (M) and thus remains the same. The

projection of the wake on the fundamental mode (W1-

weight of the first mode) increases with the number of

micro-bunches in the train (since higher frequencies are

suppressed). Therefore, we should be able to enhance to

some extent the efficiency for M � 1, and increase the

amount of charge accelerated.

Our simplified model allows all n · ωL harmonics, since

the dielectric coefficient is independent of frequency. In

practice, the dielectric function is frequency dependent and,

as a result, the higher harmonics are also suppressed.

6. Conclusions

The maximum accelerating gradient is evaluated self-

consistently based on the constraints imposed by the pulse
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Figure 9. Planar waveguide acceleration module with a vacuum region of width 2Dint. The e-beam is accelerated by a co-propagating TM01 laser mode.

The macrobunch consists of a train of M line charges, separated by a laser wavelength.

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1 10 100

L

L
1.5

L
1.33

(h
)

M,

M
 

Figure 10. Spectrum of the decelerating field multiplied by

the ‘sinc’ function of the number of micro-bunches: h(ω, M) =
w(ω)sinc2(πωM/ωL )/sinc2(πω/ωL ) on a log–log scale. Frequencies

other than the fundamental are suppressed as the number of micro-bunches

in the train increases.

duration and fluence. It depends on two parameters: the

clearance of the structure (Dint) and the number of micro-

bunches in the train (M). In the worst case scenario, it may

reach levels of 1 GV m−1.

Optimum charge occurs for maximum efficiency of the

acceleration process. For a train of micro-bunches, two

constraints must be satisfied: the laser pulse duration must be

longer than the macro bunch length and the laser’s envelope

must be tapered to compensate for the beam loading, ensur-

ing uniform gradient acceleration of all micro-bunches. The

maximum efficiency has an optimal value (∼15%) which

depends on two parameters: a weak dependence on the

vacuum clearance and a strong dependence on the number

of micro-bunches.

The optimal number of electrons to be accelerated is

determined by the laser field and the maximum efficiency

requirement. For M = 1000, the number electrons in a

micro-bunch is ∼1150, while the total number of electrons

in the train is almost constant (∼106). There is weak

dependence of qmb and Mqmb on the vacuum clearance.

The optimal charge in the micro-bunch and the beam

loading effect are also determined by the wake coefficient.

The latter is a property of the structure and refers to the

decelerating field. The maximum efficiency increases with

the number of micro-bunches in the train since higher fre-

quencies are suppressed.
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Appendix A

We investigate the wake field, separating the wake into two

components, as developed in Refs. [5] and [7]. For the

primary we consider a line charge, infinite in the y direction,

moving with a constant velocity v in the z-direction inside

the vacuum core of the planar Bragg acceleration. All

field components are excited by the current density Jz =
−λ̄vδ(x)δ(z − vt), where λ̄ = q/	y is the charge per unit

length.

The EM field is derived from the nonhomogeneous wave

equation of the magnetic vector potential, subject to the

Lorentz gauge ∇ · A + (ε/c2)∂tφ = 0, thus

[
∇2 − ε

c2

∂2

∂t2

]
Az = −μ0 Jz . (A 1)

On the one hand this primary field is generated by a charged-

line in free space, whereas on the other hand the secondary

field is the reaction to the presence of the surrounding

structure. It is this secondary field which is responsible for

the decelerating force which acts on the charged-line.

Using the time Fourier transform defined by Az(x, τ = t −
z/v) = ∫ +∞

−∞ dω e jωτ Az(x, ω) and its corresponding source

term Jz(x, ω) = λ̄δ(x)/2π , Equation (A1) reads
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[∂2
x − (ω/cβγ )2]Az(x, ω) = μ0λ̄δ(x)/2π, (A 2)

and the general solution has the form

A(p)
z (x, ω) =

⎧⎪⎪⎨
⎪⎪⎩

a exp

(
−|ω|x

cβγ

)
x > 0

b exp

(
+|ω|x

cβγ

)
x < 0.

(A 3)

By integrating both sides of the equation ∂x Az(0
+, ω) −

∂x Az(0
−, ω) = μ0λ̄/2π , the constants are a = b =

−μ0λ̄cβγ /4π |ω|. Finally,the magnetic vector potential for

the primary field is

A(p)
z (x, z, t) = −μ0λ̄

4π

∫ +∞

−∞
dω

γ v

|ω|
× exp

[
− j

ω

v
(z − vt) − 1

vγ
|ωx |

]
. (A 4)

The magnetic vector potential for the secondary field is

determined using the dielectric coefficient of the first layer

adjacent to the vacuum core (ε1 > 1). This is the condition

for Cerenkov radiation. Moreover, we assume that the charge

does not experience any reflection from higher layers.

A(s)
z (x, τ ) = −μ0λ̄

4π

∫ +∞

−∞
dω

γ v

|ω| exp( jωτ)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1 exp[−Γ (x − Dint)] x > Dint

A0 cosh

( |ω|
γ v

x
)

|x | < Dint

A2 exp[Γ (x − Dint)] x < −Dint,

(A 5)

where Γ = |ω|
√

1 − β2ε/v, and due to symmetry (A2 = A1)

we may solve the equation only for the half-space x > 0.

Based on the Lorentz gauge, the electric scalar potential is

∂z Az + jωε

c2
ϕ = j

ω

v
Az + jωε

c2
ϕ = 0 → ϕ = c2

εv
Az, (A 6)

thus⎧⎪⎪⎨
⎪⎪⎩

Ez = −∂zϕ − jωAz = − jω
(

1 − 1

εβ2

)
Az

Hy = − 1

μ0
∂x Az,

(A 7)

or, explicitly,

E (p)
z = μ0λ̄

4π

∫ +∞

−∞
dω

jωγ v

|ω|
(

1 − 1

β2

)

× exp

[
jωτ − 1

vγ
|ωx |

]

E (s)
z = μ0λ̄

4π

∫ +∞

−∞
dω

jωγ v

|ω| exp( jωτ)

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
1 − 1

εβ2

)
A1 exp [−Γ (x − Dint)]

x > Dint(
1 − 1

β2

)
A0 cosh

( |ω|
γ v

x
)

|x | < Dint.

(A 8)

Similarly, the magnetic field satisfies

H (p)
y = −μ0λ̄

4π

∫ +∞

−∞
dω

1

μ0
exp

[
jωτ − 1

vγ
|ωx |

]
sign(x)

H (s)
y = μ0λ̄

4π

∫ +∞

−∞
dω

1

μ0
exp( jωτ)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−γ

√
1 − β2εA1 exp [−Γ (x − Dint)]

x > Dint

A0 sinh

( |ω|
γ v

x
)

|x | < Dint.

(A 9)

Imposing boundary conditions, from the continuity of

Ez on the vacuum-dielectric interface E (p)
z (x = D−

int) +
E (s)

z (x = D−
int) = E (s)

z (x = D+
int) we obtain

exp

(
−|ω|

vγ
Dint

)
+ A0 cosh

( |ω|
γ v

Dint

)
= εβ2 − 1

ε(β2 − 1)
A1,

(A 10)

whereas the continuity of Hy entails H (p)
y (x = D−

int) +
H (s)

y (x = D−
int) = H (s)

y (x = D+
int)

−exp

(
− 1

vγ
|ω|Dint

)
+ A0 sinh

( |ω|
γ v

Dint

)

= −γ

√
1 − β2εA1. (A 11)

The solution for the amplitude in the vacuum region from the

above two equations is

A0 = 2

−1
+1 exp

(
2 |ω|

γ v
Dint

) − 1
, (A 12)

where  = −
√

1 − β2ε/[γ ε(1 − β2)] = −γ

√
1 − β2ε /ε.

Accordingly, the decelerating field is the secondary field

acting on the charged particle in the vacuum core

Edec � E (s)
z (x = 0, z = vt, t)

= μ0λ̄

4π

∫ +∞

−∞
dω

jωγ v

|ω|
(

1 − 1

β2

)
A0

= −μ0λ̄

4π
2Re

{∫ +∞

0

dω
jv

γβ2

2

−1
+1 exp

(
2 |ω|

γ v
Dint

) − 1

}

= −μ0λ̄

4π
2Re

{
2γ v

2Dint

jv
γβ2

ln

(
1 − 

2

)}
. (A 13)
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Having in mind that

∫ +∞

0

dω
1

u1 exp(u2|ω|) − 1

= 1

u2
ln

(
1 − exp(−u2|ω|)

u1

)∣∣∣∣
∞

0

= 1

u2
ln

(
u1

u1 − 1

)
and tacitly assuming that  is independent of ω, as well as

taking the relativistic limit (γ � 1) for confinement, we may

write

1 −  = 1 + γ

√
1 − β2ε/ε � 1 + jγ

√
ε − 1/ε2.

With Taylor expansion for x → ∞ ln(1 + j x) = − ln(1/x)+
j/x , together with ln(− jς) = ln(ς)− jπ/2, the deceleration

field is

Edec = − λ̄

2πε0 Dint
Re

{
j ln

(
1 + jγ

√
ε − 1

ε2

)}

γ→∞� λ̄

2πε0 Dint

π

2

= λ̄

4ε0 Dint
, (A 14)

implying that the decelerating field for a given charge is

Edec (V/m) = κ (/ms) q (C) and, as a result, the wake

coefficient is

κ = 1

4ε0 Dint

(


ms

)
. (A 15)
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