
Canad. J. Math. Vol. 55 (6), 2003 pp. 1191–1230

Decay of Mean Values of
Multiplicative Functions

Andrew Granville and K. Soundararajan

Abstract. For given multiplicative function f , with | f (n)| ≤ 1 for all n, we are interested in how

fast its mean value (1/x)
∑

n≤x f (n) converges. Halász showed that this depends on the minimum

M (over y ∈ R) of
∑

p≤x

(

1 − Re( f (p)p−i y )
)

/p, and subsequent authors gave the upper bound

� (1 + M)e−M . For many applications it is necessary to have explicit constants in this and various

related bounds, and we provide these via our own variant of the Halász-Montgomery lemma (in fact

the constant we give is best possible up to a factor of 10). We also develop a new type of hybrid bound

in terms of the location of the absolute value of y that minimizes the sum above. As one application

we give bounds for the least representatives of the cosets of the k-th powers mod p.

1 Introduction

Given a multiplicative function f with | f (n)| ≤ 1 for all n, define

Θ( f , x) :=
∏

p≤x

(

1 +
f (p)

p
+

f (p2)

p2
+ · · ·

)(

1 − 1

p

)

.

We are concerned with understanding the mean value of f up to x, that is,
1
x

∑

n≤x f (n). For real-valued f it turns out that

(1.1a)
1

x

∑

n≤x

f (n) → Θ( f ,∞) as x → ∞.

In 1944 Wintner [19] proved this when Θ( f ,∞) 6= 0, which is equivalent to the
hypothesis that

∑

p

(

1− f (p)
)/

p converges. In 1967, Wirsing [20] settled the harder
remaining case when Θ( f ,∞) = 0, thereby establishing an old conjecture of Erdős

and Wintner that every multiplicative function f with −1 ≤ f (n) ≤ 1 has a mean
value.

On the other hand not all complex valued multiplicative functions have a mean
value tending to a limit; for example, the function f (n) = niα, withα ∈ R\{0}, since
1
x

∑

n≤x niα ∼ xiα/(1+ iα). In the early seventies, Gábor Halász [8, 9] brilliantly real-

ized that the correct question to ask is whether
∑

p

(

1−Re
(

f (p)p−iα
))/

p diverges
for all real numbers α. His fundamental result states:
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(I) If
∑

p

(

1 − Re
(

f (p)/piα
))/

p diverges for all α then 1
x

∑

n≤x f (n) → 0 as
x → ∞.

(II) If there exists α for which
∑

p

(

1 − Re
(

f (p)/piα
))/

p converges then

(1.1b)
1

x

∑

n≤x

f (n) ∼ xiα

1 + iα
Θ( fα, x)

where fα(n) := f (n)/niα. Now |Θ( fα, x)| → |Θ( fα,∞)| as x → ∞ so we can rewrite
the above as

1

x

∑

n≤x

f (n) ∼ xiα

1 + iα
|Θ( fα,∞)|eir(x)

where r(x) = arg Θ( fα, x) (which varies very slowly, for example r(x2) = r(x)+o(1)).
Also note that if

∑

p |1 − f (p)/piα|/p converges then (II) holds and Θ( fα, x) →
Θ( fα,∞) as x → ∞.

In case (I), Halász also quantified how rapidly the limit is attained. His method
was modified and refined by Montgomery [15], and Tenenbaum [18, p. 343] recently
deduced the following, easily applicable, version of the result: Throughout define

(1.2) M(x,T) := min
|y|≤2T

∑

p≤x

1 − Re
(

f (p)p−i y
)

p
.

Theorem (Halász–Montgomery–Tenenbaum) Let f be a multiplicative function

with | f (n)| ≤ 1 for all n. Let x ≥ 3 and T ≥ 1 be real numbers, and let M = M(x,T).

Then
1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
� (1 + M)e−M + O

( 1√
T

)

.

Here and throughout the constants implied by “�” and “O(·)” are absolute unless
otherwise indicated and, in particular, independent of the function f .

Our first theorem leads to an explicit refinement of this result, replacing the “�”
by a constant. For any complex number s with Re(s) > 0, let

F(s) = F(s; x) :=
∏

p≤x

(

1 +
f (p)

ps
+

f (p2)

p2s
+ · · ·

)

,

and define

(1.3) L = L(x,T) :=
1

log x

(

max
|y|≤2T

|F(1 + i y)|
)

.

Theorem 1 Let f be a multiplicative function with | f (n)| ≤ 1 for all n. Let x ≥ 3 and

T ≥ 1 be real numbers. Then

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
≤ L
(

log
eγ

L
+

12

7

)

+ O
( 1

T
+

log log x

log x

)

.

https://doi.org/10.4153/CJM-2003-047-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-047-0


Decay of Mean Values of Multiplicative Functions 1193

We can deduce from this the promised explicit refinement of the Halász–Mont-
gomery–Tenenbaum result.

Corollary 1 Let f be a multiplicative function with | f (n)| ≤ 1 for all n. Let x ≥ 3 and

T ≥ 1 be real numbers, and let M = M(x,T). If f is completely multiplicative then

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
≤
(

M +
12

7

)

eγ−M + O
( 1

T
+

log log x

log x

)

.

If f is multiplicative then

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
≤
∏

p

(

1 +
2

p(p − 1)

)(

M +
4

7

)

eγ−M + O
( 1

T
+

log log x

log x

)

.

As we will discuss after Theorem 5, Corollary 1 (and so Theorem 1) is essen-
tially “best possible” (up to a factor 10) in that for any given sufficiently large m0,
we can construct f and x so that M = M(x,∞) = m0 + O(1) and |∑n≤x f (n)| ≥
(M + 12/7)eγ−Mx/10.

If the maximum in (1.3) (or, the minimum in (1.2)) occurs for y = y0 then

one might expect that f (n) looks roughly like ni y0 , so that the mean value of f (n)
should be around size |xi y0/(1 + i y0)| � 1/(1 + |y0|). Our next result confirms this
expectation.

Theorem 2a Let f be a multiplicative function with | f (n)| ≤ 1 for all n. Suppose that

the maximum in (1.3) with T = log x is attained at y = y0. Then

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
� 1

1 + |y0|
+

(log log x)1+2(1− 2
π )

(log x)1− 2
π

.

The constant 4/π which appears here and frequently in the rest of the introduc-

tion, does so because it is the average of |1 − z| for z on the unit circle.
Taking f (n) = ni y0 we see that Theorem 2a is best possible in terms of y0. How-

ever, in this case M = 0, so we might guess that one can obtain a hybrid bound of
Corollary 1 and Theorem 2a, of the shape � (M + 1)e−M/(1 + |y0|).

Theorem 2b Let f be a multiplicative function with | f (n)| ≤ 1 for all n. Suppose that

the maximum in (1.3) with T = log x is attained at y = y0, and let M = M(x, log x).

If f is completely multiplicative then

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
≤
(

M +
12

7

) eγ−M

√

1 + y2
0

+ O
( log log x

(log x)2−
√

3

)

.

If f is multiplicative then

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
≤
∏

p

(

1 +
2

p(p − 1)

)(

M +
4

7

) eγ−M

√

1 + y2
0

+ O
( log log x

(log x)2−
√

3

)

.
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The key constituents of the main term are the 1/
√

1 + y2
0 which corresponds to

the best approximation of f (n) by a function of the form niα, and the (M + 1)e−M

which corresponds to how much f (n) differs from niα. Note that the size of the right
hand side of (1.1b) is |xiαΘ( fα, x)/(1 + iα)| � e−M/(1 + |y0|), which implies that
there is little room to reduce the bound in Theorem 2b. In fact for any given α and
sufficiently large m0 we can determine f , such that M = m0 + O(1), y0 = α and the

bound in Theorem 2b is too big by a factor of at most 10.

The maximum in (1.3) and the minimum in (1.2) can be unwieldly to determine,
so it is desirable to get similar decay estimates in terms of

∑

p≤x

(

1 − Re f (p)
)/

p

(or equivalently |F(1)|). However, in light of case (II) above, this is only possible
if we have some additional information on f , since the

∑

p

(

1 − Re f (p)
)/

p may

diverge while the absolute value of the mean value may converge. One can avoid case
(II) altogether by insisting that all f (p) lie in some closed convex subset D of the unit
disc U (this is a natural restriction for many applications, such as when f is a Dirichlet
character of a given order), as in Halász [8, 9], R. Hall and G. Tenenbaum [13], and

Hall [12]. The result of Hall is the most general, perhaps qualitatively definitive. To
describe it we require some information on the geometry of D:

Throughout we let D be a closed, convex subset of U with 1 ∈ D, and define

ν = ν(D) = maxδ∈D(1 − Re δ). For α ∈ [0, 1] define

(1.4) h̄(α) =
1

2π

∫ 2π

0

max
δ∈D

Re(1 − δ)(α − e−iθ) dθ,

which is a continuous, increasing, convex function of α. Note that h̄(0) = λ(D)/2π,

where λ(D) is the length of the boundary of D. Define κ = κ(D) to be the largest
value of α ∈ [0, 1] such that h̄(α) ≤ 1, which exists since h̄(0) ≤ 1. When 0 ∈ D,
Hall showed that κ(D) = 0 only when D = U, and κ(D) = 1 only when D = [0, 1].
He also proved

Lemma 1.1 For any closed, convex subset of U with 1 ∈ D we have

κ(D) ≥ min

(

1,
1 − h̄(0)

h̄(1) − h̄(0)

)

≥ min

(

1,
1

ν(D)

(

1 − λ(D)

2π

)

)

.

Moreover κ(D)ν(D) ≤ 1 for all D, with equality holding if and only if D = [0, 1].

Theorem (Hall) Let D be a closed, convex subset of U with 1 ∈ D, and define κ(D) as

above. Let f be a multiplicative function with | f (n)| ≤ 1 and f (p) ∈ D for all primes

p. Then

(1.5)
1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
�D exp

(

−κ(D)
∑

p≤x

1 − Re f (p)

p

)

.

Hall states this result under the additional constraint that 0 ∈ D, but this is un-
necessary. Hall proved that the constant κ(D) in (1.5) is optimal for every D, in that
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it cannot be replaced by any larger value. For completely multiplicative functions, we
have obtained the following more explicit version of Hall’s theorem. Let

(1.6) C(D) = −κνγ + min
ε=±1

∫ 2π

0

min
(

0, 1 − κ− maxδ∈D Re δ(eεix − κ)
)

x
dx.

Theorem 3 Let D be a closed, convex subset of U with 1 ∈ D, and define κ = κ(D),

ν = ν(D) and C(D) as above. Let f be a multiplicative function with f (p) ∈ D for all

primes p, and put y = exp
(

(log x)
2
3

)

. If κν < 1 then

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
≤ |Θ( f , y)|

( 2 − κν

1 − κν

)

× exp
(

−κ
∑

y<p≤x

1 − Re f (p)

p
−C(D) + γ(1 − κν)

)

+ O

(

1

(log x)
1
3

exp
(

∑

p≤x

|1 − f (p)|
p

)

)

.

If D = [0, 1], that is κν = 1, then

1

x

∑

n≤x

f (n) ≤ eγ |Θ( f , x)| + O
( 1

log x

)

.

The error term in the first part of Theorem 3 can be bounded using

∑

p≤x

|1 − f (p)|
p

≤
(

2 log log x
∑

p≤x

1 − Re f (p)

p

)
1
2

+ O(1).

A version of the second statement in Theorem 3 was first proved by Hall [12].

Theorem 3 is essentially “best possible” (up to the constant of multiplication), for
every such D, as noted in [12] and [13].

The first statement of Theorem 3 gives an explicit, quantitative and useful version
of Hall’s theorem, so long as

∑

p≤x

(

1 − Re f (p)
)

/p �D log log x. However if this

fails then Hall’s original theorem shows that
∑

n≤x f (n) �D x/(log x)BD for some
constant BD > 0, so we have the following corollary:

Corollary 2 Retain the notation and variables of Theorem 3. Let f be a multiplicative

function with f (p) ∈ D for all p. If κν < 1 then

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
≤ |Θ( f , y)|

( 2 − κν

1 − κν

)

× exp
(

−κ
∑

y<p≤x

1 − Re f (p)

p
−C(D) + γ(1 − κν)

)

+ OD

( 1

(log x)BD

)

,

where BD :=
(

(1 + κ/3) −
√

1 + 2κ/3
)

/κ.
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Lastly, we apply our ideas to study how averages of multiplicative functions vary.
One would like to be able to say that

(1.7)
1

x

∑

n≤x

f (n) − w

x

∑

n≤x/w

f (n) �
( log 2w

log x

) β

,

for all 1 ≤ w ≤ x, with as large an exponent β as possible (thus showing that averages

of multiplicative functions vary slowly). However (1.7) is not true in general, as
the ubiquitous example f (n) = niα reveals. On the other hand P. D. T. A. Elliott
[3] proved that the absolute value of the means of multiplicative functions does vary
slowly. He showed that

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
− w

x

∣

∣

∣

∑

n≤x/w

f (n)
∣

∣

∣
�
( log 2w

log x

)
1
19

,

for all multiplicative functions f with | f (n)| ≤ 1, and all 1 ≤ w ≤ x. By applying
Theorem 1, and the ideas underlying it, we have obtained the following result which
leads to an improvement on Elliott’s theorem.

Theorem 4 Let f be a multiplicative function with | f (n)| ≤ 1 for all n. For any x ≥ 3
there exists a real number y1 such that for all 1 ≤ w ≤ x/10, we have

∣

∣

∣

1

x

∑

n≤x

f (n)n−i y1 − w

x

∑

n≤x/w

f (n)n−i y1

∣

∣

∣

�
( log 2w

log x

) 1− 2
π

log
( log x

log 2w

)

+
(log log x)1+2(1− 2

π )

(log x)1− 2
π

.

If the maximum in (1.3) with T = log x is attained at y = y0 then we can take y1 = y0

if |y0| < (log x)/2, and y1 = 0 otherwise.

Note that 1 − 2
π = 0.36338 · · · and 2 −

√
3 = 0.267949 · · · .

Corollary 3 Let f be a multiplicative function with | f (n)| ≤ 1 for all n. Then for

1 ≤ w ≤ x/10, we have

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
− w

x

∣

∣

∣

∑

n≤x/w

f (n)
∣

∣

∣
�
( log 2w

log x

) 1− 2
π

log
( log x

log 2w

)

+
log log x

(log x)2−
√

3
.

In the special case that f (n) is non-negative we can improve the 1− 2/π in Corol-

lary 3 to 1−1/π, see [7]. There we apply this idea of slowly varying averages to refine
the upper bound of eγΘ( f , x) in Theorem 3.

Another application of estimates such as Corollary 3, as Hildebrand [14] observed,
is to extend slightly the range of validity of Burgess’ famous character sum estimate.

For characters χ with cubefree conductor q, one gets
∑

n≤N χ(n) = o(N) for N >

q1/4−o(1) rather than N > q1/4+o(1).
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We shall give a third application, of a kind first observed by Elliott [4], and im-
proving results of Davenport and Erdős [2]. For integer k ≥ 2 define ηk to be the

infimum of those real numbers η such that for all primes p there exists a represen-
tative of each coset of the k-th powers mod p, which is �k pη . We expect ηk = 0
for all k, but the best result to date, due to Elliott, is that ηk ≤ 1/4 − c/k19 for some
constant c > 0. Using our Corollary 3 in Elliott’s argument we may replace 19 here

with any constant > 1/(1 − 2/π) = 2.752 · · · . We also work out bounds for ηk

explicitly for k = 2 and k = 3, and modify the argument of Davenport and Erdős to
get ηk ≤ 1/4 − eγ/(4k2) + O(k−3) for prime values of k. These results are collected
together in Corollary 4 below.

The problem of estimating ηk may be reduced to the following (difficult) opti-
mization problem. Given k ≥ 2 consider the class of all completely multiplicative
functions f which take values on the k-th roots of unity (like a character of order k),
such that for a given large x, and for each k-th root of unity ξ, there are ∼ x/k in-

tegers n ≤ x with f (n) = ξ (to be precise, we mean that for some given function
ε = ε(x) → 0 as x → ∞, there are between (1 − ε)x/k and (1 + ε)x/k integers
n ≤ x with f (n) = ξ). Define τk(x) to be the smallest real number τ such that
for every k-th root of unity ξ, there is an integer n ≤ xτ with f (n) = ξ; and then

τk := lim supx→∞ τk(x). Bounds for τk give bounds for ηk since using Burgess’ theo-
rem we have ηk ≤ τk/4. We determine below τ2 and τ3, but the value of τk for k ≥ 4
remains an open question.

Corollary 4 For all k ≥ 2 we have

ηk ≤
1

4
− c

(k log k)1/(1−2/π)
,

for some c > 0. If k is prime then ηk ≤ 1/4− eγ/4k2 + O(1/k3). Further τ2 = e−1/2 =

0.60653 · · · , and τ3 = 0.765423 · · · , so that η2 ≤ 1/(4
√

e) and η3 ≤ 0.191355 · · · .

Our proofs of Theorems 1, 2a,b, and 4 are based on the following key proposition
(and its variant, Proposition 3.3, below), which we establish by a variation of Halász’
method. Proposition 1 below is a variant of Montgomery’s lemma (see [15], and also
Montgomery and R. C. Vaughan [17]) which is one of the main ingredients in the

proof of Hall’s theorem.

Proposition 1 Let f , x, T, and F be as in Theorem 1. Then

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
≤ 2

log x

∫ 1

0

( 1 − x−2α

2α

)

(

max
|y|≤T

|F(1+α+i y)|
)

dα+O
( 1

T
+

log log x

log x

)

.

To prove Theorem 3, we adopt a different strategy, turning to integral equations.
Let χ : [0,∞) → U be a measurable function, with χ(t) = 1 for t ≤ 1. We let σ(u)
denote the solution to

(1.8)
uσ(u) = (σ ∗ χ)(u) =

∫ u

0

σ(t)χ(u − t) dt,

with initial condition σ(u) = 1 for 0 ≤ u ≤ 1.
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We showed in [6] that (1.8) has a unique solution, and this solution is continuous.
Further let I0(u;χ) = 1, and for n ≥ 1 define

(1.9a) In(u;χ) =

∫

t1,...,tn≥0
t1+···+tn≤u

1 − χ(t1)

t1

1 − χ(t2)

t2
· · · 1 − χ(tn)

tn

dt1 · · · dtn.

Then we showed that

(1.9b) σ(u) =

∞
∑

n=0

(−1)n

n!
In(u;χ).

The relevance of the class of integral equations (1.8) to the study of multiplicative
functions was already observed by Wirsing [20]. We illustrate this connection by
means of the following Proposition, proved in [6] (Proposition 1 there).

Proposition 2 Let f be a multiplicative function with | f (n)| ≤ 1 for all n and f (n) =

1 for n ≤ y. Let ϑ(x) =
∑

p≤x log p and define

χ(u) = χ f (u) =
1

ϑ(yu)

∑

p≤yu

f (p) log p.

Then χ(t) is a measurable function taking values in the unit disc and with χ(t) = 1 for

t ≤ 1. Let σ(u) be the corresponding unique solution to (1.8). Then

1

yu

∑

n≤yu

f (n) = σ(u) + O
( u

log y

)

.

Proposition 2 allows us to handle mean values of multiplicative functions which
are known to be 1 on the small primes. We borrow another result from [6] (see

Proposition 4.5 there) which allows us to remove the impact of the small primes on
the multiplicative functions to be explored.

Proposition 3 Let f be a multiplicative function with | f (n)| ≤ 1 for all n. For any

2 ≤ y ≤ x, let g be the completely multiplicative function with g(p) = 1 if p ≤ y, and

g(p) = f (p) otherwise. Then

1

x

∑

n≤x

f (n) = Θ( f , y)
1

x

∑

m≤x

g(m) + O

(

log y

log x
exp
(

∑

p≤x

|1 − f (p)|
p

)

)

.

We prove Theorem 3 by establishing a decay estimate, Theorem 5, for solutions
of (1.8) when χ(t) is constrained to lie in D for all t . Then using Propositions 2 and

3 we unwind this result to deduce Theorem 3. It should be noted that it is unneces-

sary to work with integral equations to prove these results, and that one can proceed
directly. However we find it easier to understand these proofs when formulated in
this way. Moreover we discovered these proofs, which are rather different from those
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of Halász and Montgomery, in the context of integral equations, and it would seem
disingenuous to disguise their origins.

Theorem 5 Let D be a closed, convex subset of U with 1 ∈ D, and define κ =

κ(D), ν = ν(D) and C(D) as above. Let χ : [0,∞) → D be a measurable function

with χ(t) = 1 for t ≤ 1, and let σ denote the corresponding solution to (1.8). Put

M0 = M0(u;χ) =

∫ u

0

1 − Re χ(v)

v
dv.

Then, if κν < 1,

|σ(u)| ≤
( 2 − κν

1 − κν

)

exp
(

−κM0 −C(D) + γ(1 − κν)
)

−
( κν

1 − κν

)

exp
(

−M0

ν
− C(D)

κν

)

.

If κν = 1 (so that D = [0, 1]) then |σ(u)| ≤ eγ−M0 .

When studying mean values of multiplicative functions we have seen how the ex-

ample f (n) = niα led Halász to consider convex regions D that are not dense on the
unit circle. Given that we now have χ(t) = 1 for 0 ≤ t ≤ 1, it is perhaps unclear
whether such restrictions are necessary when considering (1.8). In fact they are, and
in Section 10a we shall see that if χ(t) = eiαt for all t > 1 then lim sup |σ(u)| �α 1.

By Proposition 2, we know that statements about multiplicative functions can be

interpreted to give information on solutions to (1.8). For example, the remark after
the statement of Theorem 3 translates to saying that Theorem 5 is “best possible” for
every D, up to the constant of multiplication, via [12] and [13]. Moreover we can
state integral equations versions of Corollary 1 and Theorem 4.

Corollary 1 ′ If χ and σ are as in Theorem 5 then |σ(u)| ≤ (M + 12/7)eγ−M where

M = M(u) := min
y∈R

∫ u

0

1 − Re χ(v)e−ivy

v
dv.

In fact this is “best possible”, up to a factor 10, in the sense that for any sufficiently
large m0 we can find χ and σ as in Theorem 5 with M = m0 + O(1) and |σ(u)| ≥
(M + 12/7)eγ−M/10; see Section 10b for our construction. This implies the same of
Corollary 1 and hence of Theorem 1, by Proposition 2.

The analogue of Theorem 4 shows that |σ(u)| obeys a strong Lipschitz-type esti-
mate.

Theorem 4 ′ Let χ : [0,∞) → U be a measurable function with χ(t) = 1 for t ≤ 1,

and let σ denote the corresponding solution to (1.8). Then for all 1 ≤ v ≤ u,

∣

∣ |σ(u)| − |σ(v)|
∣

∣ �
( u − v

u

) 1− 2
π

log
u

u − v
.

https://doi.org/10.4153/CJM-2003-047-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-047-0


1200 Andrew Granville and K. Soundararajan

We illustrate Theorem 5, and thus Theorem 3, by working out several examples.
In each of our examples we will have D = D̄, which allows us to restate Theorem 5 as

|σ(u)| ≤ c ′e−κM0 < ce−κM0 where

c ′ := c exp

(

−2π

∫ π

0

min
(

0, 1 − κ− maxδ∈D Re δ(eiθ − κ)
)

θ(2π − θ)
dθ

)

< c :=
( 2 − κν

1 − κν

)

eγ .

Example 1 D is the convex hull of the m-th roots of unity. For m = 2 we have

D = [−1, 1], ν = 2, κ = 0.32867416320 · · · and c ′ = 6.701842225 · · · < c =

6.978982 · · · . For larger m we can determine a formula for h̄(α); for example, for odd
m ≥ 3, define δ j = θ j −π(2 j−1)/m where sin θ j/(cos θ j −α) = tan

(

π(2 j−1)/m
)

,
for 1 ≤ j ≤ (m + 1)/2. Then

h̄(α) = α+
1

π

(

sin
π

m

(

1 + 2

(m−1)/2
∑

j=1

cos δ j

)

−α
(

δ1 +

(m−1)/2
∑

j=1

(δ j+1 − δ j) cos
2π j

m

)

)

An analogous formula holds for even m. We computed κ and c (not c ′) for various m:

m 3 4 5 6 7 8 9 10

κ .167216 .098589 .063565 .044673 .032971 .025359 .020086 .016305

c 4.15845 3.99959 3.79356 3.73689 3.68124 3.65731 3.63435 3.62219

The c and κ values for D, the convex hull of the m-th roots of unity.

One can show that, as m → ∞, we have κ = π2/6m2 + O(1/m4) and c = 2eγ +

O(1/m2). Therefore, following the proof of Theorem 2 of [6] we have that if x is
sufficiently large and p is a prime ≡ 1 (mod m), then there are at least {πm + o(1)}x

integers ≤ x which are m-th power residues (mod p), where

πm ≥ exp
(

− exp({3/π4 + o(1)}m4 log m)
)

.

It is shown in [6] that πm ≤ exp(−{1 + o(1)}m log m), and that π2 = .1715 · · · , the

only m for which the best possible value has been determined.

Example 2 D is the disc going through 1 with radius r ≤ 1. Note that κ = 0 if r = 1.

We have the (relatively) simple formula,

h̄(α) = r
(

α +
1

π

∫ π

θ0

|eiθ − α| dθ
)

,

so that κ = 1 if r ≤ π/(π + 4) = .43990084 · · · . For various radii r, we computed κ
and c:
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r .4399 · · · .45 .5 .6 .7 .8 .9 .95

κ 1 .968330 .822168 .580480 .390142 .236024 .108183 .051957

c 16.5986 15.6413 11.7966 7.65099 5.70586 4.64287 3.99284 3.75723

The c and κ values for D, the disc of radius r, with center 1 − r.

One can show that, as r gets close to 1, that is r = 1 − δ where δ → 0+, then
κ = δ + 3δ2/4 + O(δ3) and c = 2eγ

(

1 + δ + O(δ2)
)

.

Example 3 D is the sector of the circle bounded by the lines from 1 to e±iϕ. In other

words, D is the convex hull of the point {1} together with the arc from eiϕ to e−iϕ on
the unit circle. Select θ0 < θ1 so that tan(ϕ/2) = sin θ0/(cos θ0 − α) and tanϕ =

sin θ1/(cos θ1 − α), and thus, with I :=
(

θ0 + (θ1 − θ0) cosϕ
)

, we have

h̄(α) = α +
1

π

(

sin θ0 + sin(θ1 − ϕ) − sin(θ0 − ϕ) − αI +

∫ π

θ1

|eiθ − α| dθ

)

.

Notice that if ϕ = π then D = [−1, 1] so, as above, κ = κ∗ := .328674163 · · · and
c = 6.978982 · · · We computed the following values:

ϕ π/4 π/3 π/2 2π/3 3π/4 5π/6 9π/10 .99π

κ .006293 .014597 .046181 .140280 .188459 .235961 .317918 .328674

c 3.58485 3.61571 3.74339 4.01647 4.25671 4.63956 5.15381 6.67192

The c and κ values for D, the cone with lines from 1 to e±iϕ.

One can show that as ϕ→ 0 we have κ ∼ ϕ3/24π. Moreover if ϕ→ π then we have
κ∗ − κ ∼ η(π − ϕ), for some absolute constant η > 0.

2 Preliminaries

We begin with the following lemma, weaker versions of which may be found in the

works of Halász [8], Halberstam and Richert [10], and Montgomery and Vaughan
[17].

Lemma 2.1 Let f be a multiplicative function with | f (n)| ≤ 1 for all n. Put S(x) =
∑

n≤x f (n). Then for x ≥ 3,

(2.1) |S(x)| ≤ x

log x

∫ x

2

|S(y)|
y2

dy + O
( x

log x

)

.

Further, if 1 ≤ w ≤ x, then

(2.2)

∣

∣

∣

∣

S(x)

x
− S(x/w)

x/w

∣

∣

∣

∣

≤ 1

log x

∫ x

2w

∣

∣

∣

∣

S(y)

y
− S(y/w)

y/w

∣

∣

∣

∣

dy

y
+ O
( log 2w

log x

)

.

Proof First note that

S(x) log x −
∑

n≤x

f (n) log n =

∑

n≤x

f (n) log
x

n
= O

(

∑

n≤x

log
x

n

)

= O(x).
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Further

∑

n≤x

f (n) log n =

∑

n≤x

f (n)
∑

pk|n
log p =

∑

pk≤x

log p
∑

m≤x/pk

f (mpk).

Since

∑

m≤x/pk

f (mpk) = f (pk)
∑

m≤x/pk

f (m) + O
(

∑

m≤x/pk

p|m

1
)

= f (pk)S
( x

pk

)

+ O
( x

pk+1

)

,

it follows that

(2.3) S(x) log x =

∑

d≤x

f (d)Λ(d)S
( x

d

)

+ O(x).

Hence

(2.4) |S(x)| log x ≤
∑

d≤x

Λ(d)
∣

∣

∣
S
( x

d

)∣

∣

∣
+ O(x).

Writing ψ(x) =
∑

n≤x Λ(n), as usual, we see that

∑

d≤x

Λ(d)
∣

∣

∣
S
( x

d

)
∣

∣

∣
=

∑

d≤x

(

ψ(d) − ψ(d − 1)
)

∣

∣

∣
S
( x

d

)
∣

∣

∣

=

∑

d≤x

ψ(d)
(
∣

∣

∣
S
( x

d

)
∣

∣

∣
−
∣

∣

∣
S
( x

d + 1

)
∣

∣

∣

)

.

We now use the prime number theorem in the form ψ(d) = d + O
(

d/(log 2d)2
)

, to-

gether with the simple observation that |S(x/d)|−
∣

∣S
(

x/(d+1)
)
∣

∣ ≤∑x/(d+1)<n≤x/d 1.
It follows that

∑

d≤x

Λ(d)
∣

∣

∣
S
( x

d

)
∣

∣

∣
=

∑

d≤x

d
(
∣

∣

∣
S
( x

d

)
∣

∣

∣
−
∣

∣

∣
S
( x

d + 1

)
∣

∣

∣

)

+ O

(

∑

d≤x

d

log2(2d)

∑

x/(d+1)<n≤x/d

1

)

.

The main term above is plainly
∑

d≤x |S(x/d)|, and the remainder term is

�
∑

d≤√
x

d

log2(2d)

x

d(d + 1)
+

1

log2 x

∑

√
x≤d≤x

d
∑

x/(d+1)<n≤x/d

1

� x +
1

log2 x

∑

n≤√
x

x

n
� x.
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Combining these observations and (2.4), we have shown that

|S(x)| log x ≤
∑

d≤x

∣

∣

∣
S
( x

d

)
∣

∣

∣
+ O(x).

Now |S(x/d)| =
∫ d+1

d
|S(x/t)| dt + O(

∑

x/(d+1)<n≤x/d 1), and so the right side above
is

∫ x+1

1

∣

∣

∣
S
( x

t

)
∣

∣

∣
dt + O(x).

By changing variables y = x/t this is

x

∫ x

x/(x+1)

|S(y)|
y2

dy + O(x) = x

∫ x

2

|S(y)|
y2

dy + O(x),

proving (2.1).

To show (2.2), we note by (2.3) that

log x

(

S(x)

x
− S(x/w)

x/w

)

= O(log 2w) +
1

x

∑

d≤x

f (d)Λ(d)S
( x

d

)

− w

x

∑

d≤x/w

f (d)Λ(d)S
( x

wd

)

= O(log 2w) +
∑

d≤x/w

f (d)Λ(d)

(

S(x/d)

x
− S(x/wd)

x/w

)

.

Hence
∣

∣

∣

∣

S(x)

x
− S(x/w)

x/w

∣

∣

∣

∣

≤ 1

log x

∑

d≤x/w

Λ(d)

∣

∣

∣

∣

S(x/d)

x
− S(x/wd)

x/w

∣

∣

∣

∣

+ O
( log 2w

log x

)

.

We now mimic the partial summation argument used to deduce (2.1) from (2.4).

This shows (2.2).
The next lemma provides our alternative way to develop this theory, different from

that of Montgomery (see III.4.3 of [18]).

Lemma 2.2 Let an be a sequence of complex numbers such that
∑∞

n=1
|an|

n
<∞. Define

A(s) =
∑∞

n=1 ann−s which is absolutely convergent in Re(s) ≥ 1. For all real numbers

T ≥ 1, and all 0 ≤ α ≤ 1 we have

(2.5) max
|y|≤T

|A(1 + α + i y)| ≤ max
|y|≤2T

|A(1 + i y)| + O

(

α

T

∞
∑

n=1

|an|
n

)

,

and for any w ≥ 1,

(2.6)

max
|y|≤T

|A(1 +α+ i y)(1−w−α−i y )| ≤ max
|y|≤2T

|A(1 + i y)(1−w−i y)|+ O

(

α

T

∞
∑

n=1

|an|
n

)

.
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Proof We shall only prove (2.6); the proof of (2.5) is similar. Note that the Fourier
transform of k(z) = e−α|z| is k̂(ξ) =

∫∞
−∞ e−α|z|−iξz dz =

2α
α2+ξ2 which is always

non-negative. The Fourier inversion formula gives for any z ≥ 1,

z−α = k(log z) = k(− log z) =
1

2π

∫ ∞

−∞
k̂(ξ)z−iξ dξ

=
1

π

∫ T

−T

α

α2 + ξ2
z−iξ dξ + O

( α

T

)

.

Using this appropriately, we get that for all n ≥ 1, and 0 ≤ α ≤ 1,

1

nα
(1 − w−α−i y) =

1

π

∫ T

−T

α

α2 + ξ2
n−iξ(1 − w−i y−iξ) dξ + O

( α

T

)

.

Multiplying the above by an/n1+i y , and summing over all n, we conclude that

A(1 + α + i y)(1 − w−α−i y) =
1

π

∫ T

−T

α

α2 + ξ2
A(1 + i y + iξ)(1 − w−i y−iξ) dξ

+ O
( α

T

∞
∑

n=1

|an|
n

)

.

If |y| ≤ T then |y + ξ| ≤ |y| + |ξ| ≤ 2T, and so we deduce that

max
|y|≤T

|A(1 + α + i y)(1 − w−α−i y)|

≤
(

max
|y|≤2T

|A(1 + i y)(1 − w−i y)|
) 1

π

∫ T

−T

α

α2 + ξ2
dξ

+ O

(

α

T

∞
∑

n=1

|an|
n

)

,

and (2.6) follows since

1

π

∫ T

−T

α

α2 + ξ2
dξ ≤ 1

π

∫ ∞

−∞

α

α2 + ξ2
dξ = 1.

Our next lemma was inspired by Lemma 2 of Montgomery and Vaughan [17],
who consider (essentially) the quotient

∣

∣F
(

1 + i(y + β)
)

/F(1 + i y)
∣

∣ rather than the

product below.

Lemma 2.3 Let f , x, and F be as in Theorem 1. Then for all real numbers y, and

1/ log x ≤ |β| ≤ log x, we have

∣

∣F(1 + i y)F
(

1 + i(y + β)
) ∣

∣ � (log x)
4
π max

(

1

|β| , (log log x)2

) 2(1− 2
π )

.
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Proof Clearly

∣

∣F(1 + i y)F
(

1 + i(y + β)
)
∣

∣ � exp

(

Re
∑

p≤x

f (p)p−i y + f (p)p−i(y+β)

p

)

� exp

(

∑

p≤x

|1 + p−iβ |
p

)

= exp

(

∑

p≤x

2| cos(
|β|
2

log p)|
p

)

.(2.7)

By the prime number theorem and partial summation we have for z ≥ w ≥ 2

∑

w≤p≤z

1

p
=

∫ z

w

dt

t log t
+ O
(

exp(−c
√

log w)
)

,

for some constant c > 0. Choose C = 100/c2, and put

Y = max
(

exp
(

C(log log x)2
)

, e
1

|β|

)

.

Put δ = 1/ log3 x, and divide the interval [Y, x] into � log4 x subintervals of the type
(

z, z(1 + δ)
]

(with perhaps one shorter interval). For each of these subintervals we
have

∑

z≤p≤z(1+δ)

| cos(
|β|
2

log p)|
p

=

(

∣

∣

∣
cos
( |β|

2
log z

)
∣

∣

∣
+ O(δ|β|)

)

∑

z≤p≤(1+δ)z

1

p

=

(

∣

∣

∣
cos
( |β|

2
log z

)∣

∣

∣
+ O(δ|β|)

)

(
∫ z(1+δ)

z

dt

t log t
+ O
( 1

log10 x

)

)

=

∫ z(1+δ)

z

| cos(
|β|
2

log t)|
t log t

dt + O
( 1

log5 x

)

,

where we used |β| ≤ log x. Using this for each of the � log4 x such subintervals
covering [Y, x], we conclude that

∑

Y≤p≤x

| cos(
|β|
2

log p)|
p

=

∫ x

Y

| cos(
|β|
2

log t)|
t log t

dt + O
( 1

log x

)

=

∫

|β|
2

log x

|β|
2

log Y

| cos y|
y

dy + O(1).
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Splitting the integral over y above into intervals of length 2π (with maybe one shorter

interval), and noting that 1
2π

∫ 2π

0
| cos θ| dθ =

2
π , we deduce that

∑

Y≤p≤x

| cos(
|β|
2

log p)|
p

≤ 2

π
log

log x

logY
+ O(1).

Trivially, we also have

∑

p≤Y

| cos(
|β|
2

log p)|
p

≤
∑

p≤Y

1

p
= log logY + O(1).

Combining the above two bounds, we get that

∑

p≤x

| cos(
|β|
2

log p)|
p

≤ 2

π
log log x +

(

1 − 2

π

)

log log Y + O(1).

The lemma follows upon using this in (2.7), and recalling the definition of Y .

We conclude this section by offering a proof of Lemma 1.1.

Proof of Lemma 1.1 For a fixed θ, note that maxδ∈D Re(1 − δ)(α − e−iθ) is an
increasing function of α. Integrating, we see that h̄(α) is an increasing function.
Clearly h̄ is continuous, and we now show that it is convex: that is, given 0 ≤ α <
β ≤ 1, and t ∈ [0, 1], h̄

(

tα + (1 − t)β
)

≤ th̄(α) + (1 − t)h̄(β). Indeed, for a fixed
θ, we have

max
δ∈D

Re(1 − δ)
(

t(α− e−iθ) + (1 − t)(β − e−iθ)
)

≤ t max
δ∈D

Re(1 − δ)(α − e−iθ) + (1 − t) max
δ∈D

Re(1 − δ)(β − e−iθ);

so, integrating this, we get that h̄ is convex.

Note that 2πh̄(0) =
∫ 2π

0
maxδ∈D Re(1 − δ)(−e−iθ) dθ =

∫ 2π

0
maxδ∈D Re δe−iθ dθ.

This last expression equals λ(D), the perimeter of D, a result known as Crofton’s

formula (see [1], page 65).
We now show the lower bounds for κ. If κ = 1 there is nothing to prove; and

suppose κ < 1 so that h̄(1) > 1. By convexity we see that

h̄

(

1 − h̄(0)

h̄(1) − h̄(0)

)

≤ 1 − h̄(0)

h̄(1) − h̄(0)
h̄(1) +

(

1 − 1 − h̄(0)

h̄(1) − h̄(0)

)

h̄(0) = 1,

and so it follows that κ ≥ 1−h̄(0)
h̄(1)−h̄(0)

. Clearly

h̄(α) ≤ h̄(0) +
1

2π

∫ 2π

0

max
δ∈D

Re(1 − δ)α dθ = h̄(0) + αν.
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Hence we see that 1−h̄(0)
h̄(1)−h̄(0)

≥
(

1 − h̄(0)
)

/ν =
1
ν (1 − λ(D)

2π ).

Lastly it remains to show that κν ≤ 1 with equality only when D = κν. By

definition we have h̄(α) ≥ maxδ∈D
1

2π

∫ 2π

0
Re(1 − δ)(α − e−iθ) dθ = αν. It follows

that κν ≤ 1 always. Moreover if κν = 1 then h̄(κ) = 1 and there exists d ∈
D such that the maximum of Re(1 − δ)(κ − e−iθ) for δ ∈ D, occurs at δ = d.
Therefore if d + η ∈ D then Re η(κ − e−iθ) ≥ 0 for all θ ∈ [0, 2π). Therefore
κ = ν = 1 else as θ runs through [0, 2π), so does arg(κ − e−iθ), which implies
Re η(κ − e−iθ) < 0 for some θ. Now arg(1 − e−iθ) runs through (−π/2, π/2) so

η ∈ R else Re η(κ− e−iθ) < 0 for some θ. Thus D ⊂ R and so D = [0, 1] since
ν = 1.

3 The Key Proposition

3a The Integral Equations Version

Our tool in analysing (1.8) is the Laplace transform, which, for a measurable function

f : [0,∞) → C is given by

L( f , s) =

∫ ∞

0

f (t)e−ts dt

where s is some complex number. If f is integrable and grows sub-exponentially

(that is, for every ε > 0, | f (t)| �ε eεt almost everywhere) then the Laplace trans-
form is well defined for all complex numbers s with Re(s) > 0. Laplace transforms
occupy a role in the study of differential equations analogous to Dirichlet series in
multiplicative number theory.

Below, χ will be measurable with χ(t) = 1 for t ≤ 1 and |χ(t)| ≤ 1 for all t , and
σ(u) will denote the corresponding solution to (1.8). Observe that for any two ‘nice’
functions f and g, L( f ∗ g, s) = L( f , s)L(g, s). From the definition of σ, it follows

that

(3.1) L(vσ(v), t + i y) = L(σ, t + i y)L(χ, t + i y),

where t > 0 and y are real numbers.

Further, recalling from (1.9a,b) that σ(v) =
∑∞

j=0(−1) j I j(v;χ)/ j!, we have

L(σ, t + i y) =

∞
∑

j=0

(−1) j

j!
L
(

I j(v;χ), t + i y
)

=
1

t + i y

∞
∑

j=0

(−1) j

j!

(

L

( 1 − χ(v)

v
, t + i y

)

) j

=
1

t + i y
exp

(

−L

( 1 − χ(v)

v
, t + i y

)

)

.(3.2)
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We now give our integral equations version of Proposition 1.

Proposition 3.1 Fix u ≥ 1, and define for t > 0

M+(t) =

∫ ∞

u

e−tv

v
dv + min

y∈R

∫ u

0

1 − Re χ(v)e−ivy

v
e−tv dv.

Then

|σ(u)| ≤ 1

u

∫ ∞

0

( 1 − e−2tu

t

) exp
(

−M+(t)
)

t
dt.

Since M+(t) ≥ max
(

0,− log(tu) + O(1)
)

we see that the integral in the proposi-
tion converges.

Proof Define χ̂(v) = χ(v) if v ≤ u, and χ̂(v) = 0 if v > u. Let σ̂ denote the
corresponding solution to (1.8). Note that σ̂(v) = σ(v) for v ≤ u. Thus

|σ(u)| = |σ̂(u)| ≤ 1

u

∫ u

0

|σ̂(v)| dv =
1

u

∫ u

0

2v|σ̂(v)|
∫ ∞

0

e−2tv dt dv

=
1

u

∫ ∞

0

(

∫ u

0

2v|σ̂(v)|e−2tv dv
)

dt.(3.3)

By Cauchy’s inequality

(

∫ u

0

2v|σ̂(v)|e−2tv dv
) 2

≤
(

4

∫ u

0

e−2tv dv
)(

∫ ∞

0

|vσ̂(v)|2e−2tv dv
)

= 2
1 − e−2tu

t

∫ ∞

0

|vσ̂(v)|2e−2tv dv.(3.4)

By Plancherel’s formula (Fourier transform is an isometry on L2)

∫ ∞

0

|vσ̂(v)|2e−2tv dv =
1

2π

∫ ∞

−∞

∣

∣L
(

vσ̂(v), t + i y
)
∣

∣

2
dy

and, using (3.1), this is

=
1

2π

∫ ∞

−∞
|L(σ̂, t + i y)|2|L(χ̂, t + i y)|2 dy

≤
(

max
y∈R

|L(σ̂, t + i y)|2
) 1

2π

∫ ∞

−∞
|L(χ̂, t + i y)|2 dy.

Applying Plancherel’s formula again, we get

1

2π

∫ ∞

−∞
|L(χ̂, t + i y)|2 dy =

∫ ∞

0

|χ̂(v)|2e−2tv dv ≤
∫ u

0

e−2tv dv =
1 − e−2tu

2t
.
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Hence

(3.5)

∫ ∞

0

|vσ̂(v)|2e−2tv dv ≤ 1 − e−2tu

2t
max
y∈R

|L(σ̂, t + i y)|2.

By (3.2), we have

L(σ̂, t + i y) =
1

t + i y
exp

(

−L

( 1 − χ̂(v)e−ivy

v
, t
)

+ L

( 1 − e−ivy

v
, t
)

)

.

Now, we have the identity

Re L

( 1 − e−ivy

v
, t
)

= log |1 + i y/t|

which is easily proved by differentiating both sides with respect to y. Using this we
obtain

(3.6) t|L(σ̂, t + i y)| = exp

(

−Re L

( 1 − χ̂(v)e−ivy

v
, t
)

)

,

from which it follows that

max
y∈R

|L(σ̂, t + i y)| =
exp
(

−M+(t)
)

t
.

Inserting this in (3.5), and that into (3.4), and then (3.3), we obtain the proposition.

3b The Multiplicative Functions Version: Proof of Proposition 1

In this subsection, we prove Proposition 1. We follow closely the ideas behind the
proof of Proposition 3.1 above.

Note that

∫ x

2

|S(y)|
y2

dy =

∫ x

2

2 log y

y2

∣

∣

∣

∑

n≤y

f (n)
∣

∣

∣

(

∫ 1

0

y−2α dα + O(y−2)
)

dy

=

∫ x

2

2

y2

∣

∣

∣

∑

n≤y

f (n) log n + O
(

∑

n≤y

log(y/n)
)∣

∣

∣

(

∫ 1

0

y−2α dα
)

dy

+ O(1)

=

∫ 1

0

(

∫ x

2

2

y2+2α

∣

∣

∣

∑

n≤y

f (n) log n
∣

∣

∣
dy
)

dα + O(log log x).(3.7)
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By Cauchy’s inequality

∫ x

2

∣

∣

∣

∑

n≤y

f (n) log n
∣

∣

∣

dy

y2+2α
≤
(

∫ x

1

dy

y1+2α

)
1
2
(

∫ x

2

∣

∣

∣

∑

n≤y

f (n) log n
∣

∣

∣

2 dy

y3+2α

)
1
2

=

( 1 − x−2α

2α

)
1
2
(

∫ x

2

∣

∣

∣

∑

n≤y

f (n) log n
∣

∣

∣

2 dy

y3+2α

)
1
2

.(3.8)

Now define the multiplicative function f̃ by f̃ (pk) = f (pk) for p ≤ x, and
f̃ (pk) = 0 for p > x, so that F(s) =

∑

n≥1 f̃ (n)/ns. Naturally f̃ (n) = f (n) for

n ≤ x, and so

∫ x

2

∣

∣

∣

∑

n≤y

f (n) log n
∣

∣

∣

2 dy

y3+2α
≤
∫ ∞

1

∣

∣

∣

∑

n≤y

f̃ (n) log n
∣

∣

∣

2 dy

y3+2α
,

and with the change of variables y = et , this is

(3.9) =

∫ ∞

0

∣

∣

∣

∑

n≤et

f̃ (n) log n
∣

∣

∣

2

e−2(1+α)t dt.

By Plancherel’s formula

(3.10)

∫ ∞

0

∣

∣

∣

∑

n≤et

f̃ (n) log n
∣

∣

∣

2

e−2(1+α)t dt =
1

2π

∫ ∞

−∞

∣

∣

∣

∣

F ′(1 + α + i y)

1 + α + i y

∣

∣

∣

∣

2

dy.

Lemma 3.2 Let T ≥ 1 be a real number. Then

(

1

2π

∫ ∞

−∞

∣

∣

∣

∣

F ′(1 + α + i y)

1 + α + i y

∣

∣

∣

∣

2

dy

)
1
2

≤
(

max
|y|≤T

|F(1 + α + i y)|
)

( 1 − x−2α

2α

)
1
2

+ O
( m

3
2

T
+
√

m
)

where, for convenience, we have set m = m(α) = min(log x, 1/α).

Proof We split the integral to be bounded into two parts: |y| ≤ T, and |y| > T.
Split the second region further into intervals of the form kT ≤ |y| ≤ (k + 1)T where

k ≥ 1 is an integer. Thus

∫

|y|>T

∣

∣

∣

∣

F ′(1 + α + i y)

1 + α + i y

∣

∣

∣

∣

2

dy �
∞
∑

k=1

1

k2T2

∫ (k+1)T

|y|=kT

|F ′(1 + α + i y)|2 dy

�
∞
∑

k=1

1

k2T2

∞
∑

n=1

| f̃ (n)|2 log2 n

n2+2α
(T + n),
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by appealing to Corollary 3 of Montgomery and Vaughan [16]. Since f̃ (n) = 0 if n is
divisible by a prime larger than x, this is

� 1

T

∞
∑

n=1

log2 n

n2+2α
+

1

T2

∞
∑

n=1
p|n⇒p≤x

log2 n

n1+2α
� 1

T
+

m3

T2
.

Hence we have that
(

1

2π

∫ ∞

−∞

∣

∣

∣

∣

F ′(1 + α + i y)

1 + α + i y

∣

∣

∣

∣

2

dy

)
1
2

=

(

1

2π

∫ T

−T

∣

∣

∣

∣

F ′(1 + α + i y)

1 + α + i y

∣

∣

∣

∣

2

dy

)
1
2

+ O

(

1√
T

+
m

3
2

T

)

.(3.11)

We now turn to the first region |y| ≤ T. Define g(n) to be the completely multi-
plicative function given on primes p by g(p) = f̃ (p). Put G(s) =

∑∞
n=1 g(n)n−s, and

define H(s) by F(s) = G(s)H(s). Note that H(s) is absolutely convergent in Re(s) > 1
2
,

and that in the region Re(s) ≥ 1 we have uniformly |H(s)|, |H ′(s)| � 1. Using

F ′ = G ′H + GH ′ = F(G ′/G) + O(G), together with the inequality (
∫

| f + g|2)
1
2 ≤

(
∫

| f |2)
1
2 + (

∫

|g|2)
1
2 (which is easily deduced from Cauchy’s inequality), we see that

(

1

2π

∫ T

−T

∣

∣

∣

∣

F ′(1 + α + i y)

1 + α + i y

∣

∣

∣

∣

2

dy

)
1
2

≤
(

1

2π

∫ T

−T

∣

∣

∣

∣

(F G ′

G
)(1 + α + i y)

1 + α + i y

∣

∣

∣

∣

2

dy

)
1
2

+ O

((
∫ T

−T

∣

∣

∣

∣

G(1 + α + i y)

1 + α + i y

∣

∣

∣

∣

2

dy

)
1
2
)

.(3.12)

Splitting the interval [−T,T] into subintervals of length 1, we see that the remainder

term above is

�
(

[T]
∑

k=−[T]−1

1

1 + k2

∫ k+1

k

|G(1 + α + i y)|2 dy
)

1
2

�
(

[T]
∑

k=−[T]−1

1

1 + k2

∞
∑

n=1

|g(n)|2
n2+2α

(1 + n)
)

1
2

by appealing again to Corollary 3 of [16]. Plainly this is

(3.13) �
(

∞
∑

n=1
p|n⇒p≤x

1

n1+2α

)
1
2 �

√
m.

We focus on the main term in the right side of (3.12). Clearly

(

1

2π

∫ T

−T

∣

∣

∣

∣

(F G ′

G
)(1 + α + i y)

1 + α + i y

∣

∣

∣

∣

2

dy

)
1
2

≤
(

max
|y|≤T

|F(1 + α + i y)|
)

(

1

2π

∫ ∞

−∞

∣

∣

∣

∣

G ′

G
(1 + α + i y)

1 + α + i y

∣

∣

∣

∣

2

dy

)
1
2

.
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Since −G ′

G
(s) =

∑∞
n=1 g(n)Λ(n)n−s we get, by Plancherel’s formula, that

1

2π

∫ ∞

−∞

∣

∣

∣

∣

G ′

G
(1 + α + i y)

1 + α + i y

∣

∣

∣

∣

2

dy =

∫ ∞

0

∣

∣

∣

∑

n≤et

g(n)Λ(n)
∣

∣

∣

2

e−2(1+α)t dt.

Since |g(n)| ≤ 1 always, we see that |
∑

n≤et g(n)Λ(n)| ≤ ψ(et ) for all t . Further,
since g(n) = 0 if n is divisible by a prime larger than x, we see that if t ≥ log x,
then |∑n≤et g(n)Λ(n)| � x + et/2. Using these observations together with the prime
number theorem we deduce that the above is

≤
∫ log x

0

(

et + O
( et

(t + 1)2

)

) 2

e−2(1+α)t dt + O

(
∫ ∞

log x

(x2 + et )e−2(1+α)t dt

)

=
1 − x−2α

2α
+ O(1).

Thus the main term in the right side of (3.12) is

≤ max
|y|≤T

|F(1 + α + i y)|
( 1 − x−2α

2α
+ O(1)

)
1
2

= max
|y|≤T

|F(1 + α + i y)|
(

( 1 − x−2α

2α

)
1
2

+ O(m− 1
2 )

)

,

since (1 − x−2α)/2α � m(α). Combining this with (3.13), and (3.11), we obtain the
lemma, since |F(1 + α + i y)| �

∏

p≤y(1 − 1/p1+α)−1 � m.
We use (3.9), (3.10) and Lemma 3.2 to estimate the right side of (3.8). Inserting

that estimate into (3.7) we conclude that
∫ x

2

|S(y)|
y2

dy ≤ 2

∫ 1

0

(

max
|y|≤T

|F(1 + α + i y)|
)

( 1 − x−2α

2α

)

dα

+ O

(
∫ 1

0

( m(α)2

T
+ m(α)

)

dα + log log x

)

= 2

∫ 1

0

(

max
|y|≤T

|F(1 + α + i y)|
)

( 1 − x−2α

2α

)

dα

+ O
( log x

T
+ log log x

)

.

When used with (2.1) of Lemma 2.1, this yields Proposition 1.

We end this section by giving a variant of Proposition 1 which will be our main
tool in the proof of Theorem 4.

Proposition 3.3 Let f , T, and x be as in Theorem 1. Then for 1 ≤ w ≤ x, we have
∣

∣

∣

∣

S(x)

x
− S(x/w)

x/w

∣

∣

∣

∣

� 1

log x

∫ 1

0

m(α)
(

max
|y|≤T

|(1 − w−α−i y)F(1 + α + i y)|
)

dα

+ O
( 1

T
+

log 2w

log x
log

log x

log 2w

)

.
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Proof Since the proof is very similar to that of Proposition 1, we shall merely sketch
it. Arguing as in (3.7), we get that

∫ x

2w

∣

∣

∣

S(y)

y
− S(y/w)

y/w

∣

∣

∣

dy

y

�
∫ 1

0

(

∫ x

2w

∣

∣

∣

1

y

∑

n≤y

f (n) log n − 1

y/w

∑

n≤y/w

f (n) log n
∣

∣

∣

dy

y1+2α

)

dα

+ log 2w log
( log x

log 2w

)

.

Using Cauchy’s inequality as in (3.8), we see that

∫ x

2w

∣

∣

∣

1

y

∑

n≤y

f (n) log n − 1

y/w

∑

n≤y/w

f (n) log n
∣

∣

∣

dy

y1+2α

� min m(α)
1
2

(

∫ x

2w

∣

∣

∣

1

y

∑

n≤y

f (n) log n − 1

y/w

∑

n≤y/w

f (n) log n
∣

∣

∣

2 dy

y1+2α

)
1
2

.

As before, we handle the second factor above by replacing f by f̃ , extending the
range of integration to

∫∞
1

, substituting y = et , and invoking Plancherel’s formula.

The only difference from (3.10) is that F ′(1 + α + i y)/(1 + α + i y) in the right
side there must be replaced by the Fourier transform of e−(1+α)t

∑

n≤et f̃ (n) log n −
we−(1+α)t

∑

n≤et/w f̃ (n) log n which is −F ′(1 +α+ i y)(1−w−α−i y )/(1 +α+ i y). We
make this adjustment, and follow the remainder of the proof of Proposition 1.

4 Proofs of Theorem 1 and Corollary 1

Recall the multiplicative function f̃ (n) defined by f̃ (pk) = f (pk) for p ≤ x, and
f̃ (pk) = 0 for p > x. Then F(s) =

∑

n f̃ (n)n−s, and since | f̃ (n)| ≤ 1 always, we get
that for all 0 < α ≤ 1,

(4.1) max
y∈R

|F(1 + α + i y)| ≤ ζ(1 + α) =
1

α
+ O(1).

Taking an = f̃ (n) in Lemma 2.2 and noting that
∑

n |an|/n � log x, we conclude
that for 0 ≤ α ≤ 1

(4.2) max
|y|≤T

|F(1 + α + i y)| ≤ max
|y|≤2T

|F(1 + i y)| + O
( α log x

T

)

.

Note that L ≤ 1
log x

∏

p≤x(1 − 1
p

)−1 = eγ + O(1/ log x), by Mertens’ theorem.

The theorem is trivial if 1 ≤ L ≤ eγ + O(1/ log x), and also if L ≤ 1/ log x, so we
suppose that 1/ log x < L ≤ 1. We use Proposition 1, employing the bound (4.2)
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when α ≤ 1/(L log x), and the bound (4.1) when 1/(L log x) ≤ α ≤ 1. We deduce
that

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
≤ L

∫ 1/L log x

0

1 − x−2α

α
dα +

2

log x

∫ 1

1/L log x

1 − x−2α

2α

1

α
dα

+ O
( 1

T
+

log log x

log x

)

.(4.3)

Making a change of variables y = 2α log x, we see that the first integral above is

≤ L

∫ 2/L

0

1 − e−y

y
dy

= L
(

∫ 1

0

1 − e−y

y
dy +

∫ 2/L

1

dy

y
−
∫ ∞

1

e−y

y
dy +

∫ ∞

2/L

e−y

y
dy
)

= L
(

γ + log
2

L

)

+ L

∫ ∞

2/L

e−y

y
dy,

since γ =
∫ 1

0
(1 − e−y)/y dy −

∫∞
1

e−y/y dy. Further, the second integral in (4.3) is

1

log x

∫ 1

1/L log x

1 − x−2α

α2
dα = 2

∫ ∞

2/L

1 − e−y

y2
dy = L −

∫ ∞

2/L

2e−y

y2
dy.

Combining the above bounds, we see that the right side of (4.3) is

(4.4) ≤ L

(

1 + log 2 + log
eγ

L
+

∫ ∞

2/L

e−y

y

(

1 − 2/L

y

)

dy

)

+ O
( 1

T
+

log log x

log x

)

.

Since the maximum of
(

1 − (2/L)/y
)/

y for y ≥ 2/L is attained at y = 4/L, we see

that the integral term above is ≤ L/8
∫∞

2/L
e−y dy ≤ 1/8

∫∞
2

e−y dy = 1/(8e2) since

L ≤ 1, and theorem then follows from (4.4) since 1 + log 2 + 1/(8e2) ≤ 12/7.
We now deduce Corollary 1. Suppose f is completely multiplicative. Then, by

Mertens’ theorem,

|F(1 + i y)| =
(

eγ log x + O(1)
)

∏

p≤x

∣

∣

∣

∣

1 − f (p)

p1+i y

∣

∣

∣

∣

−1
(

1 − 1

p

)

=
(

eγ log x + O(1)
)

exp

(

−
∑

p≤x
k≥1

1 − Re f (pk)p−iky

kpk

)

,(4.5)

and so it follows that L ≤ eγ−M + O(1/ log x). Using this bound in Theorem 1, we
get the completely multiplicative case of Corollary 1.
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If f is only known to be multiplicative then note that

∣

∣

∣

∣

1 +
f (p)

p1+i y
+

f (p2)

p2+2i y
+ · · ·

∣

∣

∣

∣

·
∣

∣

∣

∣

1 − f (p)

p1+i y

∣

∣

∣

∣

≤ 1 +
2

p(p − 1)
,

since | f (pk)| ≤ 1 for all k. Using this with the observation of the preceding para-
graph, we see that L ≤ ∏p(1+ 2

p(p−1)
)eγ−M +O(1/ log x) in this case. Appealing now

to Theorem 1, and noting that log
(
∏

p(1 + 2
p(p−1)

)
)

≥ 8/7, we deduce this case of

Corollary 1.

5 Proof of Theorem 2a

We may suppose that |y0| ≥ 10. Applying Theorem 1 with T = |y0|/2 − 1 we get
that

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
�
(

max|y|≤|y0|−2 |F(1 + i y)|
log x

)

log

(

e1+γ log x

max|y|≤y0−2 |F(1 + i y)|

)

+
1

|y0| + 1
+

log log x

log x
.(5.1)

By the definition of y0, we see that for |y| ≤ |y0| − 2,

|F(1 + i y)| ≤
(

|F(1 + i y)F(1 + i y0)|
)

1
2 ,

and appealing to Lemma 2.3, this is (with log x � |β| = |y − y0| ≥ 2)

� (log x)
2
π (log log x)2(1− 2

π ).

Using this bound in (5.1), we obtain the theorem.

6 Proof of Theorem 4

If |y0| ≥ (log x)/2, then in view of Theorem 3a, the result follows. Thus we may
assume that |y0| ≤ (log x)/2. Put f0(n) = f (n)n−i y0 , and define

F0(s) =

∏

p≤x

(

1 + f0(p)p−s + f0(p2)p−2s + · · ·
)

= F(s + i y0).

We note that

(6.1)
(

|F(1 + i y0)| =
)

|F0(1)| = max
|y|≤log x

|F0(1 + i y)|.

Indeed, the left side of (6.1) is plainly ≤ right side; and further the right side is =

max|y|≤log x |F(1 + i y + i y0)| ≤ max|y|≤log x+|y0| |F(1 + i y)| ≤ |F(1 + i y0)|, proving
(6.1).
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We now appeal to Proposition 3.3, with f there replaced by f0, and F by F0, and
with T = (log x)/2. Thus we see that

∣

∣

∣

1

x

∑

n≤x

f0(n) − w

x

∑

n≤x/w

f0(n)
∣

∣

∣
� log 2w

log x
log
( log x

log 2w

)

+
1

log x

∫ 1

0

min
(

log x,
1

α

)

(

max
|y|≤(log x)/2

|F0(1 + α + i y)(1 − w−α−i y)|
)

dα.(6.2)

Next, we use Lemma 2.2 with an = f0(n) if n is divisible only by primes ≤ x,
and an = 0 otherwise. Thus A(s) = F0(s), and

∑∞
n=1 |an|/n � log x. Taking T =

(log x)/2, we deduce from (2.6) of Lemma 2.2 that

(6.3) max
|y|≤(log x)/2

|F0(1+α+i y)(1−w−α−i y )| ≤ max
|y|≤log x

|F0(1+i y)(1−w−i y )|+O(1).

If |y| ≤ 1/ log x, then plainly |F0(1 + i y)(1 − w−i y)| � log x(|y| log 2w) � log 2w.
If log x ≥ |y| > 1/ log x, then using (6.1) and Lemma 2.3, we get

|F0(1 + i y)| ≤
(

|F0(1)F0(1 + i y)|
)

1
2 � (log x)

2
π max

( 1

|y| , (log log x)2
) (1− 2

π )

.

Since |1 − w−i y | � min(1, |y| log 2w), we deduce from these remarks and (6.3) that
(6.4)

max
|y|≤(log x)/2

|F0(1 + α + i y)(1 − w−α−i y)| � (log x)
2
π max

(

log 2w, (log log x)2
) 1− 2

π .

In addition, we have the trivial estimate

(6.5) max
|y|≤(log x)/2

|F0(1 + α + i y)(1 − w−α−i y)| � ζ(1 + α) � 1

α
.

We now use (6.2), employing estimate (6.4) when α is less than

max
(

log 2w, (log log x)2
)−(1− 2

π )
(log x)−

2
π ,

and estimate (6.5) for larger α. This gives the theorem.

7 Deduction of Corollary 3 and of Theorem 2b

We require the following lemma, which relates the mean value of f (n) to the mean
value of f (n)niα.

Lemma 7.1 Suppose f (n) is a multiplicative function with | f (n)| ≤ 1 for all n. Then

for any real number α we have

∑

n≤x

f (n)niα
=

xiα

1 + iα

∑

n≤x

f (n) + O

(

x

log x
log(e + |α|) exp

(

∑

p≤x

|1 − f (p)|
p

)

)

.
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To prove this Lemma, we require a consequence of Theorem 2 of Halberstam and
Richert [10]. Suppose h is a non-negative multiplicative function with h(pk) ≤ 2 for

all prime powers pk. It follows from Theorem 2 of [10] that

(7.1)
∑

n≤x

h(n) ≤ 2x

log x

∑

n≤x

h(n)

n

{

1 + O
( 1

log x

)}

.

Using partial summation we deduce from (7.1) that for 1 ≤ y ≤ x1/2,

(7.2)
∑

x/y<n≤x

h(n)

n
≤
{ 1

log x
− log

(

1 − log y

log x

)}

∑

n≤x

h(n)

n

{

2 + O
( 1

log x

)}

.

Proof of Lemma 7.1 Let g denote the multiplicative function defined by g(pk) =

f (pk) − f (pk−1), so that f (n) =
∑

d|n g(d). Then

(7.3)
∑

n≤x

f (n)niα
=

∑

n≤x

niα
∑

d|n
g(d) =

∑

d≤x

g(d) diα
∑

n≤x/d

niα.

By partial summation it is easy to see that

∑

n≤z

niα
=

{

z1+iα

1+iα + O(1 + α2)

O(z).

We use the first estimate above in (7.3) when d ≤ x/(1+α2), and the second estimate
when x/(1 + α2) ≤ d ≤ x. This gives

∑

n≤x

f (n)niα
=

x1+iα

1 + iα

∑

d≤x

g(d)

d
+O

(

(1+α2)
∑

d≤x/(1+α2)

|g(d)|+x
∑

x/(1+α2)≤d≤x

|g(d)|
d

)

.

Applying (7.1) and (7.2) we deduce that

∑

n≤x

f (n)niα
=

x1+iα

1 + iα

∑

d≤x

g(d)

d
+ O

(

x

log x
log(e + |α|)

∑

d≤x

|g(d)|
d

)

=
x1+iα

1 + iα

∑

d≤x

g(d)

d
+ O

(

x

log x
log(e + |α|) exp

(

∑

p≤x

|1 − f (p)|
p

)

)

.

Using the above estimate twice, once with α replaced by 0, we obtain the lemma.

Proof of Corollary 3 We may suppose that w ≤ √
x, else there’s nothing to prove.

Let y0 be as in Theorem 4. By the definition of M and by (4.5) we know that for all
|y| ≤ 2 log x,

∑

p≤x

1 − Re f (p)p−i y

p
≥ M =

∑

p≤x

1 − Re f (p)p−i y0

p
+ O(1).
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Further we have for |y| ≤ 2 log x

∑

p≤x/w

1 − Re f (p)p−i y

p
≥
∑

p≤x

1 − Re f (p)p−i y

p
− 2

∑

x/w≤p≤x

1

p
≥ M + O(1).

By Corollary 1 (with T = log x) it follows that

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
,

1

x/w

∣

∣

∣

∑

n≤x/w

f (n)
∣

∣

∣
� Me−M +

log log x

log x
.

From this estimate, Corollary 3 follows if M ≥ (2 −
√

3) log log x. We suppose now
that M ≤ (2 −

√
3) log log x.

For a complex number z in the unit disc, we have |1 − z| = (1 + |z|2 − 2 Re z)
1
2 ≤

(2 − 2 Re z)
1
2 . Hence, by Cauchy’s inequality and our bound on M,

∑

p≤x

|1 − f (p)p−i y0 |
p

≤
∑

p≤x

√

2 − 2 Re f (p)p−i y0

p

≤
(

∑

p≤x

2

p

)
1
2
(

∑

p≤x

1 − Re f (p)p−i y0

p

)
1
2

≤
(

2(2 −
√

3)
)

1
2 log log x + O(1)

= (
√

3 − 1) log log x + O(1).(7.4)

Applying Lemma 7.1, we see that

1

x

∑

n≤x

f (n) =
xi y0

1 + i y0

∑

n≤x

f (n)n−i y0 + O

(

log log x

log x
exp
(

∑

p≤x

|1 − f (p)p−i y0 |
p

)

)

=
xi y0

1 + i y0

∑

n≤x

f (n)n−i y0 + O

(

log log x

(log x)2−
√

3

)

,

and similarly

w

x

∑

n≤x/w

f (n) =
(x/w)i y0

1 + i y0

∑

n≤x/w

f (n)n−i y0 + O

(

log log x

(log x)2−
√

3

)

.

Taking absolute values in these relations, and appealing to Theorem 4, we obtain the
corollary.

Proof of Theorem 2b Suppose that the maximum in (1.3) with T = log x is attained
at y = y0. If |y0| ≥ log x the result follows from Theorem 2a. Thus we may assume
|y0| < log x. Let g(n) = f (n)/ni y0 so that the maximum in (1.3) with f replaced by
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g and T =
1
2

log x is attained at y = 0 (for in the range there, |y + y0| ≤ |y| + |y0| ≤
2 log x). Write M = M f (x, log x) = Mg(x, 1

2
log x). We will give the proof now

assuming f is completely multiplicative (the proof for all multiplicative f is entirely
analogous): By Corollary 1 (with T =

1
2

log x) we have

1

x

∣

∣

∣

∑

n≤x

g(n)
∣

∣

∣
≤
(

M +
12

7

)

eγ−M + O
( log log x

log x

)

.

By Lemma 7.1 with f replaced by g, and α by y0, we have

∑

n≤x

f (n) =
xi y0

1 + i y0

∑

n≤x

g(n) + O

(

x

log x
log log x exp

(

∑

p≤x

|1 − g(p)|
p

)

)

.

Combining these two statements gives, since
∑

p≤x |1 − g(p)|/p ≤
√

2M log log x +
O(1) by Cauchy’s inequality,

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
≤ 1
√

1 + y2
0

(

M +
12

7

)

eγ−M + O

(

log log x

log x
exp
(

√

2M log log x
)

)

.

The result follows from this provided M ≤ (2 −
√

3) log log x; and it follows from

Corollary 1 directly if M > (2 −
√

3) log log x.

8 Proof of Theorem 5

We recall the notations of Section 3a. We first obtain a lower bound for M+(t) in

terms of M0 =
∫ u

0
1−Re χ(v)

v
dv.

Proposition 8.1 For all u ≥ 1 and t > 0 we have

M+(t) ≥ max
(

0, κM0 − κν log(tu) + (1 − κν)

∫ ∞

tu

e−v

v
dv + C(D)

)

,

where C(D) was defined in (1.6).

Proof First note that M+(t) ≥ 0 by definition. Also

M+(t) − κM0 = I − κ

∫ u

0

1 − Re χ(v)

v
(1 − e−tv) dv +

∫ ∞

u

e−tv

v
dv

where

(8.1) I := min
y∈R

∫ u

0

1 − κ− Re χ(v)(e−ivy − κ)

v
e−tv dv.
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Since 1 − Re χ(v) ≤ ν, we get that

−κ
∫ u

0

1 − Re χ(v)

v
(1 − e−tv) dv +

∫ ∞

u

e−tv

v
dv

≥ −κν
(

∫ u

0

1 − e−tv

v
dv −

∫ ∞

u

e−tv

v
dv
)

+ (1 − κν)

∫ ∞

u

e−tv

v
dv

= −κν
(

γ + log(tu)
)

+ (1 − κν)

∫ ∞

tu

e−v

v
dv,

so that

M+(t) ≥ κM0 − κν
(

γ + log(tu)
)

+ (1 − κν)

∫ ∞

tu

e−v

v
dv + I.

Therefore we obtain the Proposition by proving

(8.2) I ≥ min
ε=±1

∫ 2π

0

min
(

0, 1 − κ− maxδ∈D Re δ(eεix − κ)
)

x
dx.

If the minimum in (8.1) occurs at y = 0, then I = (1−κ)
∫ u

0
1−Re χ(v)

v
e−tv dv ≥ 0,

which is stronger than (8.2). So we may suppose that the minimum in (8.1) occurs
for some y 6= 0. Put w(θ) = 1 − κ− maxδ∈D Re δ(e−iθ − κ). Then we see that, with

ε = sgn(y),

I ≥
∫ u

0

w(vy)

v
e−tv dv =

∫ |y|u

0

w(εv)

v
e−tv/|y| dv =

∫ |y|u

0

e−tv/|y|

v
d
(

∫ v

0

w(εx) dx
)

.

Integrating by parts, we conclude that

(8.3) I ≥ e−tu

|y|u

∫ |y|u

0

w(εx) dx +

∫ |y|u

0

(

∫ v

0

w(εx) dx
)

(

e−tv/|y|

v2
+

te−tv/|y|

v|y|

)

dv.

Note that w(εx) is a 2π-periodic function, and that 1
2π

∫ 2π

0
w(εx) dx = 1− h̄(κ) ≥

0. Hence putting w−(x) = min
(

0,w(x)
)

, we get that

(8.4)

∫ v

0

w(εx) dx ≥
∫ v

2π[ v
2π ]

w−(εx) dx = Wε(v),

say. Observe that Wε is a 2π-periodic function, which is always negative, and that Wε

is decreasing in (0, 2π).

Using (8.4) in (8.3), and since Wε is negative and e−x(1 + x) ≤ 1 for all x ≥ 0 , we
get that

I ≥ e−tu

|y|uWε(|y|u) +

∫ |y|u

0

Wε(v)

v2
e−tv/|y|

(

1 +
tv

|y|
)

dv

≥ Wε(|y|u)

|y|u +

∫ |y|u

0

Wε(v)

v2
dv.(8.5)
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If α ≥ 2π then, since Wε(v) ≥ Wε(2π−) (=
∫ 2π

0
w−(εx) dx), we get

Wε(α)

α
+

∫ α

0

Wε(v)

v2
dv ≥ Wε(2π−)

α
+

∫ 2π

0

Wε(v)

v2
dv + Wε(2π−)

∫ α

2π

dv

v2

=

∫ 2π

0

Wε(v)

v2
+

Wε(2π−)

2π
.

If α < 2π then, since Wε(x) is decreasing in (0, 2π),

Wε(α)

α
+

∫ α

0

Wε(v)

v2
dv ≥ Wε(α)

α
+

∫ 2π

0

Wε(v)

v2
−Wε(α)

∫ 2π

α

dv

v2

=

∫ 2π

0

Wε(v)

v2
dv +

Wε(α)

2π

≥
∫ 2π

0

Wε(v)

v2
dv +

Wε(2π−)

2π
.

Using these in (8.5), we conclude that

I ≥
∫ 2π

0

Wε(v)

v2
dv +

Wε(2π−)

2π
=

∫ 2π

0

w−(εx)

x
dx,

which, from the definition of w−, is greater than or equal to the right side of (8.2) for
both ε = ±1. This completes the proof of the proposition.

We now finish the proof of Theorem 5. We first deal with the case D 6= [0, 1],

where κν < 1. We shall input the bounds for M+(t) in Proposition 8.1 into the t-
integral in Proposition 3.1. We split this integral into three parts: when 0 ≤ t ≤ t1 :=
e−γ/u, when t1 ≤ t ≤ t2 := exp( M0

ν + C(D)
κν )/u, and when t > t2.

We first estimate the contribution of the first range of t . Since

∫ ∞

tu

e−v

v
dv ≥

∫ 1

tu

dv

v
−
∫ 1

0

1 − e−v

v
dv +

∫ ∞

1

e−v

v
dv = − log(tu) − γ,

and 1 − κν ≥ 0, we see that M+(t) ≥ κM0 − log(tu) + C(D) − γ(1 − κν), by
Proposition 8.1. Hence, with a little calculation,

∫ t1

0

( 1 − e−2tu

t

) exp
(

−M+(t)
)

tu
dt ≤ exp

(

−κM0 −C(D) + γ(1 − κν)
)

×
∫ 2e−γ

0

1 − e−x

x
dx

≤ exp
(

−κM0 −C(D) + γ(1 − κν)
)

.
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For the middle range of t , we use the bound M+(t) ≥ κM0 − κν log(tu) + C(D),

which holds since 1 − κν, and
∫∞

tu
e−v

v
dv are non-negative. Hence

∫ t2

t1

( 1 − e−2tu

t

) exp
(

−M+(t)
)

tu
dt ≤ exp

(

−κM0 −C(D)
)

∫ t2

t1

(tu)κν

tu

dt

t

=
exp
(

−κM0 −C(D) + γ(1 − κν)
)

1 − κν

− exp(−M0

ν − C(D)
κν )

1 − κν
.

For the last range of t , we use the trivial bound M+(t) ≥ 0. This gives that

∫ ∞

t2

( 1 − e−2tu

t

) exp
(

−M+(t)
)

tu
dt ≤

∫ ∞

t2

dt

t2u
= exp

(

−M0

ν
− C(D)

κν

)

.

Combining the above three bounds with Proposition 3.1, we obtain Theorem 5 in

the case κν < 1.
We now consider the case D = [0, 1] where we shall show that |σ(u)| ≤ eγ−M0 .

Put χ̂(t) = χ(t) if t ≤ u, and χ̂(t) = 0 for t > u, and let σ̂ denote the corresponding
solution to (1.8). Note that both σ(v) and σ̂(v) are non-negative for all v, and that

σ̂(v) = σ(v) for v ≤ u. Now, using (3.6),

σ(u) =
1

u

∫ u

0

σ(v)χ(u − v) dv ≤ 1

u

∫ u

0

σ(v) dv ≤ 1

u

∫ ∞

0

σ̂(v) dv =
1

u
lim
t→0

L(σ̂, t)

=
1

u
lim
t→0

1

t
exp

(

−L

( 1 − χ̂(v)

v
, t
)

)

= e−M0 lim
t→0

1

tu
exp

(

−
∫ ∞

u

e−tv

v
dv

)

= e−M0 lim
y→0

1

y
exp
(

−
∫ ∞

y

e−v

v
dv
)

= eγ−M0 ,

which proves the theorem in this case.

9 Deduction of Theorem 3

Let y = exp
(

(log x)
2
3

)

, and let g be the completely multiplicative function with
g(p) = 1 for p ≤ y, and g(p) = f (p) for larger p. Let χ(t) = 1 for t ≤ 1, and put

for t > 1

χ(t) =
1

ϑ(yt )

∑

p≤yt

g(p) log p.

Let σ denote the corresponding solution to (1.8). Note that for u ≥ 1
∫ u

0

1 − Re χ(v)

v
dv =

∫ u

1

1

vϑ(yv)

∑

y<p≤yv

(

1 − Re f (p)
)

log p dv

=

∫ u

1

1

vyv

∑

y<p≤yv

(

1 − Re f (p)
)

log p dv + O
( 1

log y

)

,
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upon using the prime number theorem. Interchanging the sum and the integral, the
above is

=

∑

y<p≤yu

(

1 − Re f (p)
)

log p

∫ u

log p/ log y

dv

vyv
+ O
( 1

log y

)

=

∑

y<p≤yu

(

1 − Re f (p)
)

log p
( 1

p log p
+ O
( 1

p log2 p
+

1

uyu log y

))

+ O
( 1

log y

)

.

We conclude that

(9.1)

∫ u

0

1 − Re χ(v)

v
dv =

∑

y<p≤yu

1 − Re f (p)

p
+ O
( 1

log y

)

.

Appealing to Propositions 3 and then 2 we obtain that

1

x

∑

n≤x

f (n) = Θ( f , y)
1

x

∑

n≤x

g(n) + O

(

1

(log x)
1
3

exp
(

∑

p≤x

|1 − f (p)|
p

)

)

= Θ( f , y)σ
( log x

log y

)

+ O

(

1

(log x)
1
3

exp
(

∑

p≤x

|1 − f (p)|
p

)

)

.

Since f (p) ∈ D for all p and D is convex, thus χ(t) ∈ D for all t . Hence using

Theorem 5 and (9.1), we conclude that

1

x

∣

∣

∣

∑

n≤x

f (n)
∣

∣

∣
≤ |Θ( f , y)|

( 2 − κν

1 − κν

)

× exp

(

−κ
∑

y≤p≤x

1 − Re f (p)

p
−C(D) + γ(1 − κν)

)

+ O

(

1

(log x)
1
3

exp

(

∑

p≤x

|1 − f (p)|
p

)

)

,

which completes the proof of the first part of Theorem 3.

In fact the second part of Theorem 3 follows from Lemma 2.1 for, from (2.1) we
have

(log x + 1)
1

x

∑

n≤x

f (n) ≤
∑

n≤x

f (n)

n
+ O(1) = eγ log xΘ( f , x) + O(1)

using Mertens’ theorem, and the result follows.
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10 Explicit Constructions

10a Examining Proper Subregions D of U is Necessary

As we remarked after Theorem 5, it is not, a priori, clear that one should look at
proper subsets D of U when looking for bounds (of the shape of Theorem 2) on
solutions to (1.8). However if we take χ(t) = 1 for t ≤ 1, and χ(t) = eiαt for t > 1

then

L

( 1 − Re χ(v)e−ivα

v
, t
)

=

∫ 1

0

( 1 − cos vα

v

)

e−tv dv →
∫ 1

0

1 − cos vα

v
dv �α 1,

as t → 0. Therefore, by (3.6),

∫ ∞

0

|σ(v)|e−tv dv ≥ |L(σ, t + iα)| �α 1/t,

if t is sufficiently small. Now
∫∞

b/t
|σ(v)|e−tv dv ≤

∫∞
b/t

e−tv dv ≤ e−b/t for any b > 0

and so
∫ b/t

0
|σ(v)|e−tv dv �α 1/t if b is sufficiently large. Taking N = b/t we deduce

that if N is sufficiently large then
∫ N

0
|σ(v)| dv �α N , and so lim sup |σ(u)| �α 1.

However

M0(u, χ) =

∫ u

0

1 − Re χ(v)

v
dv =

∫ u

1

1 − cosαv

v
dv = log u + Oα(1),

so no estimate of the shape |σ(u)| � exp(−κM0) can hold (with κ > 0), as in

Theorem 5.

10b Corollary 1 ′ is Best Possible, Up to the Constant

Assume that Corollary 1 ′ is not best possible, so that if M = M(u) is sufficiently large
then |σ(u)| ≤ εMe−M .

Select u sufficiently large, and choose χ(t) = 1 for t ≤ 1, χ(t) = i for 1 < t ≤
u/2, and χ(t) = 0 for t > u/2; let σ denote the corresponding solution to (1.8). Next

we take χ̂(t) = χ(t) for t ≤ u/2, or t > u, and for u/2 < t < u choose χ̂(t) to be
a unit vector pointing in the direction of σ(u − t). Let σ̂ denote the corresponding
solution to (1.8). By definition we have σ̂(u−t) = σ(u−t) in the range u/2 ≤ t ≤ u;
and so χ̂(t)σ̂(u− t) = |σ(u− t)| throughout this range, by our choice of χ̂(t). From

(1.9) and then this observation we deduce
(10.1)

σ̂(u) − σ(u) =

∫ u

u/2

χ̂(t)

t
σ̂(u − t) dt =

∫ u

u/2

|σ(u − t)|
t

dt ≥ 1

u

∫ u/2

0

|σ(v)| dv.

Multiplicative functions such as this have been explored in some detail in the lit-
erature: Let α be a complex number with Re(α) < 1, and let ρα denote the unique
continuous solution to uρ ′

α(u) = −(1−α)ρα(u−1), for u ≥ 1, with the initial condi-
tion ρα(u) = 1 for u ≤ 1 (The Dickman–De Bruijn function is the case α = 0.) For
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α ∈ [0, 1], Goldston and McCurley [5] gave an asymptotic expansion of ρα. Their
proof is in fact valid for all complex α with Re(α) < 1, and shows that when α is not

an integer

ρα(u) ∼ eγ(1−α)

Γ(α)u1−α ,

as u → ∞ (Curiously, when α is an integer the behaviour of ρα is very different; in
fact ρα(u) = 1/uu+o(u)). We have σ(v) = ρi(v) for v ≤ u/2, and so in (10.1) we get:
σ̂(u) − σ(u) = {c + o(1)} log u/u where c = eγ/|Γ(i)| = 3.414868086 · · · .

Now we note that

M(u) = min
y∈R

∫ u

0

1 − Re χ(v)e−ivy

v
dv

= min
y∈R

(
∫ 1

0

1 − cos(vy)

v
dv +

∫ u/2

1

1 − sin(vy)

v
dv + log 2

)

,

≥ log u + min
y∈R

∫ y

0

1 − cos t + sin t

t
dt − max

Y∈R

∫ Y

0

sin t

t
dt

≥ log u − 1.851937052 · · ·

and similarly M̂(u) ≥ log(u/2) − 1.851937052 · · · . Let

c ′ = e1.851937052···
= 6.372150763 · · · .

Therefore Me−M ≤ {c ′ + o(1)} log u/u and M̂e−M̂ ≤ {2c ′ + o(1)} log u/u, so that

|σ̂(u)| + |σ(u)| ≥ {c + o(1)} log u/u ≥ {c/3c ′ + o(1)}(M̂e−M̂ + Me−M).

Thus either |σ(u)| ≥ (5/28)Me−M or |σ̂(u)| ≥ (5/28)M̂e−M̂ , which implies the
remarks following Corollaries 1 and 1 ′ since c/3c ′ > 5/28 > eγ/10.

11 Bounds on Least Members of Cosets of the k-th Powers

11a Bounds For τk: k Large

Let f be a completely multiplicative function which takes values on the k-th roots of
unity. Suppose x is a large integer such that for each k-th root of unity ξ there are
between (1 − ε)x/k and (1 + ε)x/k integers n below x with f (n) = ξ, for some given

ε > 0. It follows that

(11.1)
∑

n≤x

f (n) j ≤ {ε + o(1)}x,

for each j = 1, . . . , k − 1. Now suppose 1 ≤ w ≤ o(x) and observe that

∑

n≤x/w
f (n)=ξ

1 =
1

k

k−1
∑

j=0

ξ− j
∑

n≤x/w

f (n) j
=

1

k

[ x

w

]

+
1

k

k−1
∑

j=1

ξ− j
∑

n≤x/w

f (n) j .
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Using (11.1) together with Corollary 3 we conclude that

∑

n≤x/w
f (n)=ξ

1 ≥ x

w

(

1

k
− ε−C

( log 2w

log x

) 1− 2
π

log
( log x

log 2w

)

+ o(1)

)

,

for some absolute constant C . If ε ≤ k/2 and w < xc/(k log k)1/(1−2/π)

for a suitable
constant c > 0 then the above is positive, so that τk < 1 − c/(k log k)1/(1−2/π), and
our desired bound for ηk, the first part of Corollary 4, follows.

In the case that k is prime we may improve our bound for τk by modifying the
argument of Davenport and Erdős [2]. Let ε, f and x be as above, and suppose that ξ
is a k-th root of unity such that f (n) 6= ξ for all n ≤ X = xτk+o(1). Plainly f (p) = 1

for all p ≤ X1/(k−1) =: y, otherwise ξ = f (p) j = f (p j) for some 1 ≤ j ≤ k − 1
contradicting f (n) 6= ξ for all n ≤ X. Suppose X ≤ n ≤ x with f (n) = ξ. Write
n = rs where p|r ⇒ p ≤ y, and p|s ⇒ p > y. Then ξ = f (n) = f (r) f (s) = f (s)
and so we must have s > X. Hence

(11.2) (1 − ε)
x

k
≤
∑

n≤x
f (n)=ξ

1 ≤
∑

X≤s≤x
p|s⇒p>y

∑

r≤x/s

1 ≤ x
∑

X≤s≤x
p|s⇒p>y

1

s
.

The right side above may be estimated using knowledge of the distribution of integers
free of small prime factors (see Theorem 3 of Chapter III.6 of [18]). Using this result
and partial summation we get that

∑

X≤s≤x
p|s⇒p>y

1

s
=

∫ log x/ log y

log X/ log y

ω(z) dz + o(1),

where ω is Buchstab’s function defined by ω(z) = 1/z for 1 ≤ z ≤ 2 and for z > 2 it

is the unique continuous solution to the differential-difference equation
(

uω(u)
) ′

=

ω(u − 1). As z → ∞ we have ω(z) = e−γ + O(z−z+o(z)) (see Theorem 4 of III.6 of
[18]) and hence

∑

X≤s≤x
p|s⇒p>y

1

s
=

log(x/X)

log y
e−γ + O(k−k+o(k)).

Using this in (11.2) we conclude that e−γ(k−1)(1−τk)/τk +O(k−k+o(k)) ≥ (1−ε)/k,
and our desired bound on τk follows.

11b Evaluating τ2 and τ3

That τ2 = 1/
√

e is essentially a classical observation of Vinogradov. First we show
that τ2 ≤ 1/

√
e. Suppose f is a completely multiplicative function with f (n) = ±1.
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Suppose x is such that both {n ≤ x : f (n) = 1} and {n ≤ x : f (n) = −1} have
cardinality ∼ x/2. Let n1 be the first time f (n) = −1. Plainly we may suppose that

n1 >
√

x. If n ≤ x has all prime factors below n1 then f (n) = 1. The number of
such integers is ∼ x

(

1 − log(log x/ log n1)
)

and so we conclude that n1 ≥ x1/
√

e+o(1)

as desired. To see that τ2 ≥ 1/
√

e, simply consider the function f given by f (p) = 1
for all p ≤ x1/

√
e and f (p) = −1 for x ≥ p > x1/

√
e.

We now focus on evaluating τ3. Define U to be the unique real number such that
U ≤ 4/3, and 1/(2U ) + e/(2U 3) ≥ 1 (that is, U ≥ 1.30189 · · · ) and satisfying the

equation

1

3
= log U +

∫ 1− e

2U 3

1
2U

log
( e

2U 3 y

) dy

y
+

∫ 1
2

1− e

2U 3

log
( 1 − y

y

) dy

y
.

Then U = 1.3064664 · · · and we claim that τ3 = 1/U = 0.765423 · · · . We remark
here that Davenport and Erdős [2] showed that τ3 ≤ 0.76549 · · · .

We first show that τ3 ≤ 1/U , and then construct an example giving τ3 ≥ 1/U .
Suppose f is a completely multiplicative function with f (n)3 = 1 for all integers

n ≥ 1, and that x is large with

#{n ≤ x : f (n) = ω j} = x/3 + o(x) for j = 0, 1, 2 where ω = e2πi/3.

Let n1 denote the smallest integer with f (n1) 6= 1, and without loss of generality

suppose that f (n1) = ω. We then need to show that the smallest n2 with f (n2) = ω2

satisfies n2 ≤ x1/U +o(1). We may suppose that n2 > x3/4, and since n2
1 ≥ n2, that

n1 ≥ x3/8.

Let P1 denote the set of primes below x with f (p) = ω, and P2 denote the set of
primes below x with f (p) = ω2. Then P1 ⊂ [n1, x], and P2 ⊂ [n2, x]. Since n2 > x3/4

and n1 > x3/8 we see that an integer n ≤ x either has no prime factors from P1 and

P2, or has exactly one prime factor from P1 (and none from P2), or has exactly two
prime factors from P1 (and none from P2), or has exactly one prime factor from P2

(and none from P1). We call A, B, C and D, the sets of integers corresponding to
these four cases. Elements in A satisfy f (n) = 1, elements in B that f (n) = ω, and

elements in C and D satisfy f (n) = ω2. Thus

(11.3) |A| ∼ |B| ∼ |C| + |D| ∼ x/3.

Lastly put β1 =
∑

p∈P1
1/p and β2 =

∑

p∈P2
1/p.

Note that

|D| =

∑

p∈P2

[x/p] ∼ β2x,

and that

|B| + 2|C| =

∑

p∈P1

[x/p] ∼ β1x.

https://doi.org/10.4153/CJM-2003-047-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-047-0


1228 Andrew Granville and K. Soundararajan

Combining these with (11.3) we conclude that

(11.4) β2 + o(1) ≤ 1/3 ≤ β1 + o(1), and β1 + 2β2 = 1 + o(1).

Given a subset P of the primes in [w, z] with
∑

p∈P 1/p = β + o(1) we see that

∑

p<q∈P
pq≤z

1

pq

is maximized when P is the set of all primes in [w,weβ ]. Using this observation for
P1 ⊂ [n1, x] ⊂ [

√
n2, x] we see that

( β1

2
− 1

6

)

∼ |C|
x

∼
∑

p<q∈P1

pq≤x

1

ps
≤

∑

p<q∈[n
1/2
2 ,n

eβ1 /2
2 ]

pq≤x

1

pq
+ o(1) = f (n2, β1) + o(1),

say. If β < β ′ then we see that

f (n2, β
′) − f (n2, β) ≤

∑

n
eβ/2
2 ≤q≤n

eβ
′
/2

2

1

q

∑

n
1
2

2 ≤p≤x
1
2

1

p
≤ (β ′ − β) log

( log x

log n2

)

+ o(1)

≤ 1

3
(β ′ − β) + o(1),

since n2 > x3/4. Thus we see that (1/6 + o(1) ≥) β1/2 − f (n2, β1) is essentially an
increasing function of β1. Since β2 ≤ ∑

n2≤p≤x 1/p = log(log x/ log n2) + o(1) we

get by (11.4) that β1 > 1 − 2 log(log x/ log n2) and hence we conclude that

(11.5)
1

6
+ o(1) ≥ 1

2
− log

( log x

log n2

)

− f

(

n2, 1 − 2 log
( log x

log n2

)

)

.

Put now n2 = x1/u so that 1 ≤ u ≤ 4/3. In case u ≤ 1.301890916 · · · is such that
1/(2u) + e/(2u3) ≥ 1 then we see that

f (n2, 1 − 2 log u) =

∑

x1/(2u)≤p≤x1/2

1

p

∑

p<q≤x/p

1

q
=

∫ 1
2

1
2u

log
( 1 − y

y

) dy

y
+ o(1).

In this case (11.5) yields that

1

3
+ o(1) ≤ log u +

∫ 1
2

1
2u

log
( 1 − y

y

) dy

y
.
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However the right side is an increasing function of u, and its value at u = 1.302 is
0.3284 · · · < 1/3. Thus we must have 4/3 ≥ u > 1.301890916 · · · , in which case

1/(2u) + e/(2u3) > 1. Here we see that

f (n2, 1 − 2 log u) =

∑

x1/(2u)≥p<x1−e/(2u3)

1

p

∑

p<q≤xe/(2u3)

1

q
+

∑

x1−e/(2u3)≤p≤x
1
2

1

p

∑

p<q≤x/p

1

q

=

∫ 1− e

2u3

1
2u

log
( e

2u3 y

) dy

y
+

∫ 1
2

1− e

2u3

log
( 1 − y

y

) dy

y
.

Thus in this case (11.5) yields that

1

3
+ o(1) ≤ log u +

∫ 1− e

2u3

1
2u

log
( e

2u3 y

) dy

y
+

∫ 1
2

1− e

2u3

log
( 1 − y

y

) dy

y
.

Again the right side is an increasing function of u in this range, and it equals 1/3 at

U = 1.306466 · · · , proving that u ≥ U + o(1), and hence our desired upper bound
for τ3.

Our proof above indicates the optimal function f attaining this value of τ3. Take
f (p) = ω for p ∈ [x

1
2U , x

e

2U 3 ], f (p) = ω2 for p ∈ [x
1
U , x] and f (p) = 1 otherwise.

Then we check easily from our earlier considerations that the sets n ≤ x, with f (n) =

1, f (n) = ω, or f (n) = ω2 all have cardinality ∼ x/3, and the least n with f (n) = ω2

exceeds x1/U . This completes our determination of τ3.
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